Holocene Millennial-Scale Solar Variability and the Climatic Responses on Earth
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Existence of the Millennial Cycle
3.2. Cross Correlations at Millennial Cycle
3.3. Solar Oscillations and Climatic Responses at Millennial Scale
4. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stocker, V.B.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y. Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Lüning, S.; Vahrenholt, F. The sun’s role in climate. In Evidence-Based Climate Science; Elsevier: Amsterdam, The Netherlands, 2016; Chapters 6; pp. 283–306. [Google Scholar]
- Cionco, R.G.; Soon, W. Short-term orbital forcing: A quasi-review and a reappraisal of realistic boundary conditions for climate modeling. Earth-Sci. Rev. 2017, 166, 206–222. [Google Scholar] [CrossRef] [Green Version]
- Haigh, J.D. The impact of solar variability on climate. Science 1996, 272, 981–985. [Google Scholar] [CrossRef]
- Gray, L.J.; Beer, J.; Geller, M.; Haigh, J.D.; Lockwood, M.; Matthes, K.; Cubasch, U.; Fleitmann, D.; Harrison, G.; Hood, L.; et al. Solar influences on climate. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef]
- Soon, W.; Connolly, R.; Connolly, M. Re-evaluating the role of solar variability on northern hemisphere temperature trends since the 19th century. Earth-Sci. Rev. 2015, 150, 409–452. [Google Scholar] [CrossRef]
- Herschel, W. Observations tending to investigate the nature of the sun, in order to find the causes or symptoms of its variable emission of light and heat: With remarks on the use that may possibly be drawn from solar observations. Philos. Trans. R. Soc. Lond. 1801, 91, 265–318. [Google Scholar]
- Soon, W.; Baliunas, S. A Brief Review of the Sun-Climate Connection, with a New Insight Concerning Water Vapour; Institute of Public Affairs: Melbourne, VIC, Australia, 2017. [Google Scholar]
- Eddy, J.A. The Maunder minimum. Science 1976, 192, 1189–1202. [Google Scholar] [CrossRef] [Green Version]
- Soon, W.; Yaskell, S.H. The Maunder Minimum and the Variable Sun-Earth Connection; World Scientific Pub Co Inc.: Singapore, 2003. [Google Scholar]
- Soon, W.; Baliunas, S.; Idso, C.; Idso, S.; Legates, D.R. Reconstructing climatic and environmental changes of the past 1000 years: A reappraisal. Energy Environ. 2003, 14, 233–296. [Google Scholar] [CrossRef]
- Xiao, J.; Zheng, G.Z.; Guo, Z.S.; Yan, L.S. Climate change and social response during the heyday of the little ice age in the Ming and Qing dynasties. J. Arid Land Resour. Environ. 2018, 32, 79–84. [Google Scholar]
- Clette, F.; Svalgaard, L.; Vaquero, J.M.; Cliver, E.W. Revisiting the sunspot number a 400-year perspective on the solar cycle. Spa. Sci. Rev. 2014, 186, 35–103. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, D.S.; McKay, N.P.; Routson, C.; Erb, M.; Dätwyler, C.; Sommer, P.S.; Heiri, O.; Davis, B. Holocene global mean surface temperature, a multi-method reconstruction approach. Sci. Data 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Marcott, S.A.; Shakun, J.D.; Clark, P.U.; Mix, A.C. A reconstruction of regional and global temperature for the past 11,300 years. Science 2013, 1198–1201. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.H.; Soon, W.; Velasco Herrera, V.M. Evidence for solar modulation on the millennial-scale climate change of Earth. Universe 2020, 6, 153. [Google Scholar] [CrossRef]
- Wu, C.-J.; Usoskin, I.G.; Krivova, N.; Kovaltsov, G.A.; Baroni, M.; Bard, E.; Solanki, S.K. Solar activity over nine millennia: A consistent multi-proxy reconstruction. Astron. Astrophys. 2018, 615, A93. [Google Scholar] [CrossRef] [Green Version]
- Vinther, B.M.; Buchardt, S.L.; Clausen, H.B.; Dahl-Jensen, D.; Johnsen, S.J.; Fisher, D.A.; Koerner, R.M.; Raynaud, D.; Lipenkov, V.; Andersen, K.K.; et al. Holocene thinning of the Greenland ice sheet. Nat. Cell Biol. 2009, 461, 385–388. [Google Scholar] [CrossRef]
- Seppä, H.; Birks, H.J.B. July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: Pollen-based climate reconstructions. Holocene 2011, 11, 527–539. [Google Scholar] [CrossRef] [Green Version]
- Thornalley, D.J.R.; Elderfield, H.; McCave, I.N. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic. Nature 2009, 457, 711–714. [Google Scholar] [CrossRef] [PubMed]
- Sachs, J.P. Cooling of Northwest Atlantic slope waters during the Holocene. Geophys. Res. Lett. 2007, 34, L03609. [Google Scholar] [CrossRef] [Green Version]
- Stott, L.; Timmermann, A.; Thunell, R. Southern hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming. Science 2007, 318, 435–438. [Google Scholar] [CrossRef] [Green Version]
- Farmer, E.C.; de Menocal, P.B.; Marchitto, T.M. Holocene and deglacial ocean temperature variability in the Benguela upwelling region: Implications for low-latitude atmospheric circulation. Paleoceanography 2005, 20, PA2018. [Google Scholar] [CrossRef]
- Nielsen, S.H.H.; Koc, N.; Crosta, X. Holocene climate in the Atlantic sector of the Southern Ocean: Controlled by insolation or oceanic circulation? Geology 2004, 32, 317–320. [Google Scholar] [CrossRef]
- McGlone, M.S.; Turney, C.S.M.; Wilmshurst, J.M.; Renwich, J.; Pahnke, K. Divergent trends in land and ocean temperature in the Southern Ocean over the past 18,000 years. Nat. Geosci. 2010, 3, 622–626. [Google Scholar] [CrossRef]
- Jouzel, J.; Masson-Delmotte, V.; Cattani, O.; Dreyfus, G.; Falourd, S.; Hoffmann, G.; Minster, B.; Nouet, J.; Barnola, J.-M.; Chappellaz, J.; et al. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science 2007, 317, 793–796. [Google Scholar] [CrossRef] [Green Version]
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.-M.; Basile-Doelsch, I.; Bender, M.L.; Chappellaz, J.; Davis, M.L.; Delaygue, G.; et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Lomb, N.R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- Scargle, J.D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 1982, 263, 835–853. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin. Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Suess, H.E. The radio carbon record in tree rings of the last 8000 years. Radiocarbon 1980, 22, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Abreu, J.A.; Beer, J.; Ferriz-Mas, A.; McCracken, K.G.; Steinhilber, F. Is there a planetary influence on solar activity? Astron. Astrophys. 2012, 584, A88. [Google Scholar] [CrossRef] [Green Version]
- McCracken, K.G.; Beer, J.; Steinhilber, F.; Abreu, J. A phenomenological study of the cosmic ray variations over the past 9400 years, and their implications regarding solar activity and the solar dynamo. Sol. Phys. 2013, 286, 609–627. [Google Scholar] [CrossRef]
- McCracken, K.G.; Beer, J.; Steinhilber, F. Evidence for planetary forcing of the cosmic ray intensity and solar activity throughout the past 9400 years. Sol. Phys. 2014, 289, 3207–3229. [Google Scholar] [CrossRef]
- Macias-Fauria, M.; Grinsted, A.; Helama, S.; Holopainen, J. Persistence matters: Estimation of the statistical significance of paleoclimatic reconstruction statistics from autocorrelated time series. Dendrochronologia 2012, 30, 179–187. [Google Scholar] [CrossRef]
- Ebisuzaki, W. A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Clim. 1997, 10, 2147–2153. [Google Scholar] [CrossRef]
- Burg, J.P. A new analysis technique for time series data. In Modern Spectrum Analysis; Chiders, D.G., Ed.; IEEE Press: New York, NY, USA, 1978; pp. 42–48. [Google Scholar]
- Broecker, W.S. Paleocean circulation during the last deglaciation: A bipolar seesaw? Paleoceanography 1998, 13, 119–121. [Google Scholar] [CrossRef]
- Stocker, T.F. Past and future reorganizations in the climate system. Quat. Sci. Rev. 2000, 19, 301–319. [Google Scholar] [CrossRef]
- Blunier, T.; Brook, E.J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 2001, 291, 109–112. [Google Scholar] [CrossRef]
- Denton, G.H.; Broecker, W.S. Wobbly ocean conveyor circulation during the Holocene? Quat. Sci. Rev. 2008, 27, 1939–1950. [Google Scholar] [CrossRef]
- Swingedouw, D.; Terray, L.; Cassou, C.; Voldoire, A.; Salas-Mélia, D.; Servonnat, J. Natural forcing of climate during the last millennium: Fingerprint of solar activity. Clim. Dyn. 2011, 36, 1349–1364. [Google Scholar] [CrossRef]
- Rella, S.F.; Uchida, M. A Southern Ocean trigger for Northwest Pacific ventilation during the Holocene? Sci. Rep. 2014, 4, 4046. [Google Scholar] [CrossRef]
- Members, W.D.P. Precise interpolar phasing of abrupt climate change during the last ice age. Nature 2015, 520, 661–665. [Google Scholar] [CrossRef] [Green Version]
- Lüdecke, H.J.; Hempelmann, A.; Weiss, C.O. Multi-periodic climate dynamics: Spectral analysis of long-term instrumental and proxy temperature records. Clim. Past 2013, 9, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Eroglu, D.; McRobie, F.H.; Ozken, I.; Stemler, T.; Wyrwoll, K.-H.; Breitenbach, S.F.M.; Marwan, N.; Kurths, J. See–saw relationship of the Holocene East Asian–Australian summer monsoon. Nat. Commun. 2016, 7, 12929. [Google Scholar] [CrossRef] [Green Version]
- Wunsch, C. Greenland–Antarctic phase relations and millennial time-scale climate fluctuations in the Greenland ice-cores. Quat. Sci. Rev. 2003, 22, 1631–1646. [Google Scholar] [CrossRef]
- Markle, B.R.; Steig, E.J.; Buizert, C.; Schoenemann, S.W.; Bitz, E.J.S.C.M.; Fudge, T.J.; Pedro, J.B.; Ding, Q.; Jones, T.R.; White, J.W.C.; et al. Global atmospheric teleconnections during Dansgaard–Oeschger events. Nat. Geosci. 2017, 10, 36–40. [Google Scholar] [CrossRef]
- Shindell, D.; Rind, D.; Balachandran, N.; Lean, J.; Lonergan, P. Solar cycle variability, ozone, and climate. Science 1999, 284, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Bond, G.; Kromer, B.; Beer, J.; Muscheler, R.; Evans, M.N.; Showers, W.; Hoffmann, S.; Lotti-Bond, R.; Hajdas, I.; Bonani, G. Persistent Solar Influence on North Atlantic Climate During the Holocene. Science 2001, 294, 2130–2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, M.; Bitz, C.M.; Eby, M.; Weaver, A.J. The role of ice-ocean interactions in the variability of the North Atlantic thermohaline circulation. J. Climate 2001, 14, 656–675. [Google Scholar] [CrossRef]
- Soon, W.W.-H. Solar Arctic-mediated climate variation on multidecadal to centennial timescales: Empirical evidence, mechanistic explanation, and testable consequences. Phys. Geogr. 2009, 30, 144–184. [Google Scholar] [CrossRef]
- Crowley, T.J. North Atlantic deep water cools the southern hemisphere. Paleoceanography 1992, 7, 489–497. [Google Scholar] [CrossRef]
Site Name | Temperature | Latitude (°) | Longitude (°) | Elevation (m) | Time Resolution (yr) |
---|---|---|---|---|---|
Agassiz-Renland | T1 | 71.2/81.0 | −26.7/−71.0 | 1730/2350 | 20 |
Tsuolbmajavri Lake | T2 | 68.7 | 22.1 | 526 | 67 |
RAPID-12-1k | T3 | 62.1 | −17.8 | −1938 | 95 |
OCE326-GGC30 | T4 | 44.0 | −63.0 | −250 | 79 |
MD98-2181 | T5 | 6.3 | 125.8 | −2114 | 47 |
ODP-1084B | T6 | −25.5 | 13.0 | −1992 | 117 |
TN057-17 | T7 | −50.0 | 6.0 | −3700 | 43 |
Homestead Scarp | T8 | −52.5 | 169.1 | 30 | 60 |
Dome C | T9 | −75.1 | 123.4 | 3260 | 18 |
Vostok | T10 | −78.5 | 108.0 | 3500 | 41 |
T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | |
---|---|---|---|---|---|---|---|---|---|---|
CC | 0.53 | 0.45 | 0.93 | 0.67 | 0.63 | −0.11 | −0.25 | −0.33 | 0.36 | −0.74 |
p | 0.27 | >0.3 | <0.001 | 0.17 | 0.21 | >0.3 | >0.3 | >0.3 | >0.3 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Soon, W.; Velasco Herrera, V.M. Holocene Millennial-Scale Solar Variability and the Climatic Responses on Earth. Universe 2021, 7, 36. https://doi.org/10.3390/universe7020036
Zhao X, Soon W, Velasco Herrera VM. Holocene Millennial-Scale Solar Variability and the Climatic Responses on Earth. Universe. 2021; 7(2):36. https://doi.org/10.3390/universe7020036
Chicago/Turabian StyleZhao, Xinhua, Willie Soon, and Victor M. Velasco Herrera. 2021. "Holocene Millennial-Scale Solar Variability and the Climatic Responses on Earth" Universe 7, no. 2: 36. https://doi.org/10.3390/universe7020036
APA StyleZhao, X., Soon, W., & Velasco Herrera, V. M. (2021). Holocene Millennial-Scale Solar Variability and the Climatic Responses on Earth. Universe, 7(2), 36. https://doi.org/10.3390/universe7020036