Quaternion Algebra on 4D Superfluid Quantum Space-Time: Can Dark Matter Be a Manifestation of the Superfluid Ether?
Abstract
:1. Introduction
2. Quaternion Algebra and the Energy-Momentum Tensor of Gravitomagnetic Field
2.1. Lorentz Transformation of the Gravitomagnetic Field Tensor
- transformations of the coordinate system in the Minkowski space associated with rotation about the axis on an angle one can realize by the following trigonometric functions
- transformations of the coordinate system in the Minkowski space associated with the shift in the direction of the axis on a boost ( is a speed of the moving laboratory coordinate system) one can realize by the following hyperbolic functions
- when rotating the coordinate system about the axis on the angle it readsOne can see that the gravitomagnetic fields undergo rotations independently from each other;
- when boosting into the coordinate system moving with the velocity along the direction concerning the initial coordinate system, the Lorentz transformation shifts by a value to be named the rapidityNote that is the Lorentz factor and , here is the velocity coefficient into the -direction. By expressing this formula through the gravitomagnetic fields and we getSince the gravitomagnetic field is the superposition of the gravity-torsion field and the electromagnetic field, see Equation (28), these formulas are valid for both electric, magnetic, gravitation, and torsion fields. As for the latter fields, these formulas show that at tending to the speed of light the torsion field transforms into the gravitation field, but the gravitation field transforms the torsion field.
2.2. Quadratic Forms of the Gravitomagnetic Field Tensor
3. The Gravitomagnetic Field Equations
4. Equations Stemming from the Gravitomagnetic Equations
4.1. Wave Equations
4.2. Vorticity Equations
Long-Lived Coherent Gaussian Vortices
- 1.
- The strength of a vortex filament is constant along its length.
- 2.
- A vortex filament cannot end in a fluid medium; it must extend to the boundaries of the fluid or form a closed path.
- 3.
- In the absence of rotating external forces, an initially irrotational fluid remains irrotational.
4.3. Nonrelativistic Sector: Schrödinger Equation
Ginsburg–Landau Theory of Super-Fluidity
4.4. Relativistic Sector: The Dirac Equation
- To perform a decoupling of the spinors and we first resolve the spinor with respect in the upper row of Equation (107):
4.4.1. Majorana Fermions: Proton-Antiproton Dancing Ensemble
4.4.2. String Topological Models of Quarks
5. Nonelectromagnetic Forces of Rotating Masses in Vacuum
Neutron Interference Experiment Project
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Sbitnev, V.I. Hydrodynamics of the physical vacuum: Dark matter is an illusion. Mod. Phys. Lett. A 2015, 30, 1550184. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.R.; Mathews, G.J. Relativistic Numerical Hydrodynamics; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Rezzolla, L.; Zanotti, O. Relativistic Hydrodynamic; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Romatschke, P. Relativistic Viscous Fluid Dynamics and Non-Equilibrium Entropy. Class. Quant. Grav. 2010, 27, 025006. [Google Scholar] [CrossRef] [Green Version]
- Olsthoorn, J. Relativistic Fluid Dynamics. Waterloo Math. Rev. 2011, 2, 44–58. [Google Scholar]
- Ade, P.A.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, 1–63. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Pergamon Press: Oxford, UK, 1987. [Google Scholar]
- Nelson, E. Derivation of the Schrödinger equation from Newtonian Mechanics. Phys. Rev. 1966, 150, 1079–1085. [Google Scholar] [CrossRef]
- Nelson, E. Dynamical Theories of Brownian Motion; Princeton University Press: Princeton, NJ, USA, 1967. [Google Scholar]
- Nelson, E. Quantum Fluctuations; Princeton Series in Physics; Princeton University Press: Princeton, NJ, USA, 1985. [Google Scholar]
- Fixsen, D.J. The Temperature of the Cosmic Microwave Background. Astrophys. J. 2009, 707, 916–920. [Google Scholar] [CrossRef] [Green Version]
- Fedi, M. Physical vacuum as a dilatant fluid yields exact solutions to Pioneer anomaly and Mercury’s perihelion precession. Can. J. Phys. 2019, 97, 417–420. [Google Scholar] [CrossRef]
- Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 1933, 6, 110–127. [Google Scholar]
- Rubin, V.C. Galaxy dynamics and the mass density of the universe. Proc. Natl. Acad. Sci. USA 1993, 90, 4814–4821. [Google Scholar] [CrossRef] [Green Version]
- Rubin, V.C. A brief history of dark matter. In The Dark Universe: Matter, Energy and Gravity; Livio, M., Ed.; Symposium Series 15; Cambridge University Press: Cambridge, UK, 2004; pp. 1–13. [Google Scholar]
- de Blok, W.J.G.; McGaugh, S.S.; Rubin, V.C. High-resolution rotation curves of low surface brightness galaxies. II. Mass models. Astron. J. 2001, 122, 2396–2427. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.R.; Aghanim, N.; Alves, M.I.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; et al. Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 2014, 517, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Hajdukovic, D.S. Is dark matter an illusion created by the gravitational polarization of the quantum vacuum? Astrophys. Space Sci. 2011, 334, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Hajdukovic, D.S. Quantum vacuum and dark matter. Astrophys. Space Sci. 2011, 337, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Hajdukovic, D.S. A new model of dark matter distribution in galaxies. Astrophys. Space Sci. 2014, 349, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Yahalom, A. Lorentz Symmetry Group, Retardation, IntergalacticMass Depletion and Mechanisms Leading to GalacticRotation Curves. Symmetry 2020, 12, 1693. [Google Scholar] [CrossRef]
- Tatum, E.T. My CGSISAH Theory of Dark Matter. J. Mod. Phys. 2019, 10, 881–887. [Google Scholar] [CrossRef] [Green Version]
- Tatum, E.T. Dark Matter as Cold Atomic Hydrogen in Its Lower Ground State. In Cosmology 2020—The Current State; Smith, M.L., Ed.; InTechOpen: London, UK, 2020; Chapter 6; p. 215. [Google Scholar] [CrossRef] [Green Version]
- Boehmer, C.G.; Harko, T. Can dark matter be a Bose–Einstein condensate? J. Cosmol. Astropart. Phys. JCAP 2007, 2007, 25. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Mocanu, G. Cosmological evolution of finite temperature Bose–Einstein Condensate dark matter. Phys. Rev. D 2012, 85, 084012. [Google Scholar] [CrossRef] [Green Version]
- Bettoni, D.; Colombo, M.; Liberati, S. Dark matter as a Bose–Einstein Condensate: The relativistic non-minimally coupled case. J. Cosmol. Astropart. Phys. JCAP 2014, 2014, 4. [Google Scholar] [CrossRef] [Green Version]
- Dwornik, M.; Keresztes, Z.; Gergely, L.Á. Rotation curves in Bose–Einstein Condensate Dark Matter Halos. In Recent Development in Dark Matter Research; Kinjo, N., Nakajima, A., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2014; Chapter 6; pp. 195–219. [Google Scholar]
- Das, S.; Bhaduri, R.K. Dark matter and dark energy from Bose–Einstein condensate. Class. Quant. Grav. 2015, 32, 105003. [Google Scholar] [CrossRef]
- Sarkar, S.; Vaz, C.; Wijewardhana, L.C.R. Gravitationally bound Bose condensates with rotation. Phys. Rev. D 2018, 97, 103022. [Google Scholar] [CrossRef] [Green Version]
- Volovik, G.E. The Universe in a Helium Droplet; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Meissner, W.; Ochsenfeld, R. Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften 1933, 21, 787–788. [Google Scholar] [CrossRef]
- Sinha, K.P.; Sivaram, C.; Sudarshan, E.C.G. Aether as a Superfluid State of Particle-Antiparticle Pairs. Found. Phys. 1976, 6, 65–70. [Google Scholar] [CrossRef]
- Vigier, J.P. Alternative interpretation of the cosmological redshift in terms of vacuum gravitational drag. In New Ideas in Astronomy; Bertola, F., Madore, B., Sulentic, J., Eds.; Cambridge University Press: Cambridge, UK, 1988; pp. 257–274. [Google Scholar]
- Volovik, G.E. The superfluid universe. In Novel Superfluids; Bennemann, K.H., Ketterson, J.B., Eds.; Oxford University Press: Oxford, UK, 2013; Volume 1, Chapter 11; pp. 570–618. [Google Scholar]
- Berezhiani, L.; Khoury, J. Theory of Dark Matter Superfluidity. Phys. Rev. D 2015, 92, 103510. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Sidelights on Relativity. I. Ether and Relativity, II. Geometry and Experience; Methuen & Co. Ltd.: London, UK, 1922. [Google Scholar]
- Dirac, P.A.M. Is there an Aether? Nature 1951, 168, 906–907. [Google Scholar] [CrossRef]
- De Broglie, L. Interpretation of quantum mechanics by the double solution theory. Annales de la Fondation Louis de Broglie 1987, 12, 1–22. [Google Scholar]
- Whittaker, E.T. History of the Theories of Aether & Electricity; Dover Publications: Mineola, NY, USA, 1990. [Google Scholar]
- Huang, K. A Superfluid Universe; World Scientific Publishing Company: Singapore, 2017. [Google Scholar]
- Liberati, S.; Maccione, L. Astrophysical Constraints on Planck Scale Dissipative Phenomena. Phys. Rev. Lett. 2014, 112, 151301. [Google Scholar] [CrossRef] [Green Version]
- Sbitnev, V.I. Quaternion Algebra on 4D Superfluid Quantum Space-Time: Gravitomagnetism. Found. Phys. 2019, 49, 107–143. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. Twistor Algebra. J. Math. Phys. 1967, 8, 345. [Google Scholar] [CrossRef]
- Penrose, R. Twistor quantization and curved space-time. Int. J. Theor. Phys. 1968, 1, 61–99. [Google Scholar] [CrossRef]
- Penrose, R. Spinors and torsion in general relativity. Found. Phys. 1983, 13, 325–339. [Google Scholar] [CrossRef]
- Penrose, R.; Rindler, W. Spinors and Space-Time: Two-Spinor Calculus and Relativistic Fields; Cambridge University Press: Cambridge, UK, 1984; Volume 1. [Google Scholar]
- Penrose, R.; Rindler, W. Spinors and Space-Time. Volume 2: Spinor and Twistor Methods in Space-Time Geometry; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Hamilton, W.R. On quaternions; Or a new system of imaginaries in algebra. Philos. Mag. 1844, 25, 489–495. [Google Scholar]
- Maxwell, J.C. Remarks on the mathematical classification of physical quantities. Proc. Lond. Math. Soc. 1869, 3, 224–232. [Google Scholar] [CrossRef]
- Altmann, S.L. Hamilton, Rodrigues, and the quaternion scandal. Math. Mag. 1989, 62, 291–308. [Google Scholar] [CrossRef]
- Hestenes, D. Space-Time Algebra; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Girard, P.R.; Clarysse, P.; Pujol, R.; Goutte, R.; Delachartre, P. Hyperquaternions: A New Tool for Physics. Adv. Appl. Clifford Algebras 2018, 28, 68–82. [Google Scholar] [CrossRef]
- Girard, P.R.; Clarysse, P.; Pujol, R.; Goutte, R.; Delachartre, P. Hyperquaternions: An Efficient Mathematical Formalism for Geometry. In Geometric Science of Information; GSI 2019, Lecture Notes in Computer Science; Nielsen, F., Barbaresco, F., Eds.; Springer: Cham, Switzerland, 2019; Volume 11712. [Google Scholar]
- Girard, P.R. The quaternion group and modern physics. Eur. J. Phys. 1984, 5, 25–32. [Google Scholar] [CrossRef]
- Girard, P.R. Quaternions, Clifford Algebras and Relativistic Physics; Birkhäuser Verlag AG: Basel, Switzerland, 2007. [Google Scholar]
- Lounesto, P. Clifford Algebras and Spinors; London Mathematical Society Lecture Note, Series 286; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Christian, J. Disproof of Bell’s Theorem. Illuminating the Illusion of Entanglement, 2nd ed.; BrownWalker Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Christian, J. Quantum correlations are weaved by the spinors of the Euclidean primitives. R. Soc. Open Sci. 2018, 5, 180526. [Google Scholar] [CrossRef] [Green Version]
- Agamalyan, M.M.; Drabkin, G.M.; Sbitnev, V.I. Spatial spin resonance of polarized neutrons. A tunable slow neutron filter. Phys. Rep. 1988, 168, 265–303. [Google Scholar] [CrossRef]
- Sbitnev, V.I. Passage of polarized neutrons through magnetic media. Depolarization by magnetized inhomogeneities. Z. Phys. B Cond. Matter 1989, 74, 321–327. [Google Scholar] [CrossRef]
- Ioffe, A.I.; Kirsanov, S.G.; Sbitnev, V.I.; Zabiyakin, V.S. Geometric phase in neutron spin resonance. Phys. Lett. A 1991, 158, 433–435. [Google Scholar] [CrossRef]
- Sbitnev, V.I. Particle with spin in a magnetic field—The Pauli equation and its splitting into two equations for real functions. Quantum Magic 2008, 5, 2112–2131. (In Russian) [Google Scholar]
- Sbitnev, V.I. Hydrodynamics of superfluid quantum space: Particle of spin-1/2 in a magnetic field. Quantum Stud. Math. Found. 2018, 5, 297–314. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.; Lifshitz, E. The Classical Theory of Fields; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Heaviside, O. A gravitational and electromagnetic analogy. Electrician 1893, 31, 281–282. [Google Scholar]
- Jantzen, R.T. The Many Faces of Gravitoelectromagnetism. Ann. Phys. 1992, 215, 1–50. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.J.; Tucker, R.W. Gauge symmetry and gravito-electromagnetism. Class. Quantum Gravity 2000, 17, 4125–4157. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, B.; Gronwald, F.; Lichtenegger, H.I.M. Gravitomagnetism and the Clock Effect. In Gyros, Clocks, Interferometers...: Testing Relativistic Graviy in Space; Springer: Berlin/Heidelberg, Germany, 2001; Volume 562, pp. 83–108. [Google Scholar]
- Khmelnik, S.I. Gravitomagnetism: Nature’s Phenomenas, Experiments, Mathematical Models; Mathematics in Computer Corp.: Bene-Ayish, Israel, 2017. [Google Scholar] [CrossRef]
- Ciufolini, I.; Wheeler, J.A. Gravitation and Inertia; Princeton University Press: Princeton, NJ, USA, 1995. [Google Scholar]
- Bars, I.; Terning, J. Extra Dimensions in Space and Time; Springer: New York, NY, USA; Dordrecht, The Netherlands; Heidelberg, Germany; London, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Bose, S.N. Plancks Law and Light Quantum Hypothesis. Z. für Physik 1924, 26, 178–181. [Google Scholar] [CrossRef]
- Wright, E.L. Theoretical Overview of Cosmic Microwave Background Anisotropy. In Measuring and Modeling the Universe; Freedman, W.L., Ed.; Cambridge University Press: Cambridge, UK, 2003; p. 291. [Google Scholar]
- Sbitnev, V.I. Hydrodynamics of the physical vacuum: I. Scalar quantum sector. Found. Phys. 2016, 46, 606–619. [Google Scholar] [CrossRef]
- Sinha, K.P.; Sivaram, C.; Sudarshan, E.C.G. The superfluid vacuum state, time-varying cosmological constant, and nonsingular cosmological models. Found. Phys. 1976, 6, 717–726. [Google Scholar] [CrossRef]
- Huang, K. Dark Energy and Dark Matter in a Superfluid Universe. Int. J. Mod. Phys. A 2013, 28, 1330049. [Google Scholar] [CrossRef]
- Sbitnev, V.I. Physical Vacuum is a Special Superfluid Medium. In Selected Topics in Applications of Quantum Mechanics; Pahlavani, M.R., Ed.; InTech: Rijeka, Croatia, 2015; Chapter 12; pp. 345–373. [Google Scholar] [CrossRef] [Green Version]
- Sbitnev, V.I. Hydrodynamics of Superfluid Quantum Space: De Broglie interpretation of the quantum mechanics. Quantum Stud. Math. Found. 2018, 5, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Kevlahan, N.K.R.; Farge, M. Vorticity filaments in two-dimensional turbulence: Creation, stability and effect. J. Fluid Mech. 1997, 346, 49–76. [Google Scholar] [CrossRef] [Green Version]
- Provenzale, A.; Babiano, A.; Bracco, A.; Pasquero, C.; Weiss, J.B. Coherent Vortices and Tracer Transport. In Transport and Mixing in Geophysical Flows, LNP; Weiss, J.B., Provenzale, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 744, pp. 101–118. [Google Scholar] [CrossRef]
- Negretti, M.E.; Billant, P. Stability of a Gaussian pancake vortex in a stratified fluid. J. Fluid Mech. 2013, 718, 457–480. [Google Scholar] [CrossRef] [Green Version]
- Kundu, P.; Cohen, I. Fluid Mechanics; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Berestetskii, V.B.; Lifshitz, E.M.; Pitaevskii, L.P. Quantum Electrodynamics; Butterworth-Heinemann: Oxford, UK, 1982; Volume 4. [Google Scholar]
- Sbitnev, V.I. Bohmian trajectories and the path integral paradigm: Complexified Lagrangian mechanics. Int. J. Bifurc. Chaos 2009, 19, 2335–2346. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.A.; Pinheiro, M.J. Fluidic electrodynamics: Approach to electromagnetic propulsion. Phys. Fluids 2009, 21, 097103. [Google Scholar] [CrossRef] [Green Version]
- Chefranov, S.G.; Novikov, E.A. Hydrodynamic vacuum sources of dark matter self-generation in an accelerating universe without a Big Bang. J. Exp. Theor. Phys. JETP 2010, 111, 731–743. [Google Scholar] [CrossRef] [Green Version]
- Ginzburg, V.L.; Landau, L.D. On the theory of superconductivity. Zhurnal Eksperimental’noy i Teoreticheskoy Fiziki 1950, 20, 1064. [Google Scholar]
- Abid, M.; Huepe, C.; Metens, S.; Nore, C.; Pham, C.T.; Tuckerman, L.S.; Brachet, M.E. Gross–Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence. Fluid Dyn. Res. 2003, 33, 509. [Google Scholar] [CrossRef]
- Roberts, P.H.; Berloff, N.G. The nonlinear Schrödinger equation as a model of superfluidity. In Quantized Vortex Dynamics and Superfluid Turbulence. Lecture Notes in Physics; Barenghi, C.F., Donnelly, R.J., Vinen, W.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 571, pp. 235–257. [Google Scholar]
- Roger-Salazar, J. The Gross—Pitaevskii equation and Bose—Einstein condensates. Eur. J. Phys. 2013, 34, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Vasiliev, B.V. Superconductivity and Superfluidity. Univers. J. Phys. Appl. 2013, 1, 392–407. [Google Scholar] [CrossRef]
- Griffin, A.; Nikuni, T.; Zaremba, E. Bose-Condensed Gases at Finite Temperatures; Cambridge University Press: Cambridge, UK, 2009; pp. 309–321. [Google Scholar] [CrossRef]
- Andronikashvili, E.L. Direct observation of two types of motion in helium II. Zhurnal Eksperimental’noy i Teoreticheskoy Fiziki 1946, 16, 780. [Google Scholar]
- Lounasmaa, O.V.; Thuneberg, E. Vortices in rotating superfluid 3He. Proc. Natl. Acad. Sci. USA 1999, 96, 7760–7767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, J.E. Superconductivity, what the H? The emperor has no clothes. APS Forum Phys. Soc. Newsl. 2020, 49, 4–9. Available online: https://arxiv.org/ftp/arxiv/papers/2001/2001.09496.pdf (accessed on 31 January 2021).
- Sick, I.; Trautmann, D. Proton root-mean-square radii and electron scattering. Phys. Rev. C 2014, 89, 012201(R). [Google Scholar] [CrossRef] [Green Version]
- Enoto, T.; Wada, Y.; Furuta, Y.; Nakazawa, K.; Yuasa, T.; Okuda, K.; Makishima, K.; Sato, M.; Sato, Y.; Nakano, T.; et al. Photonuclear reactions triggered by lightning discharge. Nature 2017, 552, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Güveniş, H. Hydrodynamic Formulation of Quantum Electrodynamics. Gen. Sci. J. 2014, 1–8. Available online: http://gsjournal.net/Science-Journals/Essays/View/5241 (accessed on 31 January 2021).
- Majorana, E. A symmetric theory of electrons and positrons. Il Nuovo Cimento 1937, 14, 171–184. [Google Scholar] [CrossRef]
- Madelung, E. Quantumtheorie in hydrodynamische form. Z. für Physik 1926, 40, 322–326. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Phys. Rev. 1952, 85, 166–179. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. II. Phys. Rev. 1952, 85, 180–193. [Google Scholar] [CrossRef]
- Güveniş, H. Quantum Electrohydrodynamic Calculation of Mass and Radius of the homogeneously charged Proton-Antiproton Pair. Gen. Sci. J. 2019, 1–24. Available online: http://gsjournal.net/Science-Journals/Essays/View/7665 (accessed on 31 January 2021).
- Güeniş, H. Solution of the Quantum Electrohydrodynamic Fundamental Equations for the inhomogeneously charged Proton-Antiproton Pair. Gen. Sci. J. 2020, 1–31. Available online: http://gsjournal.net/Science-Journals/Essays/View/8099 (accessed on 31 January 2021).
- Sbitnev, V.I. Hydrodynamics of the physical vacuum: II. Vorticity dynamics. Found. Phys. 2016, 46, 1238–1252. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, R.L. Perhaps a Stable Dihyperon. Phys. Rev. Lett. 1977, 38, 195–198. [Google Scholar] [CrossRef]
- Vijande, J.; Valcarce, A.; Richard, J.M. Stability of hexaquarks in the string limit of confinement. Phys. Rev. D 2012, 85, 014019. [Google Scholar] [CrossRef] [Green Version]
- Bashkanov, M.; Watts, D.P. A new possibility for light-quark dark matter. J. Phys. G Nucl. Part. Phys. 2020, 47, LT01. [Google Scholar] [CrossRef]
- Siegel, E. Ask Ethan: It’s Absurd To Think Dark Matter Might Be Made Of Hexaquarks, Right? Forbes. 14 March 2020. No. 03–14. Available online: https://www.forbes.com/sites/startswithabang/2020/03/14/ask-ethan-its-absurd-to-think-dark-matter-might-be-made-of-hexaquarks-right/?sh=7b8672626358 (accessed on 31 January 2021).
- Albareti, F.D.; Cembranos, J.A.R.; Maroto, A.L. Vacuum energy as dark matter. Phys. Rev. D 2014, 90, 123509. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Singh, N.; Aria, A.K. Signature of Dark Matter. Phys. Astron. Int. J. 2017, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Spergel, D.N.; Bean, R.; Doré, O.; Nolta, M.R.; Bennett, C.L.; Dunkley, J.; Hinshaw, G.; Jarosik, N.; Komatsu, E.; Page, L.; et al. Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology. Astrophys. J. Suppl. 2007, 170, 337–408. [Google Scholar] [CrossRef] [Green Version]
- Ardey, A. Dark fluid: A complex scalar field to unify dark energy and dark matter. Phys. Rev. D 2006, 74, 043516. [Google Scholar] [CrossRef] [Green Version]
- Christensen, W.J., Jr. Einstein’s Gravitational Field Approach to Dark Matter and Dark Energy. J. Mod. Phys. 2015, 6, 1421–1439. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, W.A.; Capelas de Oliveira, E. The Many Faces of Maxwell, Dirac and Einstein Equations. A Clifford Bundle Approach; LNP 722; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef] [Green Version]
- Todorov, I. Clifford Algebras and Spinors. Bulg. J. Phys 2011, 38, 3–28. [Google Scholar]
- Samokhvalov, V.N. Experimental study of the interaction of rotating dynamically unbalanced thin disks. In Proceedings of the International Scientific Conference Torsion Fields and Information Interactions-2009, Khosta, Sochi, Russia, 25–29 August 2009; pp. 414–430. [Google Scholar]
- Samokhvalov, V.N. Non-electromagnetic force interaction in presence of rotating masses in vacuum. Int. J. Unconv. Sci. IJUS 2016, 1, 68–80. Available online: http://www.unconv-science.org/pdf/e1/samohvalov-en.pdf (accessed on 31 January 2021).
- Dedkov, V.K. Review on the article of V.N. Samokhvalov Non-electromagnetic force interaction in presence of rotating masses in vacuum. Int. J. Unconv. Sci. IJUS 2013, 1, 20–22. [Google Scholar]
- Boyer, T.H. Quantum ELECTROMAGNETIC zero-point energy of a conducting spherical shell and the Casimir model for a charged particle. Phys. Rev. 1968, 174, 1764–1776. [Google Scholar] [CrossRef]
- Shao, C.G.; Zheng, D.L.; Luo, J. Repulsive Casimir effect between anisotropic dielectric and permeable plates. Phys. Rev. A 2006, 74, 012103. [Google Scholar] [CrossRef]
- Milton, K.; Abalo, E.K.; Parashar, P.; Pourtolami, N. Repulsive Casimir effects. Int. J. Mod. Phys. A 2011, 27, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Lopez, P.; Grushin, A.G. Repulsive Casimir Effect with Chern insulators. Phys. Rev. Lett. 2014, 112, 056804. [Google Scholar] [CrossRef] [Green Version]
- Samokhvalov, V.N. Dynamic Interaction of Rotating Imbalanced Masses in Vacuum. Phys. Astron. 2012, 22, 93–100. [Google Scholar]
- Etkin, V.A. Torsion-orientation processes. In Proceedings of the International Scientific Conference Torsion Fields and Information Interactions-2009, Khosta, Sochi, Russia, 25–29 August 2009; pp. 176–187. [Google Scholar]
- Zhigalov, V.A. (Ed.) Torsion Fields and Information Interactions-2016. In Proceedings of the V-th International Scientific and Practical Conference, Moscow, Russia, 10–11 September 2016; 270p. Available online: http://www.second-physics.ru/moscow2016/moscow2016.pdf (accessed on 31 January 2021). (In Russian).
- Shipov, G.I. Fields and forces of inertia as the object of scientific research. In Proceedings of the V-th International Scientific-Practical Conference Torsion Fields and Their Information Interactions-2016, Moscow, Russia, 10–11 September 2016; Zhigalov, V.A., Ed.; pp. 24–28. [Google Scholar]
- Khmelnik, S.I. More on experimental refinement of Maxwell-like gravity equations. Series Fisika i Astronomiay 2014, 25, 62–83. (In Russian) [Google Scholar]
- Vasiliev, B.V. Superconductivity and Superfluidity; Science Publishing Group: New York, NY, USA, 2015. [Google Scholar]
- Eltsov, V.B.; Finne, A.P.; Hänninen, R.; Kopu, J.; Krusius, M.; Tsubota, M.; Thuneberg, E.V. Twisted vortex states. Phys. Rev. Lett. 2006, 96, 215302. [Google Scholar] [CrossRef] [Green Version]
- Sbitnev, V.I. The interaction of rotating masses in vacuum: Samokhvalov experiment and rotation of spiral galaxies. Int. J. Unconv. Sci. IJUS 2015, 10, 35–45. Available online: http://www.unconv-science.org/pdf/10/sbitnev-en.pdf (accessed on 31 January 2021).
- Aharonov, Y.; Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 1959, 115, 485–491. [Google Scholar] [CrossRef]
- Feynman, R.P.; Hibbs, A. Quantum Mechanics and Path Integrals; McGraw Hill: New York, NY, USA, 1965. [Google Scholar]
- Sbitnev, V.I. Bohmian Trajectories and the Path Integral Paradigm—Complexified Lagrangian Mechanics. In Theoretical Concepts of Quantum Mechanics; Pahlavani, M.R., Ed.; InTech: Rijeka, Croatia, 2012; Chapter 15; pp. 313–334. [Google Scholar] [CrossRef] [Green Version]
- Sbitnev, V.I. Generalized path integral technique: Nanoparticles incident on a slit grating, matter wave interference. In Advances in Quantum Mechanics; Bracken, P., Ed.; InTech: Rijeka, Croatia, 2013; Chapter 9; pp. 183–211. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.; Marzoli, I.; Schleich, W. Quantum carpets, carpets of light. Phys. World 2001, 14, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.V.; Klein, S. Integer, fractional and fractal Talbot effects. J. Mod. Opt. 1996, 43, 2139–2164. [Google Scholar] [CrossRef]
- Sbitnev, V.I. Quaternion algebra on 4D superfluid quantum space-time. J. Astrophys. Aerosp. Technol. 2018, 6, 55–56. [Google Scholar] [CrossRef] [Green Version]
1 | for simplicity, the density distribution is written in dimensionless view. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sbitnev, V. Quaternion Algebra on 4D Superfluid Quantum Space-Time: Can Dark Matter Be a Manifestation of the Superfluid Ether? Universe 2021, 7, 32. https://doi.org/10.3390/universe7020032
Sbitnev V. Quaternion Algebra on 4D Superfluid Quantum Space-Time: Can Dark Matter Be a Manifestation of the Superfluid Ether? Universe. 2021; 7(2):32. https://doi.org/10.3390/universe7020032
Chicago/Turabian StyleSbitnev, Valeriy. 2021. "Quaternion Algebra on 4D Superfluid Quantum Space-Time: Can Dark Matter Be a Manifestation of the Superfluid Ether?" Universe 7, no. 2: 32. https://doi.org/10.3390/universe7020032
APA StyleSbitnev, V. (2021). Quaternion Algebra on 4D Superfluid Quantum Space-Time: Can Dark Matter Be a Manifestation of the Superfluid Ether? Universe, 7(2), 32. https://doi.org/10.3390/universe7020032