Testing Quantum Mechanics with an Ultra-Cold Particle Trap
Abstract
:1. Introduction
2. Background
3. Original Testing Proposal
- Effect of GravityGravity will affect an atom’s vertical motion resulting in the matter wave not forming a standing wave pattern. Unless the effects of gravity could be counteracted without affecting the stationary state, the experiment would need to be done in a free-fall environment. Performing the experiment in such an environment would introduce significant practical complications to its conduct and greatly increase its cost.
- Vibration EliminationVibrations of the walls of the particle trap have the tendency to disrupt the standing matter wave and possibly heat the atoms if they approach too near to the walls. This could be eliminated by cooling the trap’s walls close to absolute zero. External sources of vibration would also need to be avoided by acoustically, mechanically, and thermally isolating the apparatus.
- Homodyne DetectionEach of the incident laser beams used to generate the evanescent waves might be split into two parts with one part reflected from a wall of the trap and the other part used as a reference beam. This arrangement will greatly reduce fluctuations over what would result by having the reflected and reference beams produced by separate laser devices [25].
4. Discussion—A Feasible Test
5. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cushing, J.T. Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony; University of Chicago Press: Chicago, IL, USA, 1994; Chapter 9. [Google Scholar]
- Steward, E.G. Quantum Mechanics: Its Early Development and the Road to Entanglement and Beyond; Imperial College Press: London, UK, 2012; Section 12.4. [Google Scholar]
- Bricmont, J. The de Broglie–Bohm Theory as a Rational Completion of Quantum Mechanics. Can. J. Phys. 2018, 96, 379–390. [Google Scholar] [CrossRef]
- Sanz, A.S. Bohm’s Approach to Quantum Mechanics: Alternative Theory or Practical Picture? Front. Phys. 2019, 14, 11301. [Google Scholar] [CrossRef] [Green Version]
- Riggs, P.J. A Proposed Experimental Test of Orthodox Quantum Theory Using the Techniques of Atom Optics. arXiv 2014, arXiv:1411.0464. [Google Scholar]
- Basdevant, J.-L.; Dalibard, J. Quantum Mechanics; Springer: Berlin, Germany, 2002; p. 75. [Google Scholar]
- Rajasekar, S.; Velusamy, R. Quantum Mechanics I: The Fundamentals; CRC Press: Boca Raton, FL, USA, 2014; p. 107. [Google Scholar]
- Greenhow, R.C. Introductory Quantum Mechanics: A Computer Illustrated Text; Institute of Physics Publishing: Bristol, UK, 1990; p. 46. [Google Scholar]
- Green, N.J.B. Quantum Mechanics 1: Foundations; Oxford University Press: Oxford, UK, 2001; p. 40. [Google Scholar]
- Auletta, G.; Fortunato, M.; Parisi, G. Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2009; p. 115. [Google Scholar]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables I. Phys. Rev. 1952, 85, 166–179. [Google Scholar] [CrossRef]
- Holland, P.R. The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics; Cambridge University Press: Cambridge, UK, 1993; p. 73. [Google Scholar]
- Cushing, J.T. Quantum Mechanics; University of Chicago Press: Chicago, IL, USA, 1994; pp. 61–62. [Google Scholar]
- Wyatt, R.E. Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics; Springer: Berlin, Germany, 2005; p. 48. [Google Scholar]
- Riggs, P.J. Quantum Causality: Conceptual Issues in the Causal Theory of Quantum Mechanics; Springer: Dordrecht, The Netherlands, 2009; p. 54. [Google Scholar]
- Sanz, A.S.; Miret-Artés, S. A Trajectory Description of Quantum Processes I: Fundamentals; Springer: Berlin, Germany, 2012; p. 196. [Google Scholar]
- Holland, P.R. The Quantum Theory of Motion; Cambridge University Press: Cambridge, UK, 1993; p. 365. [Google Scholar]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables II. Phys. Rev. 1952, 85, 180–193. [Google Scholar] [CrossRef]
- Riggs, P.J. Quantum Causality; Springer: Dordrecht, The Netherlands, 2009; pp. 111–112. [Google Scholar]
- Oriols, X.; Mompart, J. (Eds.) Overview of Bohmian Mechanics. In Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology; Pan Stanford Publishing: Singapore, 2012; pp. 99–100. [Google Scholar]
- Benseny, A.; Albareda, G.; Sanz, A.S.; Mompart, J.; Oriols, X. Applied Bohmian Mechanics. Eur. Phys. J. D 2014, 68, 286–328. [Google Scholar] [CrossRef] [Green Version]
- Khodagholizadeh, J.; Kazem, J.; Babazadeh, A. Relativistic Bohmian Mechanics. arXiv 2014, arXiv:1405.3822v2. [Google Scholar]
- Smith, F.G.; King, T.A.; Wilkins, D. Optics and Photonics: An Introduction, 2nd ed.; Wiley: Chichester, UK, 2007; p. 124. [Google Scholar]
- Aspect, A.; Kaiser, R.; Vansteenkiste, N.; Vignolo, P.; Westbrook, C.I. Nondestructive Detection of Atoms Bouncing on an Evanescent Wave. Phys. Rev. A 1995, 52, 4704–4708. [Google Scholar] [CrossRef] [PubMed]
- Welsch, D.-G.; Vogel, W.; Opatrný, T. Homodyne Detection and Quantum State Reconstruction. Prog. Opt. 1999, 39, 63–211. [Google Scholar]
- Roy, A.; Jing, A.B.S.; Barrett, M.D. The Trapping and Detection of Single Atoms Using a Spherical Mirror. New J. Phys. 2012, 14, 093007. [Google Scholar] [CrossRef]
- Carpentier, A.V.; Fung, Y.H.; Sompet, P.; Hilliard, A.J.; Walker, T.G.; Andersen, M.F. Preparation of a Single Atom in an Optical Microtrap. Laser Phys. Lett. 2013, 10, 125501. [Google Scholar] [CrossRef] [Green Version]
- Haroche, S. Nobel Lecture: Controlling Photons in a Box and Exploring the Quantum to Classical Boundary. Rev. Mod. Phys. 2013, 85, 1083–1102. [Google Scholar] [CrossRef] [Green Version]
- Han, H.S.; Yoon, S.; Cho, D. Detection of a Single Lithium Atom in a Magneto-optical Trap. J. Korean Phys. Soc. 2015, 66, 1675. [Google Scholar] [CrossRef]
- Ott, H. Single Atom Detection in Ultracold Quantum Gases: A Review of Current Progress. Rep. Prog. Phys. 2016, 79, 054401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauranyapin, N.P.; Madsen, L.S.; Taylor, M.A.; Waleed, M.; Bowen, W.P. Evanescent Single-Molecule Biosensing with Quantum-Limited Precision. Nat. Photonics 2017, 11, 477–481. [Google Scholar] [CrossRef]
- Fritioff, T.; Bergström, I.; Nagya, S.; Solders, A.; Suhonen, M.; Schuch, R. Precise measurements of ionic masses for QED tests. IJMS 2006, 251, 281–285. [Google Scholar] [CrossRef]
- Hobein, M.; Solders, A.; Liu, Y.; Ketelaer, J.; Suhonen Linné, M.; Marx, G.; Schuch, R. SMILETRAP II. Hyperfine Interact. 2011, 199, 141–150. [Google Scholar] [CrossRef]
- Wick, D. The Infamous Boundary: Seven Decades of Controversy in Quantum Physic; Birkhäuser: Boston, MA, USA, 1995; p. 105. [Google Scholar]
- Wyatt, R.E. Quantum Dynamics with Trajectories; Springer: Berlin, Germany, 2005; pp. 56–57. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riggs, P.J. Testing Quantum Mechanics with an Ultra-Cold Particle Trap. Universe 2021, 7, 77. https://doi.org/10.3390/universe7040077
Riggs PJ. Testing Quantum Mechanics with an Ultra-Cold Particle Trap. Universe. 2021; 7(4):77. https://doi.org/10.3390/universe7040077
Chicago/Turabian StyleRiggs, Peter J. 2021. "Testing Quantum Mechanics with an Ultra-Cold Particle Trap" Universe 7, no. 4: 77. https://doi.org/10.3390/universe7040077
APA StyleRiggs, P. J. (2021). Testing Quantum Mechanics with an Ultra-Cold Particle Trap. Universe, 7(4), 77. https://doi.org/10.3390/universe7040077