Multiwavelength Observations of Fast Radio Bursts
Abstract
:1. Introduction
2. Magnetars
3. Host Galaxies
3.1. The Parent Population
- FRB hosts span the full continuous range of the main stellar parameters covered by the general sample of galaxies at the same redshifts (typically ), such as color, stellar mass, SFR [37];
- including the Galactic magnetar among the repeating FRBs there is not a clear differentiation between their hosts and the one-off hosts properties [85];
- the majority of FRB hosts show emission lines with a high incidence of LINERS [37];
- 5 out of 8 host galaxies imaged at high spatial resolution show arm structure and the FRBs are associated to the arms [39];
3.2. The Baryon Content of the IGM
4. FRBs Multiwavelength Searches
4.1. MWL Emission Models
4.2. Past and Ongoing Searches of Optical/NIR FRB Counterparts
4.2.1. Instruments and Observational Strategies
- 1.
- Newly detected bursts: fast follow-up and MWL archives searches, in particular if the error box is
- arcsec size ⟶ optical/NIR monitoring with medium-size telescopes and then large telescopes to perform spectroscopy of the potential host galaxy;
- arcmin size ⟶ wide-field medium-size telescopes follow-up, potential host galaxies identification and then again spectroscopy of the selected putative hosts to measure their redshift to be compared with the DM derived distance upper limit.
- 2.
- Repeaters: like for the previous item, but the monitoring campaign can focus on targeting known/candidate host galaxies. Eventually MWL campaigns including radiotelescopes can be considered in order to detect events happening during the monitoring.
- 3.
- Periodic: MWL campaigns around the expected peak phase with the most sensitive possible instruments with simultaneous epoch coverage.
- Fast and Fortunate for FRB Follow-up (F4) is an international collaboration endeavored to study host galaxies at all non-radio-bands through dedicated photometric and spectroscopic follow-up observations of all arcsecond localized FRBs [https://sites.google.com/ucolick.org/f-4 (accessed on 1 March 2021), https://github.com/FRBs/FRB] (accessed on 1 March 2021).
- ZTF surveys the sky in search for transient sources on a regular basis. The potential usage for FRBs searches was discussed by [36].
4.3. FRBs X-/-ray Observations and Studies
4.3.1. Searches for Prompt X-/-ray Counterparts
4.3.2. Constraints on X-/-ray Either Persistent or Long-lived Transient Sources
4.4. VHE -rays Observations and Neutrino Events Searches
5. FRB 20121102A and FRB 20180916B
5.1. FRB 20121102A
5.1.1. X-/-ray Observations
5.1.2. Optical Observations
5.1.3. VHE -rays Observations
5.2. FRB 20180916B
5.2.1. X-/-ray Observations
5.2.2. Optical Observations
6. SGR J1935+2154
7. Conclusions and Prospects
- MWL follow-up approaches like those implemented for GRB afterglows are likely to produce null results as delayed (≳1–10 s) high-energy emission is either unlike or too weak to be detected by present and future instruments;
- searches for transients in MWL archives are meaningful only for periodic FRBs for which searches in an active phase window can give statistically significant upper limits or detections;
- searches for FRBs host galaxies can be successful for nearby (based on the DM–z relation) events or for small error areas (of the order of ) and would take advantage of photometric or (better) spectroscopic information of the potential hosts;
- specific FRBs observational campaigns, like those of FRB 20121102A and FRB 20180916B, and MWL searches involving simultaneous sky coverage by radio and higher energy telescopes, capable of high frequency acquisition, represent the most promising strategy to detect or to set stringent upper limits of a bursts in an energy band other than the radio;
- a reversed new FRBs search strategy where a few small radio telescopes, like the 4.5-m diameter DSA-10/-110 dishes [240], are employed to shadow the Swift/XRT, and other X-ray telescopes, pointings could represent a cheap and ready alternative to scheduled MWL campaigns. This would also be useful to test the recently proposed ULX binary scenario [50];
- the MeerLICHT approach, where an optical telescope with a relatively large FoV is co-pointing a radiotelescope/interferometer, is also very interesting, but to make it effective EMCCD or fast photometers must be employed to reach a time resolution as short as ∼1–10 ms. To note that in the case of searches of new FRBs for which a small sky/detector area cannot be selected, the data throughput would become prohibitive, so that a compromise on acquisition frequency/sky-area must be adopted;
- MWL campaigns of Galactic magnetars are highly needed to test emission characteristics and fluence ranges in the framework of the proposed unified magnetar models;
- the ≈1000 new FRBs that will be soon announced by the CHIME collaboration (preliminary results reported in a public seminar) and the other search programs will deliver new information that will surely help to address the MWL search efforts.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katz, J.I. Fast radio bursts. Prog. Part. Nucl. Phys. 2018, 103, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Petroff, E.; Hessels, J.W.T.; Lorimer, D.R. Fast radio bursts. Astron. Astrophys. Rev. 2019, 27, 4. [Google Scholar] [CrossRef] [Green Version]
- Cordes, J.M.; Chatterjee, S. Fast Radio Bursts: An Extragalactic Enigma. Annu. Rev. Astron. Astrophys. 2019, 57, 417–465. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. The physical mechanisms of fast radio bursts. Nature 2020, 587, 45–53. [Google Scholar] [CrossRef]
- Xiao, D.; Wang, F.; Dai, Z. The Physics of Fast Radio Bursts. arXiv 2021, arXiv:2101.04907. [Google Scholar]
- Cline, D.B.; Matthey, C.; Otwinowski, S. Study of Very Short Gamma-Ray Bursts. Astrophys. J. 1999, 527, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Cline, D.B.; Czerny, B.; Matthey, C.; Janiuk, A.; Otwinowski, S. Study of Very Short Gamma-Ray Bursts: New Results from BATSE and Konus. Astrophys. J. 2005, 633, L73–L76. [Google Scholar] [CrossRef]
- Lu, W.; Kumar, P.; Zhang, B. A unified picture of Galactic and cosmological fast radio bursts. Mon. Not. R. Astron. Soc. 2020, 498, 1397–1405. [Google Scholar] [CrossRef]
- Margalit, B.; Beniamini, P.; Sridhar, N.; Metzger, B.D. Implications of a Fast Radio Burst from a Galactic Magnetar. Astrophys. J. 2020, 899, L27. [Google Scholar] [CrossRef]
- Platts, E.; Weltman, A.; Walters, A.; Tendulkar, S.P.; Gordin, J.E.B.; Kandhai, S. A living theory catalogue for fast radio bursts. Phys. Rep. 2019, 821, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 2021, 7, 56. [Google Scholar] [CrossRef]
- Andersen, B.C.; Bandura, K.M.; Bhardwaj, M.; Bij, A.; Boyce, M.M.; Boyle, P.J.; Brar, C.; Cassanelli, T.; Chawla, P.; Chen, T.; et al. A bright millisecond-duration radio burst from a Galactic magnetar. Nature 2020, 587, 54–58. [Google Scholar] [CrossRef]
- Bochenek, C.D.; Ravi, V.; Belov, K.V.; Hallinan, G.; Kocz, J.; Kulkarni, S.R.; McKenna, D.L. A fast radio burst associated with a Galactic magnetar. Nature 2020, 587, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.F.; Jiang, J.C.; Men, Y.P.; Wang, B.J.; Xu, H.; Xu, J.W.; Niu, C.H.; Zhou, D.J.; Guan, X.; Han, J.L.; et al. A highly polarised radio burst detected from SGR 1935+2154 by FAST. Astron. Telegr. 2020, 13699, 1. [Google Scholar]
- Mereghetti, S.; Savchenko, V.; Ferrigno, C.; Götz, D.; Rigoselli, M.; Tiengo, A.; Bazzano, A.; Bozzo, E.; Coleiro, A.; Courvoisier, T.J.L.; et al. INTEGRAL Discovery of a Burst with Associated Radio Emission from the Magnetar SGR 1935+2154. Astrophys. J. 2020, 898, L29. [Google Scholar] [CrossRef]
- Lin, L.; Göğüs, E.; Roberts, O.J.; Kouveliotou, C.; Kaneko, Y.; Van der Horst, A.J.; Younes, G. Burst Properties of the Most Recurring Transient Magnetar SGR J1935+2154. Astrophys. J. 2020, 893, 156. [Google Scholar] [CrossRef]
- Li, C.K.; Lin, L.; Xiong, S.L.; Ge, M.Y.; Li, X.B.; Li, T.P.; Lu, F.J.; Zhang, S.N.; Tuo, Y.L.; Nang, Y.; et al. Identification of a non-thermal X-ray burst with the Galactic magnetar SGR 1935+2154 and a fast radio burst with Insight-HXMT. arXiv 2020, arXiv:2005.11071. [Google Scholar]
- Ridnaia, A.; Svinkin, D.; Frederiks, D.; Bykov, A.; Popov, S.; Aptekar, R.; Golenetskii, S.; Lysenko, A.; Tsvetkova, A.; Ulanov, M.; et al. A peculiar hard X-ray counterpart of a Galactic fast radio burst. arXiv 2020, arXiv:2005.11178. [Google Scholar]
- Israel, G.L.; Burgay, M.; Rea, N.; Esposito, P.; Possenti, A.; Dall’Osso, S.; Stella, L.; Pilia, M.; Tiengo, A.; Ridnaia, A.; et al. X-ray and Radio Bursts from the Magnetar 1E1547.0-5408. arXiv 2020, arXiv:2011.06607. [Google Scholar]
- Maan, Y.; Joshi, B.C.; Surnis, M.P.; Bagchi, M.; Manoharan, P.K. Distinct Properties of the Radio Burst Emission from the Magnetar XTE J1810-197. Astrophys. J. 2019, 882, L9. [Google Scholar] [CrossRef] [Green Version]
- Esposito, P.; Rea, N.; Borghese, A.; Coti Zelati, F.; Viganò, D.; Israel, G.L.; Tiengo, A.; Ridolfi, A.; Possenti, A.; Burgay, M.; et al. A Very Young Radio-loud Magnetar. Astrophys. J. 2020, 896, L30. [Google Scholar] [CrossRef]
- Scholz, P.; Cook, A.; Cruces, M.; Hessels, J.W.T.; Kaspi, V.M.; Majid, W.A.; Naidu, A.; Pearlman, A.B.; Spitler, L.G.; Bandura, K.M.; et al. Simultaneous X-Ray and Radio Observations of the Repeating Fast Radio Burst FRB ∼ 180916.J0158+65. Astrophys. J. 2020, 901, 165. [Google Scholar] [CrossRef]
- Pilia, M.; Burgay, M.; Possenti, A.; Ridolfi, A.; Gajjar, V.; Corongiu, A.; Perrodin, D.; Bernardi, G.; Naldi, G.; Pupillo, G.; et al. The Lowest-frequency Fast Radio Bursts: Sardinia Radio Telescope Detection of the Periodic FRB 180916 at 328 MHz. Astrophys. J. 2020, 896, L40. [Google Scholar] [CrossRef]
- Tavani, M.; Verrecchia, F.; Casentini, C.; Perri, M.; Ursi, A.; Pacciani, L.; Pittori, C.; Bulgarelli, A.; Piano, G.; Pilia, M.; et al. Gamma-Ray and X-Ray Observations of the Periodic-repeater FRB 180916 during Active Phases. Astrophys. J. 2020, 893, L42. [Google Scholar] [CrossRef]
- Casentini, C.; Verrecchia, F.; Tavani, M.; Ursi, A.; Antonelli, L.A.; Argan, A.; Barbiellini, G.; Bulgarelli, A.; Caraveo, P.; Cardillo, M.; et al. AGILE Observations of Two Repeating Fast Radio Bursts with Low Intrinsic Dispersion Measures. Astrophys. J. 2020, 890, L32. [Google Scholar] [CrossRef] [Green Version]
- Guidorzi, C.; Orlandini, M.; Frontera, F.; Nicastro, L.; Xiong, S.L.; Liao, J.Y.; Li, G.; Zhang, S.N.; Amati, L.; Virgilli, E.; et al. Constraining the transient high-energy activity of FRB 180916.J0158+65 with Insight-HXMT follow-up observations. Astron. Astrophys. 2020, 642, A160. [Google Scholar] [CrossRef]
- Mazets, E.P.; Aptekar, R.L.; Cline, T.L.; Frederiks, D.D.; Goldsten, J.O.; Golenetskii, S.V.; Hurley, K.; Von Kienlin, A.; Pal’shin, V.D. A Giant Flare from a Soft Gamma Repeater in the Andromeda Galaxy (M31). Astrophys. J. 2008, 680, 545–549. [Google Scholar] [CrossRef] [Green Version]
- Burns, E.; Svinkin, D.; Hurley, K.; Wadiasingh, Z.; Negro, M.; Younes, G.; Hamburg, R.; Ridnaia, A.; Cook, D.; Cenko, S.B.; et al. Identification of a Local Sample of Gamma-Ray Bursts Consistent with a Magnetar Giant Flare Origin. arXiv 2021, arXiv:2101.05144. [Google Scholar]
- Yang, J.; Chand, V.; Zhang, B.B.; Yang, Y.H.; Zou, J.H.; Yang, Y.S.; Zhao, X.H.; Shao, L.; Xiong, S.L.; Luo, Q.; et al. GRB 200415A: A Short Gamma-Ray Burst from a Magnetar Giant Flare? Astrophys. J. 2020, 899, 106. [Google Scholar] [CrossRef]
- Svinkin, D.; Frederiks, D.; Hurley, K.; Aptekar, R.; Golenetskii, S.; Lysenko, A.; Ridnaia, A.V.; Tsvetkova, A.; Ulanov, M.; Cline, T.L.; et al. A bright γ-ray flare interpreted as a giant magnetar flare in NGC 253. Nature 2021, 589, 211–213. [Google Scholar] [CrossRef]
- Roberts, O.J.; Veres, P.; Baring, M.G.; Briggs, M.S.; Kouveliotou, C.; Bissaldi, E.; Younes, G.; Chastain, S.I.; DeLaunay, J.J.; Huppenkothen, D.; et al. Rapid spectral variability of a giant flare from a magnetar in NGC 253. Nature 2021, 589, 207–210. [Google Scholar] [CrossRef]
- Yamasaki, S.; Totani, T.; Kawanaka, N. A blind search for prompt gamma-ray counterparts of fast radio bursts with Fermi-LAT data. Mon. Not. R. Astron. Soc. 2016, 460, 2875–2880. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.B.; Zhang, B. Repeating FRB 121102: Eight-year Fermi-LAT Upper Limits and Implications. Astrophys. J. 2017, 843, L13. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.H.; Zhang, B.B.; Zhang, B. Second Repeating FRB 180814.J0422+73: Ten-year Fermi-LAT Upper Limits and Implications. Astrophys. J. 2019, 875, L19. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Yu, W.; Yu, Y.; Mao, D.; Lin, J. A Search for Short-term Hard X-Ray Bursts in the Direction of the Repeating FRB 121102. Astrophys. J. 2019, 885, 55. [Google Scholar] [CrossRef]
- Andreoni, I.; Lu, W.; Smith, R.M.; Masci, F.J.; Bellm, E.C.; Graham, M.J.; Kaplan, D.L.; Kasliwal, M.M.; Kaye, S.; Kupfer, T.; et al. Zwicky Transient Facility Constraints on the Optical Emission from the Nearby Repeating FRB 180916.J0158+65. Astrophys. J. 2020, 896, L2. [Google Scholar] [CrossRef]
- Heintz, K.E.; Prochaska, J.X.; Simha, S.; Platts, E.; Fong, W.F.; Tejos, N.; Ryder, S.D.; Aggerwal, K.; Bhandari, S.; Day, C.K.; et al. Host Galaxy Properties and Offset Distributions of Fast Radio Bursts: Implications for Their Progenitors. Astrophys. J. 2020, 903, 152. [Google Scholar] [CrossRef]
- Bochenek, C.D.; Ravi, V.; Dong, D. Localized Fast Radio Bursts Are Consistent with Magnetar Progenitors Formed in Core-collapse Supernovae. Astrophys. J. 2021, 907, L31. [Google Scholar] [CrossRef]
- Mannings, A.G.; Fong, W.f.; Simha, S.; Prochaska, J.X.; Rafelski, M.; Kilpatrick, C.D.; Tejos, N.; Heintz, K.E.; Bhandari, S.; Day, C.K.; et al. A High-Resolution View of Fast Radio Burst Host Environments. arXiv 2020, arXiv:2012.11617. [Google Scholar]
- Spitler, L.G.; Cordes, J.M.; Hessels, J.W.T.; Lorimer, D.R.; McLaughlin, M.A.; Chatterjee, S.; Crawford, F.; Deneva, J.S.; Kaspi, V.M.; Wharton, R.S.; et al. Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey. Astrophys. J. 2014, 790, 101. [Google Scholar] [CrossRef] [Green Version]
- Spitler, L.G.; Scholz, P.; Hessels, J.W.T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J.M.; Crawford, F.; Deneva, J.; et al. A repeating fast radio burst. Nature 2016, 531, 202–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, S.; Law, C.J.; Wharton, R.S.; Burke-Spolaor, S.; Hessels, J.W.T.; Bower, G.C.; Cordes, J.M.; Tendulkar, S.P.; Bassa, C.G.; Demorest, P.; et al. A direct localization of a fast radio burst and its host. Nature 2017, 541, 58–61. [Google Scholar] [CrossRef] [Green Version]
- Marcote, B.; Paragi, Z.; Hessels, J.W.T.; Keimpema, A.; Van Langevelde, H.J.; Huang, Y.; Bassa, C.G.; Bogdanov, S.; Bower, G.C.; Burke-Spolaor, S.; et al. The Repeating Fast Radio Burst FRB 121102 as Seen on Milliarcsecond Angular Scales. Astrophys. J. 2017, 834, L8. [Google Scholar] [CrossRef]
- Tendulkar, S.P.; Bassa, C.G.; Cordes, J.M.; Bower, G.C.; Law, C.J.; Chatterjee, S.; Adams, E.A.K.; Bogdanov, S.; Burke-Spolaor, S.; Butler, B.J.; et al. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102. Astrophys. J. 2017, 834, L7. [Google Scholar] [CrossRef] [Green Version]
- CHIME/FRB Collaboration; Andersen, B.C.; Bandura, K.; Bhardwaj, M.; Boubel, P.; Boyce, M.M.; Boyle, P.J.; Brar, C.; Cassanelli, T.; Chawla, P.; et al. CHIME/FRB Discovery of Eight New Repeating Fast Radio Burst Sources. Astrophys. J. 2019, 885, L24. [Google Scholar] [CrossRef]
- Marcote, B.; Nimmo, K.; Hessels, J.W.T.; Tendulkar, S.P.; Bassa, C.G.; Paragi, Z.; Keimpema, A.; Bhardwaj, M.; Karuppusamy, R.; Kaspi, V.M.; et al. A repeating fast radio burst source localized to a nearby spiral galaxy. Nature 2020, 577, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Chime/Frb Collaboration; Amiri, M.; Andersen, B.C.; Bandura, K.M.; Bhardwaj, M.; Boyle, P.J.; Brar, C.; Chawla, P.; Chen, T.; Cliche, J.F.; et al. Periodic activity from a fast radio burst source. Nature 2020, 582, 351–355. [Google Scholar] [CrossRef]
- Rajwade, K.M.; Mickaliger, M.B.; Stappers, B.W.; Morello, V.; Agarwal, D.; Bassa, C.G.; Breton, R.P.; Caleb, M.; Karastergiou, A.; Keane, E.F.; et al. Possible periodic activity in the repeating FRB 121102. Mon. Not. R. Astron. Soc. 2020, 495, 3551–3558. [Google Scholar] [CrossRef]
- Cruces, M.; Spitler, L.G.; Scholz, P.; Lynch, R.; Seymour, A.; Hessels, J.W.T.; Gouiffés, C.; Hilmarsson, G.H.; Kramer, M.; Munjal, S. Repeating behaviour of FRB 121102: Periodicity, waiting times, and energy distribution. Mon. Not. R. Astron. Soc. 2021, 500, 448–463. [Google Scholar] [CrossRef]
- Sridhar, N.; Metzger, B.D.; Beniamini, P.; Margalit, B.; Renzo, M.; Sironi, L. Periodic Fast Radio Bursts from ULX-Like Binaries. arXiv 2021, arXiv:2102.06138. [Google Scholar]
- Thompson, C.; Duncan, R.C. The soft gamma repeaters as very strongly magnetized neutron stars—I. Radiative mechanism for outbursts. Mon. Not. R. Astron. Soc. 1995, 275, 255–300. [Google Scholar] [CrossRef]
- Katz, J.I. Physical processes in gamma-ray bursts. Astrophys. J. 1982, 260, 371–385. [Google Scholar] [CrossRef]
- Duncan, R.C.; Thompson, C. Formation of Very Strongly Magnetized Neutron Stars: Implications for Gamma-Ray Bursts. Astrophys. J. 1992, 392, L9. [Google Scholar] [CrossRef]
- Marthi, V.R.; Gautam, T.; Li, D.Z.; Lin, H.H.; Main, R.A.; Naidu, A.; Pen, U.L.; Wharton, R.S. Detection of 15 bursts from the fast radio burst 180916.J0158+65 with the upgraded Giant Metrewave Radio Telescope. Mon. Not. R. Astron. Soc. 2020, 499, L16–L20. [Google Scholar] [CrossRef]
- Tendulkar, S.P.; Kaspi, V.M.; Patel, C. Radio Nondetection of the SGR 1806-20 Giant Flare and Implications for Fast Radio Bursts. Astrophys. J. 2016, 827, 59. [Google Scholar] [CrossRef]
- Troja, E.; Cusumano, G.; O’Brien, P.T.; Zhang, B.; Sbarufatti, B.; Mangano, V.; Willingale, R.; Chincarini, G.; Osborne, J.P.; Marshall, F.E.; et al. Swift Observations of GRB 070110: An Extraordinary X-Ray Afterglow Powered by the Central Engine. Astrophys. J. 2007, 665, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Lyons, N.; O’Brien, P.T.; Zhang, B.; Willingale, R.; Troja, E.; Starling, R.L.C. Can X-ray emission powered by a spinning-down magnetar explain some gamma-ray burst light-curve features? Mon. Not. R. Astron. Soc. 2010, 402, 705–712. [Google Scholar] [CrossRef] [Green Version]
- Dall’Osso, S.; Stratta, G.; Guetta, D.; Covino, S.; De Cesare, G.; Stella, L. Gamma-ray bursts afterglows with energy injection from a spinning down neutron star. Astron. Astrophys. 2011, 526, A121. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.Z.; Xu, D. The X-ray afterglow flat segment in short GRB 051221A: Energy injection from a millisecond magnetar? Mon. Not. R. Astron. Soc. 2006, 372, L19–L22. [Google Scholar] [CrossRef] [Green Version]
- Rowlinson, A.; Wiersema, K.; Levan, A.J.; Tanvir, N.R.; O’Brien, P.T.; Rol, E.; Hjorth, J.; Thöne, C.C.; De Ugarte Postigo, A.; Fynbo, J.P.U.; et al. Discovery of the afterglow and host galaxy of the low-redshift short GRB 080905A. Mon. Not. R. Astron. Soc. 2010, 408, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Rowlinson, A.; O’Brien, P.T.; Metzger, B.D.; Tanvir, N.R.; Levan, A.J. Signatures of magnetar central engines in short GRB light curves. Mon. Not. R. Astron. Soc. 2013, 430, 1061–1087. [Google Scholar] [CrossRef] [Green Version]
- Madison, D.R.; Agarwal, D.; Aggarwal, K.; Young, O.; Cromartie, H.T.; Lam, M.T.; Chatterjee, S.; Cordes, J.M.; Garver-Daniels, N.; Lorimer, D.R.; et al. A Deep Targeted Search for Fast Radio Bursts from the Sites of Low-redshift Short Gamma-Ray Bursts. Astrophys. J. 2019, 887, 252. [Google Scholar] [CrossRef] [Green Version]
- Men, Y.; Aggarwal, K.; Li, Y.; Palaniswamy, D.; Burke-Spolaor, S.; Lee, K.J.; Luo, R.; Demorest, P.; Tendulkar, S.; Agarwal, D.; et al. Non-detection of fast radio bursts from six gamma-ray burst remnants with possible magnetar engines. Mon. Not. R. Astron. Soc. 2019, 489, 3643–3647. [Google Scholar] [CrossRef] [Green Version]
- Rowlinson, A.; Gourdji, K.; Van der Meulen, K.; Meyers, Z.S.; Shimwell, T.W.; Ter Veen, S.; Wijers, R.A.M.J.; Kuiack, M.J.; Shulevski, A.; Broderick, J.W.; et al. LOFAR early-time search for coherent radio emission from GRB 180706A. Mon. Not. R. Astron. Soc. 2019, 490, 3483–3492. [Google Scholar] [CrossRef] [Green Version]
- Rowlinson, A.; Starling, R.L.C.; Gourdji, K.; Anderson, G.E.; Ter Veen, S.; Mandhai, S.; Wijers, R.A.M.J.; Shimwell, T.W.; Van der Horst, A.J. LOFAR early-time search for coherent radio emission from Short GRB 181123B. arXiv 2020, arXiv:2008.12657. [Google Scholar]
- Bouwhuis, M.; Bannister, K.W.; Macquart, J.P.; Shannon, R.M.; Kaplan, D.L.; Bunton, J.D.; Koribalski, B.S.; Whiting, M.T. A search for fast-radio-burst-like emission from Fermi gamma-ray bursts. Mon. Not. R. Astron. Soc. 2020, 497, 125–129. [Google Scholar] [CrossRef]
- Palliyaguru, N.T.; Agarwal, D.; Golpayegani, G.; Lynch, R.; Lorimer, D.R.; Nguyen, B.; Corsi, A.; Burke-Spolaor, S. A targeted search for repeating fast radio bursts associated with gamma-ray bursts. Mon. Not. R. Astron. Soc. 2021, 501, 541–547. [Google Scholar] [CrossRef]
- Petroff, E.; Bailes, M.; Barr, E.D.; Barsdell, B.R.; Bhat, N.D.R.; Bian, F.; Burke-Spolaor, S.; Caleb, M.; Champion, D.; Chandra, P.; et al. A real-time fast radio burst: Polarization detection and multiwavelength follow-up. Mon. Not. R. Astron. Soc. 2015, 447, 246–255. [Google Scholar] [CrossRef] [Green Version]
- Tominaga, N.; Niino, Y.; Totani, T.; Yasuda, N.; Furusawa, H.; Tanaka, M.; Bhandari, S.; Dodson, R.; Keane, E.; Morokuma, T.; et al. Optical follow-up observation of Fast Radio Burst 151230. Publ. Astron. Soc. Jpn. 2018, 70, 103. [Google Scholar] [CrossRef] [Green Version]
- McMahon, R.G.; Banerji, M.; Gonzalez, E.; Koposov, S.E.; Bejar, V.J.; Lodieu, N.; Rebolo, R.; VHS Collaboration. First Scientific Results from the VISTA Hemisphere Survey (VHS). Messenger 2013, 154, 35–37. [Google Scholar]
- Skrutskie, M.F.; Cutri, R.M.; Stiening, R.; Weinberg, M.D.; Schneider, S.; Carpenter, J.M.; Beichman, C.; Capps, R.; Chester, T.; Elias, J.; et al. The Two Micron All Sky Survey (2MASS). Astron. J. 2006, 131, 1163–1183. [Google Scholar] [CrossRef]
- Shannon, R.M.; Macquart, J.P.; Bannister, K.W.; Ekers, R.D.; James, C.W.; Osłowski, S.; Qiu, H.; Sammons, M.; Hotan, A.W.; Voronkov, M.A.; et al. The dispersion-brightness relation for fast radio bursts from a wide-field survey. Nature 2018, 562, 386–390. [Google Scholar] [CrossRef]
- Petroff, E.; Oostrum, L.C.; Stappers, B.W.; Bailes, M.; Barr, E.D.; Bates, S.; Bhandari, S.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; et al. A fast radio burst with a low dispersion measure. Mon. Not. R. Astron. Soc. 2019, 482, 3109–3115. [Google Scholar] [CrossRef]
- Lee, C.H. A Star-forming Galaxy in the Localization Region of FRB 110214. Astrophys. J. 2019, 880, 131. [Google Scholar] [CrossRef]
- Mahony, E.K.; Ekers, R.D.; Macquart, J.P.; Sadler, E.M.; Bannister, K.W.; Bhandari, S.; Flynn, C.; Koribalski, B.S.; Prochaska, J.X.; Ryder, S.D.; et al. A Search for the Host Galaxy of FRB 171020. Astrophys. J. 2018, 867, L10. [Google Scholar] [CrossRef] [Green Version]
- Bassa, C.G.; Tendulkar, S.P.; Adams, E.A.K.; Maddox, N.; Bogdanov, S.; Bower, G.C.; Burke-Spolaor, S.; Butler, B.J.; Chatterjee, S.; Cordes, J.M.; et al. FRB 121102 Is Coincident with a Star-forming Region in Its Host Galaxy. Astrophys. J. 2017, 843, L8. [Google Scholar] [CrossRef]
- Eftekhari, T.; Berger, E.; Williams, P.K.G.; Blanchard, P.K. Associating Fast Radio Bursts with Extragalactic Radio Sources: General Methodology and a Search for a Counterpart to FRB 170107. Astrophys. J. 2018, 860, 73. [Google Scholar] [CrossRef]
- Bannister, K.W.; Deller, A.T.; Phillips, C.; Macquart, J.P.; Prochaska, J.X.; Tejos, N.; Ryder, S.D.; Sadler, E.M.; Shannon, R.M.; Simha, S.; et al. A single fast radio burst localized to a massive galaxy at cosmological distance. Science 2019, 365, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Ravi, V.; Catha, M.; D’Addario, L.; Djorgovski, S.G.; Hallinan, G.; Hobbs, R.; Kocz, J.; Kulkarni, S.R.; Shi, J.; Vedantham, H.K.; et al. A fast radio burst localized to a massive galaxy. Nature 2019, 572, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Macquart, J.P.; Bailes, M.; Bhat, N.D.R.; Bower, G.C.; Bunton, J.D.; Chatterjee, S.; Colegate, T.; Cordes, J.M.; D’Addario, L.; Deller, A.; et al. The Commensal Real-Time ASKAP Fast-Transients (CRAFT) Survey. Publ. Astron. Soc. Aust. 2010, 27, 272–282. [Google Scholar] [CrossRef] [Green Version]
- Macquart, J.P.; Prochaska, J.X.; McQuinn, M.; Bannister, K.W.; Bhandari, S.; Day, C.K.; Deller, A.T.; Ekers, R.D.; James, C.W.; Marnoch, L.; et al. A census of baryons in the Universe from localized fast radio bursts. Nature 2020, 581, 391–395. [Google Scholar] [CrossRef]
- Bhandari, S.; Sadler, E.M.; Prochaska, J.X.; Simha, S.; Ryder, S.D.; Marnoch, L.; Bannister, K.W.; Macquart, J.P.; Flynn, C.; Shannon, R.M.; et al. The Host Galaxies and Progenitors of Fast Radio Bursts Localized with the Australian Square Kilometre Array Pathfinder. Astrophys. J. 2020, 895, L37. [Google Scholar] [CrossRef]
- Chittidi, J.S.; Simha, S.; Mannings, A.; Prochaska, J.X.; Rafelski, M.; Neeleman, M.; Macquart, J.P.; Tejos, N.; Jorgenson, R.A.; Ryder, S.D.; et al. Dissecting the Local Environment of FRB 190608 in the Spiral Arm of its Host Galaxy. arXiv 2020, arXiv:2005.13158. [Google Scholar]
- Tendulkar, S.P.; Gil de Paz, A.; Kirichenko, A.Y.; Hessels, J.W.T.; Bhardwaj, M.; Ávila, F.; Bassa, C.; Chawla, P.; Fonseca, E.; Kaspi, V.M.; et al. The 60 pc Environment of FRB 20180916B. Astrophys. J. 2021, 908, L12. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, B. A Comparative Study of Host Galaxy Properties between Fast Radio Bursts and Stellar Transients. Astrophys. J. 2020, 899, L6. [Google Scholar] [CrossRef]
- Safarzadeh, M.; Prochaska, J.X.; Heintz, K.E.; Fong, W.F. Confronting the Magnetar Interpretation of Fast Radio Bursts Through Their Host Galaxy Demographics. arXiv 2020, arXiv:2009.11735. [Google Scholar]
- Salim, S.; Lee, J.C.; Janowiecki, S.; Da Cunha, E.; Dickinson, M.; Boquien, M.; Burgarella, D.; Salzer, J.J.; Charlot, S. GALEX-SDSS-WISE Legacy Catalog (GSWLC): Star Formation Rates, Stellar Masses, and Dust Attenuations of 700,000 Low-redshift Galaxies. Astrophys. J. 2016, 227, 2. [Google Scholar] [CrossRef] [Green Version]
- Taggart, K.; Perley, D. Core-collapse, superluminous, and gamma-ray burst supernova host galaxy populations at low redshift: The importance of dwarf and starbursting galaxies. arXiv 2019, arXiv:1911.09112. [Google Scholar]
- Berger, E. Short-Duration Gamma-Ray Bursts. Annu. Rev. Astron. Astrophys. 2014, 52, 43–105. [Google Scholar] [CrossRef] [Green Version]
- Fong, W.; Margutti, R.; Chornock, R.; Berger, E.; Shappee, B.J.; Levan, A.J.; Tanvir, N.R.; Smith, N.; Milne, P.A.; Laskar, T.; et al. The Afterglow and Early-type Host Galaxy of the Short GRB 150101B at z = 0.1343. Astrophys. J. 2016, 833, 151. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.C.; Kilpatrick, C.D.; Simon, J.D.; Xhakaj, E.; Boutsia, K.; Coulter, D.A.; Drout, M.R.; Foley, R.J.; Kasen, D.; Morrell, N.; et al. The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source. Astrophys. J. 2017, 848, L30. [Google Scholar] [CrossRef]
- Saintonge, A.; Catinella, B.; Cortese, L.; Genzel, R.; Giovanelli, R.; Haynes, M.P.; Janowiecki, S.; Kramer, C.; Lutz, K.A.; Schiminovich, D.; et al. Molecular and atomic gas along and across the main sequence of star-forming galaxies. Mon. Not. R. Astron. Soc. 2016, 462, 1749–1756. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, M.; Gaensler, B.M.; Kaspi, V.M.; Landecker, T.L.; Mckinven, R.; Michilli, D.; Pleunis, Z.; Tendulkar, S.P.; Andersen, B.C.; Boyle, P.J.; et al. A nearby repeating fast radio burst in the direction of M81. arXiv 2021, arXiv:2103.01295. [Google Scholar]
- Ioka, K. The Cosmic Dispersion Measure from Gamma-Ray Burst Afterglows: Probing the Reionization History and the Burst Environment. Astrophys. J. 2003, 598, L79–L82. [Google Scholar] [CrossRef] [Green Version]
- Caleb, M.; Flynn, C.; Bailes, M.; Barr, E.D.; Hunstead, R.W.; Keane, E.F.; Ravi, V.; van Straten, W. Are the distributions of fast radio burst properties consistent with a cosmological population? Mon. Not. R. Astron. Soc. 2016, 458, 708–717. [Google Scholar] [CrossRef]
- Petroff, E.; Barr, E.D.; Jameson, A.; Keane, E.F.; Bailes, M.; Kramer, M.; Morello, V.; Tabbara, D.; van Straten, W. FRBCAT: The Fast Radio Burst Catalogue. Publ. Astron. Soc. Aust. 2016, 33, e045. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. Fast Radio Burst Energetics and Detectability from High Redshifts. Astrophys. J. 2018, 867, L21. [Google Scholar] [CrossRef] [Green Version]
- Arcus, W.R.; Macquart, J.P.; Sammons, M.W.; James, C.W.; Ekers, R.D. The fast radio burst dispersion measure distribution. Mon. Not. R. Astron. Soc. 2021, 501, 5319–5329. [Google Scholar] [CrossRef]
- Zhang, R.C.; Zhang, B.; Li, Y.; Lorimer, D.R. On the energy and redshift distributions of fast radio bursts. Mon. Not. R. Astron. Soc. 2021, 501, 157–167. [Google Scholar] [CrossRef]
- Yamasaki, S.; Totani, T. The Galactic Halo Contribution to the Dispersion Measure of Extragalactic Fast Radio Bursts. Astrophys. J. 2020, 888, 105. [Google Scholar] [CrossRef] [Green Version]
- Cordes, J.M.; Lazio, T.J.W. NE2001.I. A New Model for the Galactic Distribution of Free Electrons and its Fluctuations. arXiv 2002, arXiv:astro–ph/0207156. [Google Scholar]
- Yao, J.M.; Manchester, R.N.; Wang, N. A New Electron-density Model for Estimation of Pulsar and FRB Distances. Astrophys. J. 2017, 835, 29. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Mathur, S.; Gupta, A.; Nicastro, F.; Krongold, Y. Empirical estimates of the Galactic halo contribution to the dispersion measures of extragalactic fast radio bursts using X-ray absorption. Mon. Not. R. Astron. Soc. 2021, 500, 655–662. [Google Scholar] [CrossRef]
- Tohuvavohu, A.; Kennea, J.A.; DeLaunay, J.; Palmer, D.M.; Cenko, S.B.; Barthelmy, S. Gamma-Ray Urgent Archiver for Novel Opportunities (GUANO): Swift/BAT Event Data Dumps on Demand to Enable Sensitive Subthreshold GRB Searches. Astrophys. J. 2020, 900, 35. [Google Scholar] [CrossRef]
- Law, C.J.; Bower, G.C.; Burke-Spolaor, S.; Butler, B.J.; Demorest, P.; Halle, A.; Khudikyan, S.; Lazio, T.J.W.; Pokorny, M.; Robnett, J.; et al. realfast: Real-time, Commensal Fast Transient Surveys with the Very Large Array. Astrophys. J. 2018, 236, 8. [Google Scholar] [CrossRef] [Green Version]
- Tohuvavohu, A.; Law, C.J.; Kennea, J.A.; Adams, E.A.K.; Aggarwal, K.; Bower, G.; Burke-Spolaor, S.; Butler, B.J.; Cannon, J.M.; Cenko, S.B.; et al. A Demonstration of Extremely Low Latency γ-ray, X-Ray & UV Follow-Up of a Millisecond Radio Transient. arXiv 2020, arXiv:2006.04550. [Google Scholar]
- Burrows, D.N.; Hill, J.E.; Nousek, J.A.; Kennea, J.A.; Wells, A.; Osborne, J.P.; Abbey, A.F.; Beardmore, A.; Mukerjee, K.; Short, A.D.T.; et al. The Swift X-Ray Telescope. Space Sci. Rev. 2005, 120, 165–195. [Google Scholar] [CrossRef]
- Ravi, V.; Lasky, P.D. The birth of black holes: Neutron star collapse times, gamma-ray bursts and fast radio bursts. Mon. Not. R. Astron. Soc. 2014, 441, 2433–2439. [Google Scholar] [CrossRef]
- Zhang, B. A Possible Connection between Fast Radio Bursts and Gamma-Ray Bursts. Astrophys. J. 2014, 780, L21. [Google Scholar] [CrossRef] [Green Version]
- Shannon, R.M.; Ravi, V. Radio-interferometric Monitoring of FRB 131104: A Coincident AGN Flare, but No Evidence for a Cosmic Fireball. Astrophys. J. 2017, 837, L22. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, S.; Keane, E.F.; Barr, E.D.; Jameson, A.; Petroff, E.; Johnston, S.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; et al. The SUrvey for Pulsars and Extragalactic Radio Bursts - II. New FRB discoveries and their follow-up. Mon. Not. R. Astron. Soc. 2018, 475, 1427–1446. [Google Scholar] [CrossRef] [Green Version]
- DeLaunay, J.J.; Fox, D.B.; Murase, K.; Mészáros, P.; Keivani, A.; Messick, C.; Mostafá, M.A.; Oikonomou, F.; Tešić, G.; Turley, C.F. Discovery of a Transient Gamma-Ray Counterpart to FRB 131104. Astrophys. J. 2016, 832, L1. [Google Scholar] [CrossRef]
- Martone, R.; Guidorzi, C.; Margutti, R.; Nicastro, L.; Amati, L.; Frontera, F.; Marongiu, M.; Orlandini, M.; Virgilli, E. A cumulative search for hard X/γ-ray emission associated with fast radio bursts in Fermi/GBM data. Astron. Astrophys. 2019, 631, A62. [Google Scholar] [CrossRef]
- Tingay, S.J.; Yang, Y.P. A Search of TESS Full-frame Images for a Simultaneous Optical Counterpart to FRB 181228. Astrophys. J. 2019, 881, 30. [Google Scholar] [CrossRef] [Green Version]
- Guidorzi, C.; Marongiu, M.; Martone, R.; Nicastro, L.; Xiong, S.L.; Liao, J.Y.; Li, G.; Zhang, S.N.; Amati, L.; Frontera, F.; et al. A search for prompt γ-ray counterparts to fast radio bursts in the Insight-HXMT data. Astron. Astrophys. 2020, 637, A69. [Google Scholar] [CrossRef] [Green Version]
- Scholz, P.; Spitler, L.G.; Hessels, J.W.T.; Chatterjee, S.; Cordes, J.M.; Kaspi, V.M.; Wharton, R.S.; Bassa, C.G.; Bogdanov, S.; Camilo, F.; et al. The Repeating Fast Radio Burst FRB 121102: Multi-wavelength Observations and Additional Bursts. Astrophys. J. 2016, 833, 177. [Google Scholar] [CrossRef]
- Scholz, P.; Bogdanov, S.; Hessels, J.W.T.; Lynch, R.S.; Spitler, L.G.; Bassa, C.G.; Bower, G.C.; Burke-Spolaor, S.; Butler, B.J.; Chatterjee, S.; et al. Simultaneous X-Ray, Gamma-Ray, and Radio Observations of the Repeating Fast Radio Burst FRB 121102. Astrophys. J. 2017, 846, 80. [Google Scholar] [CrossRef]
- Hardy, L.K.; Dhillon, V.S.; Spitler, L.G.; Littlefair, S.P.; Ashley, R.P.; De Cia, A.; Green, M.J.; Jaroenjittichai, P.; Keane, E.F.; Kerry, P.; et al. A search for optical bursts from the repeating fast radio burst FRB 121102. Mon. Not. R. Astron. Soc. 2017, 472, 2800–2807. [Google Scholar] [CrossRef]
- MAGIC Collaboration; Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Arcaro, C.; Baack, D.; Babić, A.; Banerjee, B.; Bangale, P.; et al. Constraining very-high-energy and optical emission from FRB 121102 with the MAGIC telescopes. Mon. Not. R. Astron. Soc. 2018, 481, 2479–2486. [Google Scholar] [CrossRef] [Green Version]
- Panessa, F.; Savchenko, V.; Ferrigno, C.; Bazzano, A.; Ubertini, P. INTEGRAL gamma-ray upper limits on the periodic FRB180916. Astron. Telegr. 2020, 13466, 1. [Google Scholar]
- Zampieri, L.; Burtovoi, A.; Fiori, M.; Naletto, G.; Ochner, P.; Turatto, M.; Nicastro, L.; Palazzi, E.; Pilia, M.; Possenti, A.; et al. Upper limit on the optical fluence of FRB 180916.J0158+65. Astron. Telegr. 2020, 13493, 1. [Google Scholar]
- Dhillon, V.; Dixon, S.; Gamble, T.; Kerry, P.; Littlefair, S.; Parsons, S.; Marsh, T.; Bezawada, N.; Black, M.; Gao, X.; et al. First light with HiPERCAM on the GTC. In Proceedings of the Ground-Based and Airborne Instrumentation for Astronomy VII, Austin, TX, USA, 10–15 June 2018; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Evans, C.J., Simard, L., Takami, H., Eds.; Volume 10702, p. 107020L. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.H.; Zhang, B.B.; Lin, L.; Zhang, B.; Zhang, G.Q.; Yang, Y.S.; Tu, Z.L.; Zou, J.H.; Ye, H.Y.; Wang, F.Y.; et al. Bursts before Burst: A Comparative Study on FRB 200428-associated and FRB-absent X-Ray Bursts from SGR J1935+2154. Astrophys. J. 2021, 906, L12. [Google Scholar] [CrossRef]
- Pleunis, Z.; Michilli, D.; Bassa, C.G.; Hessels, J.W.T.; Naidu, A.; Andersen, B.C.; Chawla, P.; Fonseca, E.; Gopinath, A.; Kaspi, V.M.; et al. LOFAR Detection of 110-188 MHz Emission and Frequency-Dependent Activity from FRB 20180916B. arXiv 2020, arXiv:2012.08372. [Google Scholar]
- Yi, S.X.; Gao, H.; Zhang, B. Multi-wavelength Afterglows of Fast Radio Bursts. Astrophys. J. 2014, 792, L21. [Google Scholar] [CrossRef] [Green Version]
- Metzger, B.D.; Margalit, B.; Sironi, L. Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Mon. Not. R. Astron. Soc. 2019, 485, 4091–4106. [Google Scholar] [CrossRef] [Green Version]
- Lyubarsky, Y. A model for fast extragalactic radio bursts. Mon. Not. R. Astron. Soc. 2014, 442, L9–L13. [Google Scholar] [CrossRef] [Green Version]
- Beloborodov, A.M. A Flaring Magnetar in FRB 121102? Astrophys. J. 2017, 843, L26. [Google Scholar] [CrossRef] [Green Version]
- Paterson, K. MeerLICHT: MeerKAT’s Optical Eye. In Proceedings of the Southern Horizons in Time-Domain Astronomy, Addis Ababa, Ethiopia, 7–11 October 2019; Griffin, R.E., Ed.; IAU, Cambridge University Press: Cambridge, UK, 2019; Volume 339, p. 203. [Google Scholar] [CrossRef]
- Groot, P. Transients with the new BlackGEM synoptic telescope array at La Silla. In Proceedings of the Extragalactic Explosive Universe: The New Era of Transient Surveys and Data-Driven Discovery, ESO-HQ, Garching, Germany, 16–19 September 2019; ESO 2019. p. 25. [Google Scholar] [CrossRef]
- Andreoni, I.; Cooke, J. The Deeper Wider Faster Programme: Chasing the Fastest Bursts in the Universe. In Proceedings of the Southern Horizons in Time-Domain Astronomy, Addis Ababa, Ethiopia, 7–11 October 2019; Griffin, R.E., Ed.; IAU, Cambridge University Press: Cambridge, UK, 2019; Volume 339, pp. 135–138. [Google Scholar] [CrossRef] [Green Version]
- Andreoni, I.; Cooke, J.; Webb, S.; Rest, A.; Pritchard, T.; Caleb, M.; Chang, S.W.; Farah, W.; Lien, A.; Möller, A.; et al. Probing the extragalactic fast transient sky at minute time-scales with DECam. Mon. Not. R. Astron. Soc. 2020, 491, 5852–5866. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Ravi, V.; Lu, W. The Multiwavelength Counterparts of Fast Radio Bursts. Astrophys. J. 2020, 897, 146. [Google Scholar] [CrossRef]
- Tingay, S. High-cadence optical transient searches using drift scan imaging I: Proof of concept with a pre-prototype system. Publ. Astron. Soc. Aust. 2020, 37, e015. [Google Scholar] [CrossRef] [Green Version]
- Cibin, L.; Chiarini, M.; Bernardi, F.; Ragazzoni, R.; Salinari, P. NEOSTEL: The telescope detail design program for the ESA optical ground network dedicated to NEO discovery and tracking. Mem. Soc. Astron. Italiana 2016, 87, 197. [Google Scholar]
- Drout, M.R.; Chornock, R.; Soderberg, A.M.; Sanders, N.E.; McKinnon, R.; Rest, A.; Foley, R.J.; Milisavljevic, D.; Margutti, R.; Berger, E.; et al. Rapidly Evolving and Luminous Transients from Pan-STARRS1. Astrophys. J. 2014, 794, 23. [Google Scholar] [CrossRef]
- Marnoch, L.; Ryder, S.D.; Bannister, K.W.; Bhandari, S.; Day, C.K.; Deller, A.T.; Macquart, J.P.; McDermid, R.M.; Prochaska, J.X.; Qiu, H.; et al. A search for supernova-like optical counterparts to ASKAP-localised fast radio bursts. Astron. Astrophys. 2020, 639, A119. [Google Scholar] [CrossRef]
- Prochaska, J.X.; Macquart, J.P.; McQuinn, M.; Simha, S.; Shannon, R.M.; Day, C.K.; Marnoch, L.; Ryder, S.; Deller, A.; Bannister, K.W.; et al. The low density and magnetization of a massive galaxy halo exposed by a fast radio burst. Science 2019, 366, 231–234. [Google Scholar] [CrossRef] [Green Version]
- James, C.W.; Osłowski, S.; Flynn, C.; Kumar, P.; Bannister, K.; Bhandari, S.; Farah, W.; Kerr, M.; Lorimer, D.R.; Macquart, J.P.; et al. Which bright fast radio bursts repeat? Mon. Not. R. Astron. Soc. 2020, 495, 2416–2427. [Google Scholar] [CrossRef]
- Bhandari, S.; Bannister, K.W.; Lenc, E.; Cho, H.; Ekers, R.; Day, C.K.; Deller, A.T.; Flynn, C.; James, C.W.; Macquart, J.P.; et al. Limits on Precursor and Afterglow Radio Emission from a Fast Radio Burst in a Star-forming Galaxy. Astrophys. J. 2020, 901, L20. [Google Scholar] [CrossRef]
- Agarwal, D.; Lorimer, D.R.; Fialkov, A.; Bannister, K.W.; Shannon, R.M.; Farah, W.; Bhandari, S.; Macquart, J.P.; Flynn, C.; Pignata, G.; et al. A fast radio burst in the direction of the Virgo Cluster. Mon. Not. R. Astron. Soc. 2019, 490, 1–8. [Google Scholar] [CrossRef]
- Fialkov, A.; Loeb, A.; Lorimer, D.R. Enhanced Rates of Fast Radio Bursts from Galaxy Clusters. Astrophys. J. 2018, 863, 132. [Google Scholar] [CrossRef]
- Margalit, B.; Berger, E.; Metzger, B.D. Fast Radio Bursts from Magnetars Born in Binary Neutron Star Mergers and Accretion Induced Collapse. Astrophys. J. 2019, 886, 110. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.Y.; Wang, Y.Y.; Yang, Y.P.; Yu, Y.W.; Zuo, Z.Y.; Dai, Z.G. Fast Radio Bursts from Activity of Neutron Stars Newborn in BNS Mergers: Offset, Birth Rate, and Observational Properties. Astrophys. J. 2020, 891, 72. [Google Scholar] [CrossRef] [Green Version]
- Gourdji, K.; Rowlinson, A.; Wijers, R.A.M.J.; Goldstein, A. Constraining a neutron star merger origin for localized fast radio bursts. Mon. Not. R. Astron. Soc. 2020, 497, 3131–3141. [Google Scholar] [CrossRef]
- Kilpatrick, C.D.; Burchett, J.N.; Jones, D.O.; Margalit, B.; McMillan, R.; Fong, W.F.; Heintz, K.E.; Tejos, N.; Rouco Escorial, A. Deep optical observations contemporaneous with emission from the periodic FRB 180916.J0158+65. arXiv 2020, arXiv:2011.07561. [Google Scholar]
- Yang, Y.P.; Zhang, B.; Wei, J.Y. How Bright Are Fast Optical Bursts Associated with Fast Radio Bursts? Astrophys. J. 2019, 878, 89. [Google Scholar] [CrossRef]
- Eftekhari, T.; Berger, E. Associating Fast Radio Bursts with Their Host Galaxies. Astrophys. J. 2017, 849, 162. [Google Scholar] [CrossRef] [Green Version]
- Bloemen, S.; Groot, P.; Woudt, P.; Klein Wolt, M.; McBride, V.; Nelemans, G.; Körding, E.; Pretorius, M.L.; Roelfsema, R.; Bettonvil, F.; et al. MeerLICHT and BlackGEM: Custom-built telescopes to detect faint optical transients. In Proceedings of the Ground-Based and Airborne Telescopes VI, Edinburgh, UK, 26 June–1 July 2016; Hall, H.J., Gilmozzi, R., Marshall, H.K., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Volume 9906, p. 990664. [Google Scholar] [CrossRef]
- Stappers, B. MeerTRAP: Real Time Commensal Searching for Transients and Pulsars with MeerKAT. In Proceedings of the MeerKAT Science: On the Pathway to the SKA—PoS(MeerKAT2016), Stellenbosch, South Africa, 25–27 May 2016; p. 10. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, F.; Berezina, M.; Stappers, B.W.; Barr, E.D.; Bezuidenhout, M.C.; Caleb, M.; Driessen, L.N.; Malenta, M.; Morello, V.; Rajwade, K.M.; et al. Real-time triggering capabilities for Fast Radio Bursts at the MeerKAT telescope. arXiv 2020, arXiv:2012.05173. [Google Scholar]
- Law, N.M.; Fors, O.; Ratzloff, J.; Wulfken, P.; Kavanaugh, D.; Sitar, D.J.; Pruett, Z.; Birchard, M.N.; Barlow, B.N.; Cannon, K.; et al. Evryscope Science: Exploring the Potential of All-Sky Gigapixel-Scale Telescopes. Publ. Astron. Soc. Pac. 2015, 127, 234. [Google Scholar] [CrossRef] [Green Version]
- Mankiewicz, L.; Batsch, T.; Castro-Tirado, A.; Czyrkowski, H.; Cwiek, A.; Cwiok, M.; Dabrowski, R.; Jelínek, M.; Kasprowicz, G.; Majcher, A.; et al. Pi of the Sky Full System and the New Telescope. In Proceedings of the III Workshop on Robotic Autonomous Observatories, Torremolinos, Malaga, Spain, 7–11 October 2013; Revista Mexicana de Astronomia y Astrofisica Conference Series. UNAM: Mexico City, Mexico, 2014; Volume 45, p. 7. [Google Scholar]
- Cwiek, A.; Mankiewicz, L.; Batsch, T.; Castro-Tirado, A.; Czyrkowski, H.; Cwiok, M.; Dabrowski, R.; Jelínek, M.; Kasprowicz, G.; Majcher, A.; et al. Pi of the Sky robotic observatories in Chile and Spain. In Proceedings of the Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2014, Warsaw, Poland, 26 May–1 June 2014; Romaniuk, R.S., Ed.; Volume 9290, pp. 215–222. [Google Scholar] [CrossRef]
- Biryukov, A.; Beskin, G.; Karpov, S.; Bondar, S.; Ivanov, E.; Katkova, E.; Perkov, A.; Sasyuk, V. The First Light of Mini-MegaTORTORA Wide-Field Monitoring System. Open Astron. 2015, 24, 100–108. [Google Scholar] [CrossRef]
- Ghedina, A.; Leone, F.; Ambrosino, F.; Meddi, F.; Papitto, A.; Riverol, L.; Hernandez, M.; Cecconi, M.; G. Gonzalez, M.D.; Perez Ventura, H.; et al. SIFAP2: A new versatile configuration at the TNG for the MPPC based photometer. In Proceedings of the Ground-based and Airborne Instrumentation for Astronomy VII, Austin, TX, USA, 10–15 June 2018; Evans, C.J., Simard, L., Takami, H., Eds.; Volume 10702, p. 107025Q. [Google Scholar] [CrossRef]
- Naletto, G.; Barbieri, C.; Verroi, E.; Zaccariotto, M.; Romanato, F.; Sponselli, A.; Mari, E.; Barbieri, M.; Zampieri, L.; Occhipinti, T.; et al. Aqueye Plus: A very fast single photon counter for astronomical photometry to quantum limits equipped with an Optical Vortex coronagraph. In Proceedings of the Quantum Communications and Quantum Imaging XI, San Diego, CA, USA, 25–29 August 2013; Meyers, R.E., Shih, Y., Deacon, K.S., Eds.; Volume 8875, p. 88750D. [Google Scholar] [CrossRef]
- Zampieri, L.; Naletto, G.; Barbieri, C.; Verroi, E.; Barbieri, M.; Ceribella, G.; D’Alessandro, M.; Farisato, G.; Di Paola, A.; Zoccarato, P. Aqueye+: A new ultrafast single photon counter for optical high time resolution astrophysics. In Proceedings of the Photon Counting Applications 2015, Prague, Czech Republic, 13–16 April 2015; Prochazka, I., Sobolewski, R., James, R.B., Eds.; Volume 9504, p. 95040C. [Google Scholar] [CrossRef] [Green Version]
- Naletto, G.; Barbieri, C.; Occhipinti, T.; Capraro, I.; Di Paola, A.; Facchinetti, C.; Verroi, E.; Zoccarato, P.; Anzolin, G.; Belluso, M.; et al. Iqueye, a single photon-counting photometer applied to the ESO new technology telescope. Astron. Astrophys. 2009, 508, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Zampieri, L.; Naletto, G.; Barbieri, C.; Burtovoi, A.; Fiori, M.; Spolon, A.; Ochner, P.; Lessio, L.; Umbriaco, G.; Barbieri, M. (Very) Fast astronomical photometry for meter-class telescopes. Contrib. Astron. Obs. Skaln. Pleso 2019, 49, 85–96. [Google Scholar]
- Kanbach, G.; Stefanescu, A.; Duscha, S.; Mühlegger, M.; Schrey, F.; Steinle, H.; Slowikowska, A.; Spruit, H. OPTIMA: A High Time Resolution Optical Photo-Polarimeter. In Astrophysics and Space Science Library; Phelan, D., Ryan, O., Shearer, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 351, p. 153. [Google Scholar] [CrossRef]
- Collins, P.P.; Shehan, B.; Redfern, M.; Shearer, A. GASP—Galway Astronomical Stokes Polarimeter. arXiv 2009, arXiv:0905.0084. [Google Scholar]
- McPhate, J.B.; Siegmund, O.H.W.; Welsh, B.Y.; Vallerga, J.V.; Buckley, D.A.H.; Gulbis, A.A.S.; Brink, J.D.; Rogers, D. BVIT: A Visible Imaging, Photon Counting Instrument on the Southern African Large Telescope for High Time Resolution Astronomy. Phys. Procedia 2012, 37, 1453–1460. [Google Scholar] [CrossRef] [Green Version]
- Mazin, B.A.; Meeker, S.R.; Strader, M.J.; Szypryt, P.; Marsden, D.; Van Eyken, J.C.; Duggan, G.E.; Walter, A.B.; Ulbricht, G.; Johnson, M.; et al. ARCONS: A 2024 Pixel Optical through Near-IR Cryogenic Imaging Spectrophotometer. Publ. Astron. Soc. Pac. 2013, 125, 1348. [Google Scholar] [CrossRef] [Green Version]
- Papitto, A.; Ambrosino, F.; Stella, L.; Torres, D.; Coti Zelati, F.; Ghedina, A.; Meddi, F.; Sanna, A.; Casella, P.; Dallilar, Y.; et al. Pulsating in Unison at Optical and X-Ray Energies: Simultaneous High Time Resolution Observations of the Transitional Millisecond Pulsar PSR J1023+0038. Astrophys. J. 2019, 882, 104. [Google Scholar] [CrossRef]
- Ambrosino, F.; Papitto, A.; Stella, L.; Meddi, F.; Cretaro, P.; Burderi, L.; Di Salvo, T.; Israel, G.L.; Ghedina, A.; Di Fabrizio, L.; et al. Optical pulsations from a transitional millisecond pulsar. Nat. Astron. 2017, 1, 854–858. [Google Scholar] [CrossRef]
- Tulloch, S.M.; Dhillon, V.S. On the use of electron-multiplying CCDs for astronomical spectroscopy. Mon. Not. R. Astron. Soc. 2011, 411, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, V.S.; Marsh, T.R.; Stevenson, M.J.; Atkinson, D.C.; Kerry, P.; Peacocke, P.T.; Vick, A.J.A.; Beard, S.M.; Ives, D.J.; Lunney, D.W.; et al. ULTRACAM: An ultrafast, triple-beam CCD camera for high-speed astrophysics. Mon. Not. R. Astron. Soc. 2007, 378, 825–840. [Google Scholar] [CrossRef] [Green Version]
- Rebassa-Mansergas, A.; Parsons, S.G.; Dhillon, V.S.; Ren, J.; Littlefair, S.P.; Marsh, T.R.; Torres, S. Accurate mass and radius determinations of a cool subdwarf in an eclipsing binary. Nat. Astron. 2019, 3, 553–560. [Google Scholar] [CrossRef]
- Parsons, S.G.; Brown, A.J.; Littlefair, S.P.; Dhillon, V.S.; Marsh, T.R.; Hermes, J.J.; Istrate, A.G.; Breedt, E.; Dyer, M.J.; Green, M.J.; et al. A pulsating white dwarf in an eclipsing binary. Nat. Astron. 2020, 4, 690–696. [Google Scholar] [CrossRef] [Green Version]
- Hormuth, F.; Hippler, S.; Brandner, W.; Wagner, K.; Henning, T. AstraLux: The Calar Alto lucky imaging camera. In Proceedings of the Ground-based and Airborne Instrumentation for Astronomy II, Marseille, France, 23–28 June 2008; McLean, I.S., Casali, M.M., Eds.; Volume 7014, p. 701448. [Google Scholar] [CrossRef] [Green Version]
- Mendikoa, I.; Sánchez-Lavega, A.; Pérez-Hoyos, S.; Hueso, R.; Félix Rojas, J.; Aceituno, J.; Aceituno, F.; Murga, G.; De Bilbao, L.; García-Melendo, E. PlanetCam UPV/EHU: A Two-channel Lucky Imaging Camera for Solar System Studies in the Spectral Range 0.38–1.7 m. Publ. Astron. Soc. Pac. 2016, 128, 035002. [Google Scholar] [CrossRef] [Green Version]
- Law, N.M.; Mackay, C.D.; Baldwin, J.E. Lucky imaging: High angular resolution imaging in the visible from the ground. Astron. Astrophys. 2006, 446, 739–745. [Google Scholar] [CrossRef]
- Velasco, S.; Etxegarai, U.; Oscoz, A.; López, R.L.; Puga, M.; Murga, G.; Pérez-Garrido, A.; Pallé, E.; Ricci, D.; Ayuso, I.; et al. Commissioning and first observations with Wide FastCam at the Telescopio Carlos Sánchez. In Proceedings of the Ground-Based and Airborne Instrumentation for Astronomy VI, Edinburgh, UK, 26 June–1 July 2016; Evans, C.J., Simard, L., Takami, H., Eds.; Volume 9908, p. 99082O. [Google Scholar] [CrossRef] [Green Version]
- O’Donoghue, D.; Buckley, D.A.H.; Balona, L.A.; Bester, D.; Botha, L.; Brink, J.; Carter, D.B.; Charles, P.A.; Christians, A.; Ebrahim, F.; et al. First science with the Southern African Large Telescope: Peering at the accreting polar caps of the eclipsing polar SDSS J015543.40+002807.2. Mon. Not. R. Astron. Soc. 2006, 372, 151–162. [Google Scholar] [CrossRef]
- Castro, A.; Altamirano, D.; Michel, R.; Gandhi, P.; Hernández Santisteban, J.V.; Echevarría, J.; Tejada, C.; Knigge, C.; Sierra, G.; Colorado, E.; et al. OPTICAM: A Triple-Camera Optical System Designed to Explore the Fastest Timescales in Astronomy. Rev. Mexicana Astron. Astrofis. 2019, 55, 363–376. [Google Scholar] [CrossRef]
- Lyutikov, M.; Lorimer, D.R. How Else Can We Detect Fast Radio Bursts? Astrophys. J. 2016, 824, L18. [Google Scholar] [CrossRef] [Green Version]
- Karpov, S.; Jelinek, M.; Štrobl, J. Looking for fast optical bursts from FRB121102: Case study for a small telescopes with sub-second temporal resolution. Astron. Nachrichten 2019, 340, 613–617. [Google Scholar] [CrossRef] [Green Version]
- Usov, V.V. Millisecond pulsars with extremely strong magnetic fields as a cosmological source of gamma-ray bursts. Nature 1992, 357, 472–474. [Google Scholar] [CrossRef]
- Bucciantini, N.; Quataert, E.; Arons, J.; Metzger, B.D.; Thompson, T.A. Magnetar-driven bubbles and the origin of collimated outflows in gamma-ray bursts. Mon. Not. R. Astron. Soc. 2007, 380, 1541–1553. [Google Scholar] [CrossRef] [Green Version]
- Metzger, B.D.; Giannios, D.; Thompson, T.A.; Bucciantini, N.; Quataert, E. The protomagnetar model for gamma-ray bursts. Mon. Not. R. Astron. Soc. 2011, 413, 2031–2056. [Google Scholar] [CrossRef] [Green Version]
- Metzger, B.D.; Quataert, E.; Thompson, T.A. Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Mon. Not. R. Astron. Soc. 2008, 385, 1455–1460. [Google Scholar] [CrossRef] [Green Version]
- Usov, V.V.; Katz, J.I. Low frequency radio pulses from gamma-ray bursts? Astron. Astrophys. 2000, 364, 655–659. [Google Scholar]
- Totani, T. Cosmological Fast Radio Bursts from Binary Neutron Star Mergers. Publ. Astron. Soc. Jpn. 2013, 65, L12. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Han, Y.H.; Xu, D.; Wang, S.Q.; Dai, Z.G.; Wu, X.F.; Wei, J.Y. Solving the 56Ni Puzzle of Magnetar-powered Broad-lined Type IC Supernovae. Astrophys. J. 2016, 831, 41. [Google Scholar] [CrossRef] [Green Version]
- Pshirkov, M.S.; Postnov, K.A. Radio precursors to neutron star binary mergings. Astrophys. Space Sci. 2010, 330, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Falcke, H.; Rezzolla, L. Fast radio bursts: The last sign of supramassive neutron stars. Astron. Astrophys. 2014, 562, A137. [Google Scholar] [CrossRef] [Green Version]
- Popov, S.B.; Postnov, K.A. Millisecond extragalactic radio bursts as magnetar flares. arXiv 2013, arXiv:1307.4924. [Google Scholar]
- Lyutikov, M.; Popov, S. Fast Radio Bursts from reconnection events in magnetar magnetospheres. arXiv 2020, arXiv:2005.05093. [Google Scholar]
- Cunningham, V.; Cenko, S.B.; Burns, E.; Goldstein, A.; Lien, A.; Kocevski, D.; Briggs, M.; Connaughton, V.; Miller, M.C.; Racusin, J.; et al. A Search for High-energy Counterparts to Fast Radio Bursts. Astrophys. J. 2019, 879, 40. [Google Scholar] [CrossRef] [Green Version]
- Anumarlapudi, A.; Bhalerao, V.; Tendulkar, S.P.; Balasubramanian, A. Prompt X-Ray Emission from Fast Radio Bursts—Upper Limits with AstroSat. Astrophys. J. 2020, 888, 40. [Google Scholar] [CrossRef] [Green Version]
- Lorimer, D.R.; Bailes, M.; McLaughlin, M.A.; Narkevic, D.J.; Crawford, F. A Bright Millisecond Radio Burst of Extragalactic Origin. Science 2007, 318, 777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidorzi, C.; Marongiu, M.; Martone, R.; Amati, L.; Frontera, F.; Nicastro, L.; Orlandini, M.; Margutti, R.; Virgilli, E. A Search for Gamma-Ray Prompt Emission Associated with the Lorimer Burst FRB 010724. Astrophys. J. 2019, 882, 100. [Google Scholar] [CrossRef] [Green Version]
- Xi, S.Q.; Tam, P.H.T.; Peng, F.K.; Wang, X.Y. Search for GeV Counterparts to Fast Radio Bursts with Fermi. Astrophys. J. 2017, 842, L8. [Google Scholar] [CrossRef] [Green Version]
- Palaniswamy, D.; Wayth, R.B.; Trott, C.M.; McCallum, J.N.; Tingay, S.J.; Reynolds, C. A Search for Fast Radio Bursts Associated with Gamma-Ray Bursts. Astrophys. J. 2014, 790, 63. [Google Scholar] [CrossRef]
- Kaplan, D.L.; Rowlinson, A.; Bannister, K.W.; Bell, M.E.; Croft, S.D.; Murphy, T.; Tingay, S.J.; Wayth, R.B.; Williams, A. A Deep Search for Prompt Radio Emission from the Short GRB 150424A with the Murchison Widefield Array. Astrophys. J. 2015, 814, L25. [Google Scholar] [CrossRef]
- Wang, X.G.; Li, L.; Yang, Y.P.; Luo, J.W.; Zhang, B.; Lin, D.B.; Liang, E.W.; Qin, S.M. Is GRB 110715A the Progenitor of FRB 171209? Astrophys. J. 2020, 894, L22. [Google Scholar] [CrossRef]
- Gilmore, R.C.; Somerville, R.S.; Primack, J.R.; Domínguez, A. Semi-analytic modelling of the extragalactic background light and consequences for extragalactic gamma-ray spectra. Mon. Not. R. Astron. Soc. 2012, 422, 3189–3207. [Google Scholar] [CrossRef] [Green Version]
- H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A.G.; Andersson, T.; Angüner, E.O.; Arakawa, M.; Arrieta, M.; et al. First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst. H.E.S.S. observations of FRB 150418. Astron. Astrophys. 2017, 597, A115. [Google Scholar] [CrossRef] [Green Version]
- Bird, R.; VERITAS Collaboration. Observing FRB 121102 with VERITAS; Searching for Associated TeV Emission. In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Korea, 12–20 July 2017; Volume 301, p. 621. [Google Scholar]
- Metzger, B.D.; Fang, K.; Margalit, B. Neutrino Counterparts of Fast Radio Bursts. Astrophys. J. 2020, 902, L22. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; et al. The search for high-energy neutrinos coincident with fast radio bursts with the ANTARES neutrino telescope. Mon. Not. R. Astron. Soc. 2019, 482, 184–193. [Google Scholar] [CrossRef]
- Fahey, S.; Kheirandish, A.; Vandenbroucke, J.; Xu, D. A Search for Neutrinos from Fast Radio Bursts with IceCube. Astrophys. J. 2017, 845, 14. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Samarai, I.A.; Altmann, D.; Andeen, K.; Anderson, T.; et al. A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data. Astrophys. J. 2018, 857, 117. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. A Search for MeV to TeV Neutrinos from Fast Radio Bursts with IceCube. Astrophys. J. 2020, 890, 111. [Google Scholar] [CrossRef]
- Kashiyama, K.; Murase, K. Testing the Young Neutron Star Scenario with Persistent Radio Emission Associated with FRB 121102. Astrophys. J. 2017, 839, L3. [Google Scholar] [CrossRef]
- Nicholl, M.; Williams, P.K.G.; Berger, E.; Villar, V.A.; Alexander, K.D.; Eftekhari, T.; Metzger, B.D. Empirical Constraints on the Origin of Fast Radio Bursts: Volumetric Rates and Host Galaxy Demographics as a Test of Millisecond Magnetar Connection. Astrophys. J. 2017, 843, 84. [Google Scholar] [CrossRef]
- Modjaz, M.; Kewley, L.; Kirshner, R.P.; Stanek, K.Z.; Challis, P.; Garnavich, P.M.; Greene, J.E.; Kelly, P.L.; Prieto, J.L. Measured Metallicities at the Sites of Nearby Broad-Lined Type Ic Supernovae and Implications for the Supernovae Gamma-Ray Burst Connection. Astron. J. 2008, 135, 1136–1150. [Google Scholar] [CrossRef] [Green Version]
- Lunnan, R.; Chornock, R.; Berger, E.; Laskar, T.; Fong, W.; Rest, A.; Sanders, N.E.; Challis, P.M.; Drout, M.R.; Foley, R.J.; et al. Hydrogen-poor Superluminous Supernovae and Long-duration Gamma-Ray Bursts Have Similar Host Galaxies. Astrophys. J. 2014, 787, 138. [Google Scholar] [CrossRef]
- Hassan, T.; Hoang, J.; López Moya, M.; Barrio, J.A.; Cortina, J.; Fidalgo, D.; Fink, D.; Tejedor, L.Á.; Will, M. MAGIC sensitivity to millisecond-duration optical pulses. In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Korea, 12–20 July 2017; Volume 301, p. 807. [Google Scholar]
- Vieyro, F.L.; Romero, G.E.; Bosch-Ramon, V.; Marcote, B.; Del Valle, M.V. A model for the repeating FRB 121102 in the AGN scenario. Astron. Astrophys. 2017, 602, A64. [Google Scholar] [CrossRef] [Green Version]
- Chawla, P.; Andersen, B.C.; Bhardwaj, M.; Fonseca, E.; Josephy, A.; Kaspi, V.M.; Michilli, D.; Pleunis, Z.; Bandura, K.M.; Bassa, C.G.; et al. Detection of Repeating FRB 180916.J0158+65 Down to Frequencies of 300 MHz. Astrophys. J. 2020, 896, L41. [Google Scholar] [CrossRef]
- Aggarwal, K.; Law, C.J.; Burke-Spolaor, S.; Bower, G.; Butler, B.J.; Demorest, P.; Linford, J.; Lazio, T.J.W. VLA/Realfast Detection of a Burst from FRB 180916.J0158+65 and Tests for Periodic Activity. Res. Notes Am. Astron. Soc. 2020. [Google Scholar] [CrossRef]
- Margalit, B.; Metzger, B.D.; Sironi, L. Constraints on the engines of fast radio bursts. Mon. Not. R. Astron. Soc. 2020, 494, 4627–4644. [Google Scholar] [CrossRef]
- Plotnikov, I.; Sironi, L. The synchrotron maser emission from relativistic shocks in Fast Radio Bursts: 1D PIC simulations of cold pair plasmas. Mon. Not. R. Astron. Soc. 2019, 485, 3816–3833. [Google Scholar] [CrossRef]
- Israel, G.L.; Esposito, P.; Rea, N.; Coti Zelati, F.; Tiengo, A.; Campana, S.; Mereghetti, S.; Rodriguez Castillo, G.A.; Götz, D.; Burgay, M.; et al. The discovery, monitoring and environment of SGR J1935+2154. Mon. Not. R. Astron. Soc. 2016, 457, 3448–3456. [Google Scholar] [CrossRef] [Green Version]
- Younes, G.; Kouveliotou, C.; Jaodand, A.; Baring, M.G.; Van der Horst, A.J.; Harding, A.K.; Hessels, J.W.T.; Gehrels, N.; Gill, R.; Huppenkothen, D.; et al. X-Ray and Radio Observations of the Magnetar SGR J1935+2154 during Its 2014, 2015, and 2016 Outbursts. Astrophys. J. 2017, 847, 85. [Google Scholar] [CrossRef]
- Borghese, A.; Coti Zelati, F.; Rea, N.; Esposito, P.; Israel, G.L.; Mereghetti, S.; Tiengo, A. The X-Ray Reactivation of the Radio Bursting Magnetar SGR J1935+2154. Astrophys. J. 2020, 902, L2. [Google Scholar] [CrossRef]
- Palmer, D.M. A Forest of Bursts from SGR 1935+2154. Astron. Telegr. 2020, 13675, 1. [Google Scholar]
- Younes, G.; Guver, T.; Enoto, T.; Arzoumanian, Z.; Gendreau, K.; Hu, C.P.; Ray, P.S.; Kouveliotou, C.; Guillot, S.; Ho, W.C.G.; et al. Burst forest from SGR 1935+2154 as detected with NICER. Astron. Telegr. 2020, 13678, 1. [Google Scholar]
- Tavani, M.; Casentini, C.; Ursi, A.; Verrecchia, F.; Addis, A.; Antonelli, L.A.; Argan, A.; Barbiellini, G.; Baroncelli, L.; Bernardi, G.; et al. An X-Ray Burst from a Magnetar Enlightening the Mechanism of Fast Radio Bursts. Nat. Astron. 2021, 4, 2397–3366. [Google Scholar] [CrossRef]
- Younes, G.; Güver, T.; Kouveliotou, C.; Baring, M.G.; Hu, C.P.; Wadiasingh, Z.; Begiçarslan, B.; Enoto, T.; Göğüs, E.; Lin, L.; et al. NICER View of the 2020 Burst Storm and Persistent Emission of SGR 1935+2154. Astrophys. J. 2020, 904, L21. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, C.F.; Wang, P.; Gao, H.; Guan, X.; Han, J.L.; Jiang, J.C.; Jiang, P.; Lee, K.J.; Li, D.; et al. No pulsed radio emission during a bursting phase of a Galactic magnetar. Nature 2020, 587, 63–65. [Google Scholar] [CrossRef]
- Li, C.K.; Tuo, Y.L.; Ge, M.Y.; Li, X.B.; Liao, J.Y.; Cai, C.; Xiong, S.L.; Liu, C.Z.; Chen, Y.; Cao, X.L.; et al. Insight-HXMT X-ray and hard X-ray upper limits to the radio burst detected by FAST from SGR 1935+2154. Astron. Telegr. 2020, 13703, 1. [Google Scholar]
- Kirsten, F.; Snelders, M.P.; Jenkins, M.; Nimmo, K.; Van den Eijnden, J.; Hessels, J.W.T.; Gawroński, M.P.; Yang, J. Detection of two bright radio bursts from magnetar SGR 1935+2154. Nat. Astron. 2020. [Google Scholar] [CrossRef]
- Burgay, M.; Pilia, M.; Bernardi, G.; Naldi, G.; Pupillo, G.; Magro, A.; Setti, G.; Bianchi, G.; Possenti, A. Marginal detection of radio pulsations from the magnetar SGR 1935+2154 with the Medicina Northern Cross. Astron. Telegr. 2020, 13783, 1. [Google Scholar]
- Pleunis, Z.; CHIME/FRB Collaboration. Properties of the CHIME/FRB 2020 October 8 detections of SGR 1935+2154. Astron. Telegr. 2020, 14080, 1. [Google Scholar]
- Kaspi, V.M.; Beloborodov, A.M. Magnetars. Annu. Rev. Astron. Astrophys. 2017, 55, 261–301. [Google Scholar] [CrossRef] [Green Version]
- Lower, M.E.; Shannon, R.M.; Johnston, S.; Bailes, M. Spectropolarimetric Properties of Swift J1818.0-1607: A 1.4 s Radio Magnetar. Astrophys. J. 2020, 896, L37. [Google Scholar] [CrossRef]
- Burgay, M.; Esposito, P.; Israel, G.L.; Rea, N.; Possenti, A.; Sarkissian, J. Search for FRB and FRB-like single pulses in Parkes magnetar data. In Proceedings of the Pulsar Astrophysics the Next Fifty Years, Jodrell Bank Observatory, Macclesfield, UK, 4–8 September 2017; Weltevrede, P., Perera, B.B.P., Preston, L.L., Sanidas, S., Eds.; IAU, Cambridge University Press: Cambridge, UK, 2018; Volume 337, pp. 319–321. [Google Scholar] [CrossRef] [Green Version]
- Perna, R.; Gotthelf, E.V. Constraints on the Emission and Viewing Geometry of the Transient Anomalous X-Ray Pulsar XTE J1810-197. Astrophys. J. 2008, 681, 522–529. [Google Scholar] [CrossRef] [Green Version]
- Beloborodov, A.M. Blast Waves from Magnetar Flares and Fast Radio Bursts. Astrophys. J. 2020, 896, 142. [Google Scholar] [CrossRef]
- Lyutikov, M. Radio Emission from Magnetars. Astrophys. J. 2002, 580, L65–L68. [Google Scholar] [CrossRef] [Green Version]
- Lyutikov, M. Explosive reconnection in magnetars. Mon. Not. R. Astron. Soc. 2003, 346, 540–554. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Lu, W.; Bhattacharya, M. Fast radio burst source properties and curvature radiation model. Mon. Not. R. Astron. Soc. 2017, 468, 2726–2739. [Google Scholar] [CrossRef] [Green Version]
- Luo, R.; Wang, B.J.; Men, Y.P.; Zhang, C.F.; Jiang, J.C.; Xu, H.; Wang, W.Y.; Lee, K.J.; Han, J.L.; Zhang, B.; et al. Diverse polarization angle swings from a repeating fast radio burst source. Nature 2020, 586, 693–696. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Gajjar, V.; Foster, G.; Siemion, A.; Cordes, J.; Law, C.; Wang, Y. Fast Radio Burst 121102 Pulse Detection and Periodicity: A Machine Learning Approach. Astrophys. J. 2018, 866, 149. [Google Scholar] [CrossRef] [Green Version]
- Grossan, B. Periodic Windowed Behavior in SGR1935+2154 SGR Bursts. arXiv 2020, arXiv:astro-ph.HE/2006.16480. [Google Scholar]
- Zhang, G.Q.; Tu, Z.L.; Wang, F.Y. Possible periodic activity in the short bursts of SGR 1806-20: Connection to fast radio bursts. arXiv 2021, arXiv:2101.07923. [Google Scholar]
- Kocz, J.; Ravi, V.; Catha, M.; D’Addario, L.; Hallinan, G.; Hobbs, R.; Kulkarni, S.; Shi, J.; Vedantham, H.; Weinreb, S.; et al. DSA-10: A prototype array for localizing fast radio bursts. Mon. Not. R. Astron. Soc. 2019, 489, 919–927. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicastro, L.; Guidorzi, C.; Palazzi, E.; Zampieri, L.; Turatto, M.; Gardini, A. Multiwavelength Observations of Fast Radio Bursts. Universe 2021, 7, 76. https://doi.org/10.3390/universe7030076
Nicastro L, Guidorzi C, Palazzi E, Zampieri L, Turatto M, Gardini A. Multiwavelength Observations of Fast Radio Bursts. Universe. 2021; 7(3):76. https://doi.org/10.3390/universe7030076
Chicago/Turabian StyleNicastro, Luciano, Cristiano Guidorzi, Eliana Palazzi, Luca Zampieri, Massimo Turatto, and Angela Gardini. 2021. "Multiwavelength Observations of Fast Radio Bursts" Universe 7, no. 3: 76. https://doi.org/10.3390/universe7030076
APA StyleNicastro, L., Guidorzi, C., Palazzi, E., Zampieri, L., Turatto, M., & Gardini, A. (2021). Multiwavelength Observations of Fast Radio Bursts. Universe, 7(3), 76. https://doi.org/10.3390/universe7030076