Emission Mechanisms of Fast Radio Bursts
Abstract
:1. Introduction
- What electromagnetic waves are supported by plasma at the assumed conditions?
- How could these waves be excited?
- Could they escape the system as radio waves?
2. Coherent Radiation Mechanisms
2.1. Brightness Temperature
2.2. Curvature Emission of Bunches
2.3. Masers, Some Preliminaries
2.4. Synchrotron Maser
2.5. Coherent Emission from the Front of a Relativistic, Magnetized Shock
2.6. Radiation from Reconnecting Current Sheets
3. FRBs from Magnetar Flares
3.1. Magnetar Magnetosphere and Wind
3.2. Magnetar Flares and FRBs
3.3. FRBs Produced by Relativistic Shocks from Magnetar Flares
3.4. FRBs from Magnetic Reconnection in the Upper Magnetar Magnetosphere
4. Non-Linear Effects and Escape of Radio Emission
4.1. Electron in a Strong Electromagnetic Wave
4.2. Induced Compton Scattering
4.3. Induced Raman Scattering
4.4. Modulation and Filamentation Instabilities
4.5. Non-Linear Interaction of Waves in a Highly Magnetized Plasma
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lorimer, D.R.; Bailes, M.; McLaughlin, M.A.; Narkevic, D.J.; Crawford, F. A Bright Millisecond Radio Burst of Extragalactic Origin. Science 2007, 318, 777. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J.D. Classical Electrodynamics; Wiley: New York, NY, USA, 1962. [Google Scholar]
- Treumann, R.A.; Baumjohann, W. Spontaneous magnetic reconnection. Collisionless reconnection and its potential astrophysical relevance. Astron. Astrophys. Rev. 2015, 23, 4. [Google Scholar] [CrossRef]
- Sironi, L.; Keshet, U.; Lemoine, M. Relativistic Shocks: Particle Acceleration and Magnetization. Space Sci. Rev. 2015, 191, 519–544. [Google Scholar] [CrossRef]
- Kagan, D.; Sironi, L.; Cerutti, B.; Giannios, D. Relativistic Magnetic Reconnection in Pair Plasmas and Its Astrophysical Applications. Space Sci. Rev. 2015, 191, 545–573. [Google Scholar] [CrossRef]
- Pelletier, G.; Bykov, A.; Ellison, D.; Lemoine, M. Towards Understanding the Physics of Collisionless Relativistic Shocks. Relativistic Collisionless Shocks. Space Sci. Rev. 2017, 207, 319–360. [Google Scholar] [CrossRef] [Green Version]
- Melrose, D.B. Coherent emission mechanisms in astrophysical plasmas. Rev. Mod. Plasma Phys. 2017, 1, 5. [Google Scholar] [CrossRef]
- Lyubarsky, Y. Pulsar emission mechanisms. In 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More; American Institute of Physics Conference Series; Bassa, C., Wang, Z., Cumming, A., Kaspi, V.M., Eds.; Springer: Berlin, Germany, 2008; Volume 983, pp. 29–37. [Google Scholar] [CrossRef]
- Cordes, J.M.; Chatterjee, S. Fast Radio Bursts: An Extragalactic Enigma. Ann. Rev. Astron. Astrophys. 2019, 57, 417–465. [Google Scholar] [CrossRef] [Green Version]
- Petroff, E.; Hessels, J.W.T.; Lorimer, D.R. Fast radio bursts. Astron. Astrophys. Rev. 2019, 27, 4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. The physical mechanisms of fast radio bursts. Nature 2020, 587, 45–53. [Google Scholar] [CrossRef]
- Falcke, H.; Rezzolla, L. Fast radio bursts: The last sign of supramassive neutron stars. Astron. Astrophys. 2014, 562, A137. [Google Scholar] [CrossRef] [Green Version]
- Cordes, J.M.; Wasserman, I. Supergiant pulses from extragalactic neutron stars. Mon. Not. R. Astron. Soc. 2016, 457, 232–257. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.G.; Wang, J.S.; Wu, X.F.; Huang, Y.F. Repeating Fast Radio Bursts from Highly Magnetized Pulsars Traveling through Asteroid Belts. Astrophys. J. 2016, 829, 27. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Lu, W.; Bhattacharya, M. Fast radio burst source properties and curvature radiation model. Mon. Not. R. Astron. Soc. 2017, 468, 2726–2739. [Google Scholar] [CrossRef] [Green Version]
- Ghisellini, G.; Locatelli, N. Coherent curvature radiation and fast radio bursts. Astron. Astrophys. 2018, 613, A61. [Google Scholar] [CrossRef] [Green Version]
- Katz, J.I. Coherent plasma-curvature radiation in FRB. Mon. Not. R. Astron. Soc. 2018, 481, 2946–2950. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.P.; Zhang, B. Bunching Coherent Curvature Radiation in Three-dimensional Magnetic Field Geometry: Application to Pulsars and Fast Radio Bursts. Astrophys. J. 2018, 868, 31. [Google Scholar] [CrossRef]
- Lu, W.; Kumar, P. On the radiation mechanism of repeating fast radio bursts. Mon. Not. R. Astron. Soc. 2018, 477, 2470–2493. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhang, B.; Chen, X.; Xu, R. Coherent Radio Emission from a Twisted Magnetosphere after a Magnetar-quake. Astrophys. J. 2019, 875, 84. [Google Scholar] [CrossRef]
- Kumar, P.; Bošnjak, Ž. FRB coherent emission from decay of Alfvén waves. Mon. Not. R. Astron. Soc. 2020, 494, 2385–2395. [Google Scholar] [CrossRef]
- Lu, W.; Kumar, P.; Zhang, B. A unified picture of Galactic and cosmological fast radio bursts. Mon. Not. R. Astron. Soc. 2020, 498, 1397–1405. [Google Scholar] [CrossRef]
- Wang, W.Y.; Xu, R.; Chen, X. On the Magnetospheric Origin of Repeating Fast Radio Bursts. Astrophys. J. 2020, 899, 109. [Google Scholar] [CrossRef]
- Yang, Y.P.; Zhu, J.P.; Zhang, B.; Wu, X.F. Pair Separation in Parallel Electric Field in Magnetar Magnetosphere and Narrow Spectra of Fast Radio Bursts. Astrophys. J. Lett. 2020, 901, L13. [Google Scholar] [CrossRef]
- Lominadze, D.G.; Mikhailovskiǐ, A.B. Longitudinal waves and two-stream instability in a relativistic plasma. Sov. J. Exp. Theor. Phys. 1979, 49, 483. [Google Scholar]
- Arons, J.; Barnard, J.J. Wave Propagation in Pulsar Magnetospheres: Dispersion Relations and Normal Modes of Plasmas in Superstrong Magnetic Fields. Astrophys. J. 1986, 302, 120. [Google Scholar] [CrossRef]
- Gil, J.; Lyubarsky, Y.; Melikidze, G.I. Curvature Radiation in Pulsar Magnetospheric Plasma. Astrophys. J. 2004, 600, 872–882. [Google Scholar] [CrossRef]
- Krall, N.; Trivelpiece, A. Principles of Plasma Physics; Number 0-911351 in International Series in Pure and Applied Physics; McGraw-Hill: New York, NY, USA, 1973. [Google Scholar]
- Melrose, D.B. Plasma Astrophysics: Nonthermal Processes in Diffuse Magnetized Plasmas. Volume 1—The Emission, Absorption and Transfer of Waves in Plasmas; Gordon and Breach: New York, NY, USA, 1980. [Google Scholar]
- Sazonov, V.N. Negative Reabsorption of Synchrotron Radiation. Soviet Astron. 1970, 13, 797. [Google Scholar]
- Sagiv, A.; Waxman, E. Collective Processes in Relativistic Plasma and Their Implications for Gamma-Ray Burst Afterglows. Astrophys. J. 2002, 574, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Gruzinov, A.; Waxman, E. Masers and Other Instabilities in a Weakly Magnetized Relativistic Plasma: Theory and the Astrophysical Relevance of the Maser. Astrophys. J. 2019, 875, 126. [Google Scholar] [CrossRef]
- Lyubarsky, Y. Electron-Ion Coupling Upstream of Relativistic Collisionless Shocks. Astrophys. J. 2006, 652, 1297–1305. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrov, A.F.; Bogdankevich, L.S.; Rukhadze, A.A. Principles of Plasma Electrodynamics; Springer: Berlin, Germany, 1984. [Google Scholar]
- Langdon, A.B.; Arons, J.; Max, C.E. Structure of relativistic magnetosonic shocks in electron-positron plasmas. Phys. Rev. Lett. 1988, 61, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, M.; Arons, J.; Gallant, Y.A.; Langdon, A.B. Relativistic Magnetosonic Shock Waves in Synchrotron Sources: Shock Structure and Nonthermal Acceleration of Positrons. Astrophys. J. 1992, 390, 454. [Google Scholar] [CrossRef]
- Gallant, Y.A.; Hoshino, M.; Langdon, A.B.; Arons, J.; Max, C.E. Relativistic, perpendicular shocks in electron-positron plasmas. Astrophys. J. 1992, 391, 73–101. [Google Scholar] [CrossRef]
- Sironi, L.; Spitkovsky, A. Particle Acceleration in Relativistic Magnetized Collisionless Electron-Ion Shocks. Astrophys. J. 2011, 726, 75. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, M.; Amano, T.; Hoshino, M.; Matsumoto, Y. Persistence of Precursor Waves in Two-dimensional Relativistic Shocks. Astrophys. J. 2017, 840, 52. [Google Scholar] [CrossRef]
- Iwamoto, M.; Amano, T.; Hoshino, M.; Matsumoto, Y. Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks. Astrophys. J. 2018, 858, 93. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, M.; Amano, T.; Hoshino, M.; Matsumoto, Y.; Niemiec, J.; Ligorini, A.; Kobzar, O.; Pohl, M. Precursor Wave Amplification by Ion-Electron Coupling through Wakefield in Relativistic Shocks. Astrophys. J. Lett. 2019, 883, L35. [Google Scholar] [CrossRef]
- Plotnikov, I.; Sironi, L. The synchrotron maser emission from relativistic shocks in Fast Radio Bursts: 1D PIC simulations of cold pair plasmas. Mon. Not. R. Astron. Soc. 2019, 485, 3816–3833, Erratum in 2019, 490, 156. [Google Scholar] [CrossRef]
- Babul, A.N.; Sironi, L. The synchrotron maser emission from relativistic magnetized shocks: Dependence on the pre-shock temperature. Mon. Not. R. Astron. Soc. 2020. [Google Scholar] [CrossRef]
- Hoshino, M. Wakefield Acceleration by Radiation Pressure in Relativistic Shock Waves. Astrophys. J. 2008, 672, 940–956. [Google Scholar] [CrossRef] [Green Version]
- Appl, S.; Camenzind, M. Shock conditions for relativistic MHD jets. Astron. Astrophys. 1988, 206, 258–268. [Google Scholar]
- Philippov, A.; Uzdensky, D.A.; Spitkovsky, A.; Cerutti, B. Pulsar Radio Emission Mechanism: Radio Nanoshots as a Low-frequency Afterglow of Relativistic Magnetic Reconnection. Astrophys. J. Lett. 2019, 876, L6. [Google Scholar] [CrossRef] [Green Version]
- Uzdensky, D.A.; Spitkovsky, A. Physical Conditions in the Reconnection Layer in Pulsar Magnetospheres. Astrophys. J. 2014, 780, 3. [Google Scholar] [CrossRef]
- Lyubarsky, Y. Radio emission of the Crab and Crab-like pulsars. Mon. Not. R. Astron. Soc. 2019, 483, 1731–1736. [Google Scholar] [CrossRef]
- Lyubarsky, Y. Fast Radio Bursts from Reconnection in a Magnetar Magnetosphere. Astrophys. J. 2020, 897, 1. [Google Scholar] [CrossRef]
- Popov, S.B.; Postnov, K.A. Hyperflares of SGRs as an engine for millisecond extragalactic radio bursts. arXiv 2007, arXiv:0710.2006. [Google Scholar]
- CHIME/FRB Collaboration; Andersen, B.C.; Bandura, K.M.; Bhardwaj, M.; Bij, A.; Boyce, M.M.; Boyle, P.J.; Brar, C.; Cassanelli, T.; Chawla, P.; et al. A bright millisecond-duration radio burst from a Galactic magnetar. Nature 2020, 587, 54–58. [Google Scholar] [CrossRef]
- Bochenek, C.D.; Ravi, V.; Belov, K.V.; Hallinan, G.; Kocz, J.; Kulkarni, S.R.; McKenna, D.L. A fast radio burst associated with a Galactic magnetar. Nature 2020, 587, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Duncan, R.C.; Thompson, C. Formation of Very Strongly Magnetized Neutron Stars: Implications for Gamma-Ray Bursts. Astrophys. J. Lett. 1992, 392, L9. [Google Scholar] [CrossRef]
- Thompson, C.; Duncan, R.C. The soft gamma repeaters as very strongly magnetized neutron stars—I. Radiative mechanism for outbursts. Mon. Not. R. Astron. Soc. 1995, 275, 255–300. [Google Scholar] [CrossRef]
- Kaspi, V.M.; Beloborodov, A.M. Magnetars. Ann. Rev. Astron. Astrophys. 2017, 55, 261–301. [Google Scholar] [CrossRef] [Green Version]
- Beloborodov, A.M.; Thompson, C. Corona of Magnetars. Astrophys. J. 2007, 657, 967–993. [Google Scholar] [CrossRef]
- Beloborodov, A.M. On the Mechanism of Hard X-ray Emission from Magnetars. Astrophys. J. 2013, 762, 13. [Google Scholar] [CrossRef] [Green Version]
- Beloborodov, A.M. Blast Waves from Magnetar Flares and Fast Radio Bursts. Astrophys. J. 2020, 896, 142. [Google Scholar] [CrossRef]
- Beskin, V.S.; Kuznetsova, I.V.; Rafikov, R.R. On the MHD effects on the force-free monopole outflow. Mon. Not. R. Astron. Soc. 1998, 299, 341–348. [Google Scholar] [CrossRef]
- Lyubarsky, Y.; Kirk, J.G. Reconnection in a Striped Pulsar Wind. Astrophys. J. 2001, 547, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Kirk, J.G.; Skjæraasen, O. Dissipation in Poynting-Flux-dominated Flows: The σ-Problem of the Crab Pulsar Wind. Astrophys. J. 2003, 591, 366–379. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Beloborodov, A.M.; Chen, A.Y.; Levin, Y. Plasmoid Ejection by Alfvén Waves and the Fast Radio Bursts from SGR 1935 + 2154. Astrophys. J. Lett. 2020, 900, L21. [Google Scholar] [CrossRef]
- Levinson, A.; van Putten, M.H.P.M. Formation, Evolution, and Structure of Fronts Produced by Unsteady Injection of Highly Magnetized, Relativistic Flows. Astrophys. J. 1997, 488, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Lyubarsky, Y.E. Fast magnetosonic waves in pulsar winds. Mon. Not. R. Astron. Soc. 2003, 339, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Lyutikov, M. Simple waves in relativistic fluids. Phys. Rev. E 2010, 82, 056305. [Google Scholar] [CrossRef] [Green Version]
- Lyubarsky, Y. A model for fast extragalactic radio bursts. Mon. Not. R. Astron. Soc. 2014, 442, L9–L13. [Google Scholar] [CrossRef] [Green Version]
- Beloborodov, A.M. A Flaring Magnetar in FRB 121102? Astrophys. J. Lett. 2017, 843, L26. [Google Scholar] [CrossRef] [Green Version]
- Eichler, D. Waiting for the Big One: A new class of soft gamma-ray repeater outbursts? Mon. Not. R. Astron. Soc. 2002, 335, 883–886. [Google Scholar] [CrossRef] [Green Version]
- Mehta, R.; Barkov, M.; Sironi, L.; Lyutikov, M. Tilting instability of magnetically confined spheromaks. J. Plasma Phys. 2020, 86, 905860407. [Google Scholar] [CrossRef]
- Metzger, B.D.; Margalit, B.; Sironi, L. Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Mon. Not. R. Astron. Soc. 2019, 485, 4091–4106. [Google Scholar] [CrossRef] [Green Version]
- Margalit, B.; Metzger, B.D.; Sironi, L. Constraints on the engines of fast radio bursts. Mon. Not. R. Astron. Soc. 2020, 494, 4627–4644. [Google Scholar] [CrossRef]
- Margalit, B.; Beniamini, P.; Sridhar, N.; Metzger, B.D. Implications of a Fast Radio Burst from a Galactic Magnetar. Astrophys. J. Lett. 2020, 899, L27. [Google Scholar] [CrossRef]
- Xiao, D.; Dai, Z.G. Double-peaked Pulse Profile of FRB 200428: Synchrotron Maser Emission from Magnetized Shocks Encountering a Density Jump. Astrophys. J. Lett. 2020, 904, L5. [Google Scholar] [CrossRef]
- Gaensler, B.M.; Kouveliotou, C.; Gelfand, J.D.; Taylor, G.B.; Eichler, D.; Wijers, R.A.M.J.; Granot, J.; Ramirez-Ruiz, E.; Lyubarsky, Y.E.; Hunstead, R.W.; et al. An expanding radio nebula produced by a giant flare from the magnetar SGR 1806-20. Nature 2005, 434, 1104–1106. [Google Scholar] [CrossRef] [Green Version]
- Gelfand, J.D.; Lyubarsky, Y.E.; Eichler, D.; Gaensler, B.M.; Taylor, G.B.; Granot, J.; Newton-McGee, K.J.; Ramirez-Ruiz, E.; Kouveliotou, C.; Wijers, R.A.M.J. A Rebrightening of the Radio Nebula Associated with the 2004 December 27 Giant Flare from SGR 1806-20. Astrophys. J. Lett. 2005, 634, L89–L92. [Google Scholar] [CrossRef] [Green Version]
- Granot, J.; Ramirez-Ruiz, E.; Taylor, G.B.; Eichler, D.; Lyubarsky, Y.E.; Wijers, R.A.M.J.; Gaensler, B.M.; Gelfand, J.D.; Kouveliotou, C. Diagnosing the Outflow from the SGR 1806-20 Giant Flare with Radio Observations. Astrophys. J. 2006, 638, 391–396. [Google Scholar] [CrossRef] [Green Version]
- CHIME/FRB Collaboration; Andersen, B.C.; Bandura, K.; Bhardwaj, M.; Boubel, P.; Boyce, M.M.; Boyle, P.J.; Brar, C.; Cassanelli, T.; Chawla, P.; et al. CHIME/FRB Discovery of Eight New Repeating Fast Radio Burst Sources. Astrophys. J. Lett. 2019, 885, L24. [Google Scholar] [CrossRef]
- Hessels, J.W.T.; Spitler, L.G.; Seymour, A.D.; Cordes, J.M.; Michilli, D.; Lynch, R.S.; Gourdji, K.; Archibald, A.M.; Bassa, C.G.; Bower, G.C.; et al. FRB 121102 Bursts Show Complex Time-Frequency Structure. Astrophys. J. Lett. 2019, 876, L23. [Google Scholar] [CrossRef] [Green Version]
- Luo, R.; Wang, B.J.; Men, Y.P.; Zhang, C.F.; Jiang, J.C.; Xu, H.; Wang, W.Y.; Lee, K.J.; Han, J.L.; Zhang, B.; et al. Diverse polarization angle swings from a repeating fast radio burst source. Nature 2020, 586, 693–696. [Google Scholar] [CrossRef] [PubMed]
- Gajjar, V.; Siemion, A.P.V.; Price, D.C.; Law, C.J.; Michilli, D.; Hessels, J.W.T.; Chatterjee, S.; Archibald, A.M.; Bower, G.C.; Brinkman, C.; et al. Highest Frequency Detection of FRB 121102 at 4-8 GHz Using the Breakthrough Listen Digital Backend at the Green Bank Telescope. Astrophys. J. 2018, 863, 2. [Google Scholar] [CrossRef]
- Michilli, D.; Seymour, A.; Hessels, J.W.T.; Spitler, L.G.; Gajjar, V.; Archibald, A.M.; Bower, G.C.; Chatterjee, S.; Cordes, J.M.; Gourdji, K.; et al. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 2018, 553, 182–185. [Google Scholar] [CrossRef] [Green Version]
- Osłowski, S.; Shannon, R.M.; Ravi, V.; Kaczmarek, J.F.; Zhang, S.; Hobbs, G.; Bailes, M.; Russell, C.J.; van Straten, W.; James, C.W.; et al. Commensal discovery of four fast radio bursts during Parkes Pulsar Timing Array observations. Mon. Not. R. Astron. Soc. 2019, 488, 868–875. [Google Scholar] [CrossRef]
- Parfrey, K.; Beloborodov, A.M.; Hui, L. Dynamics of Strongly Twisted Relativistic Magnetospheres. Astrophys. J. 2013, 774, 92. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, F.; Viganò, D.; Palenzuela, C.; Pons, J.A. Triggering magnetar outbursts in 3D force-free simulations. Mon. Not. R. Astron. Soc. 2019, 484, L124–L129. [Google Scholar] [CrossRef] [Green Version]
- Lyubarsky, Y. A New Mechanism for Dissipation of Alternating Fields in Poynting-dominated Outflows. Astrophys. J. Lett. 2010, 725, L234–L238. [Google Scholar] [CrossRef] [Green Version]
- Gill, R.; Granot, J.; Lyubarsky, Y. 2D Relativistic MHD simulations of the Kruskal-Schwarzschild instability in a relativistic striped wind. Mon. Not. R. Astron. Soc. 2018, 474, 3535–3546. [Google Scholar] [CrossRef]
- Luan, J.; Goldreich, P. Physical Constraints on Fast Radio Bursts. Astrophys. J. Lett. 2014, 785, L26. [Google Scholar] [CrossRef] [Green Version]
- Waltz, R.E.; Manley, O.P. Synchrotron-like radiation from intense laser beams in dense plasmas. Phys. Fluids 1978, 21, 808–813. [Google Scholar] [CrossRef]
- Sprangle, P.; Esarey, E.; Ting, A. Nonlinear theory of intense laser-plasma interactions. Phys. Rev. Lett. 1990, 64, 2011–2014. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Phinney, E.S. Imprint of local environment on fast radio burst observations. Mon. Not. R. Astron. Soc. 2020, 496, 3308–3313. [Google Scholar] [CrossRef]
- Yang, Y.P.; Zhang, B. Fast Radio Bursts as Strong Waves Interacting with the Ambient Medium. Astrophys. J. Lett. 2020, 892, L10. [Google Scholar] [CrossRef] [Green Version]
- Lyubarsky, Y. Interaction of the electromagnetic precursor from a relativistic shock with the upstream flow—I. Synchrotron absorption of strong electromagnetic waves. Mon. Not. R. Astron. Soc. 2018, 474, 1135–1142. [Google Scholar] [CrossRef]
- Lyutikov, M. Nonlinear optics in strongly magnetized pair plasma, with applications to FRBs. arXiv 2020, arXiv:2001.09210. [Google Scholar]
- Ginzburg, V.L. The Propagation of Electromagnetic Waves in Plasmas; Pergamon Press: Oxford, UK, 1970. [Google Scholar]
- Cheng, A.F.; Ruderman, M.A. A theory of subpulse polarization patterns from radio pulsars. Astrophys. J. 1979, 229, 348–360. [Google Scholar] [CrossRef]
- Lu, W.; Kumar, P.; Narayan, R. Fast radio burst source properties from polarization measurements. Mon. Not. R. Astron. Soc. 2019, 483, 359–369. [Google Scholar] [CrossRef]
- Wilson, D.B. Induced compton scattering in radiative transfer. Mon. Not. R. Astron. Soc. 1982, 200, 881–906. [Google Scholar] [CrossRef] [Green Version]
- Syunyaev, R.A. Induced Compton Scattering by Thermal Electrons and the Low-Frequency Spectrum of Radio Sources. Soviet Astron. 1971, 15, 190. [Google Scholar]
- Galeev, A.A.; Syunyaev, R.A. Plasma Effects in Stimulated Compton Interaction Between Matter and Radiation. Sov. J. Exp. Theor. Phys. 1973, 36, 669. [Google Scholar]
- Drake, J.F.; Kaw, P.K.; Lee, Y.C.; Schmid, G.; Liu, C.S.; Rosenbluth, M.N. Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids 1974, 17, 778–785. [Google Scholar] [CrossRef]
- Lyubarsky, Y. Induced Scattering of Short Radio Pulses. Astrophys. J. 2008, 682, 1443–1449. [Google Scholar] [CrossRef] [Green Version]
- Coppi, P.; Blandford, R.D.; Rees, M.J. Anisotropic induced compton scattering—Constraints on models of active galactic nuclei. Mon. Not. R. Astron. Soc. 1993, 262, 603–618. [Google Scholar] [CrossRef] [Green Version]
- Lyubarsky, Y. Interaction of the electromagnetic precursor from a relativistic shock with the upstream flow—II. Induced scattering of strong electromagnetic waves. Mon. Not. R. Astron. Soc. 2019, 490, 1474–1478. [Google Scholar] [CrossRef]
- Karastergiou, A.; Chennamangalam, J.; Armour, W.; Williams, C.; Mort, B.; Dulwich, F.; Salvini, S.; Magro, A.; Roberts, S.; Serylak, M.; et al. Limits on fast radio bursts at 145 MHz with ARTEMIS, a real-time software backend. Mon. Not. R. Astron. Soc. 2015, 452, 1254–1262. [Google Scholar] [CrossRef] [Green Version]
- Lyubarsky, Y.; Ostrovska, S. Induced Scattering Limits on Fast Radio Bursts from Stellar Coronae. Astrophys. J. 2016, 818, 74. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.; Blandford, R.D.; Evans, C.R.; Phinney, E.S. Physical Processes in Eclipsing Pulsars: Eclipse Mechanisms and Diagnostics. Astrophys. J. 1994, 422, 304. [Google Scholar] [CrossRef]
- Shapiro, V.D.; Shevchenko, V.I. Strong turbulence of plasma oscillations. In Handbook of Plasma Physics; Rosenbluth, M., Sagdeev, R., Eds.; Elsevier: Amsterdam, The Netherlands, 1984; Volume 2, p. 123. [Google Scholar]
- Brejzman, B. Collective interaction of relativistic electron beams with a plasma. In Reviews of Plasma Physics; Kadomtsev, B., Ed.; Springer: New York, NY, USA, 1990; Volume 15, p. 61. [Google Scholar]
- Karpman, V.I.; Cap, F.F. Non-Linear Waves in Dispersive Media; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Shearer, J.W.; Eddleman, J.L. Laser light forces and self-focusing in fully ionized plasmas. Phys. Fluids 1973, 16, 1753–1761. [Google Scholar] [CrossRef]
- Kaw, P.; Schmidt, G.; Wilcox, T. Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluids 1973, 16, 1522–1525. [Google Scholar] [CrossRef]
- Max, C.E.; Arons, J.; Langdon, A.B. Self-Modulation and Self-Focusing of Electromagnetic Waves in Plasmas. Phys. Rev. Lett. 1974, 33, 209–212. [Google Scholar] [CrossRef]
- Sobacchi, E.; Lyubarsky, Y.; Beloborodov, A.M.; Sironi, L. Self-modulation of fast radio bursts. Mon. Not. R. Astron. Soc. 2020, 500, 272–281. [Google Scholar] [CrossRef]
- Thompson, C.; Blaes, O. Magnetohydrodynamics in the extreme relativistic limit. Phys. Rev. D 1998, 57, 3219–3234. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 2021, 7, 56. https://doi.org/10.3390/universe7030056
Lyubarsky Y. Emission Mechanisms of Fast Radio Bursts. Universe. 2021; 7(3):56. https://doi.org/10.3390/universe7030056
Chicago/Turabian StyleLyubarsky, Yuri. 2021. "Emission Mechanisms of Fast Radio Bursts" Universe 7, no. 3: 56. https://doi.org/10.3390/universe7030056
APA StyleLyubarsky, Y. (2021). Emission Mechanisms of Fast Radio Bursts. Universe, 7(3), 56. https://doi.org/10.3390/universe7030056