Cosmological Constraints on the Coupling Model from Observational Hubble Parameter and Baryon Acoustic Oscillation Measurements
Abstract
:1. Introduction
2. The Standard Cosmology and Its Challenges
3. Coupling between Dark Energy and Dust/Dark Matter
3.1. Dark Energy Coupled with Dust Matter
3.2. Dark Energy Coupled with Dark Matter
4. Constraints on the Coupling Model with Observational Data
5. Preferred Best-Fitting Models and Their Implications
- Model 1
- With the best-fitting parameters in this model, we have:
- EoR (), for OHD ( + BAO), from around 379.9 Myr (402.6 Myr) to 1.825 Gyr (1.718 Gyr), which lasts ∼ 1.445 Gyr (1.315 Gyr);
- The seed redshift of J0100+2802, for OHD ( + BAO), 9.74 (11.03);
- If the first star formed at , then the age of the universe at that time would be, for OHD ( + BAO), 272.8 Myr (234.1 Myr);
- Old globular cluster M92 (NGC 6341) would appear at with age of 14.0 Gyr for OHD ( + BAO);
- For OHD ( + BAO), 3.5-Gyr-old ratio galaxy 53W091 () and 4-Gyr-old radio galaxy 53W069 () are formed at and , respectively;
- For OHD ( + BAO), QSO APM 08279+5255 with age around 2.1 Gyr [62] would have formed at .
- Model 2
- With the best-fitting parameters in this Model, we have:
- EoR (), for OHD ( + BAO), from around 478.7 Myr (534.1 Myr) to 1.371 Gyr (1.462 Gyr), which lasts ∼ 892.4 Myr (927.8 Myr);
- The seed redshift of J0100+2802, for OHD ( + BAO), ;
- If the first star formed at , then the age of the universe at that time would be, for OHD ( + BAO), 337.1 Myr (381.4 Myr);
- Old globular cluster M92 (NGC 6341) would appear at with age of 14.0 Gyr for OHD ( + BAO);
- For OHD ( + BAO), 3.5-Gyr-old ratio galaxy 53W091 () and 4-Gyr-old radio galaxy 53W069 () are formed at and , respectively;
- For OHD ( + BAO), QSO APM 08279+5255 with age around 2.1 Gyr would have formed at . If we consider it to be formed after , then its age would be Gyr for OHD ( + BAO).
- Model 3
- With the best-fitting parameters in this model, we have:
- EoR (), for OHD ( + BAO), from around 286.8 Myr (293.9 Myr) to 992.2 Myr (1.011 Gyr), which lasts ∼ 705.4 Myr (716.8 Myr);
- The seed redshift of J0100+2802, for OHD and + BAO, ;
- If the first star formed at , then the age of the universe at that time would be, for OHD ( + BAO), 190.5 Myr (195.3 Myr);
- Old globular cluster M92 (NGC 6341) would appear at with age of 14.0 Gyr for OHD and + BAO;
- addedFor OHD ( + BAO), 3.5-Gyr-old ratio galaxy 53W091 () and 4-Gyr-old radio galaxy 53W069 () are formed at and , respectively;
- For OHD and + BAO, QSO APM 08279+5255 with age around 2.1 Gyr would have formed at . (ruled out)
6. Conclusions and Discussions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mortonson, M.J.; Weinberg, D.H.; White, M. Dark Energy: A Short Review. arXiv 2013, arXiv:1401.0046. [Google Scholar]
- Brax, P. What makes the Universe accelerate? A review on what dark energy could be and how to test it. Rep. Prog. Phys. 2017, 81, 016902. [Google Scholar] [CrossRef] [PubMed]
- Arun, K.; Gudennavar, S.; Sivaram, C. Dark matter, dark energy, and alternate models: A review. Adv. Space Res. 2017, 60, 166–186. [Google Scholar] [CrossRef] [Green Version]
- Peebles, P.J.E. Tests of cosmological models constrained by inflation. Astrophys. J. 1984, 284, 439–444. [Google Scholar] [CrossRef]
- Sahni, V.; Shtanov, Y. Did the universe loiter at high redshifts? Phys. Rev. D 2005, 71, 084018. [Google Scholar] [CrossRef] [Green Version]
- Richards, G.T.; Strauss, M.A.; Pindor, B.; Haiman, Z.; Fan, X.; Eisenstein, D.; Schneider, D.P.; Bahcall, N.A.; Brinkmann, J.; Brunner, R.; et al. A Snapshot Survey for Gravitational Lenses among z ≥ 4.0 Quasars. I. The z > 5.7 Sample. Astron. J. 2004, 127, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Haiman, Z.; Quataert, E. The Formation and Evolution of the First Massive Black Holes. In Supermassive Black Holes in the Distant Universe; Astrophysics and Space Science Library; Barger, A.J., Ed.; Springer: Dordrecht, The Netherlands, 2004; Volume 308, p. 147. [Google Scholar]
- Melia, F.; McClintock, T.M. Supermassive black holes in the early Universe. Proc. R. Soc. Lond. Ser. A 2015, 471, 20150449. [Google Scholar] [CrossRef]
- Wu, X.B.; Wang, F.; Fan, X. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature 2015, 518, 512–515. [Google Scholar] [CrossRef] [Green Version]
- Pont, F.; Mayor, M.; Turon, C.; Vandenberg, D.A. HIPPARCOS subdwarfs and globular cluster ages: The distance and age of M 92. Astron. Astrophys. 1998, 329, 87–100. [Google Scholar]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. arXiv 2018, arXiv:1807.06209. [Google Scholar]
- Dunlop, J.; Peacock, J.; Spinrad, H.; Dey, A.; Jimenez, R.; Stern, D.; Windhorst, R. A 3.5-Gyr-old galaxy at redshift 1.55. Nature 1996, 381, 581–584. [Google Scholar] [CrossRef]
- Spinrad, H.; Dey, A.; Stern, D.; Dunlop, J.; Peacock, J.; Jimenez, R.; Windhorst, R. LBDS 53W091: An Old, Red Galaxy at z = 1.552. Astrophys. J. 1997, 484, 581–601. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Zhang, S.N. Interacting energy components and observational H(z) data. Phys. Lett. B 2007, 654, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Zhang, S.N. Observational data and cosmological models. Phys. Lett. B 2007, 644, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Cai, R.G. Interacting vectorlike dark energy, the first and second cosmological coincidence problems. Phys. Rev. D 2006, 73, 083002. [Google Scholar] [CrossRef] [Green Version]
- Gannouji, R.; Moraes, B.; Mota, D.F.; Polarski, D.; Tsujikawa, S.; Winther, H.A. Chameleon dark energy models with characteristic signatures. Phys. Rev. D 2010, 82, 124006. [Google Scholar] [CrossRef] [Green Version]
- Avilés, A.; Cervantes-Cota, J.L. Dark matter from dark energy-baryonic matter couplings. Phys. Rev. D 2011, 83, 023510. [Google Scholar] [CrossRef] [Green Version]
- Khoury, J.; Weltman, A. Chameleon cosmology. Phys. Rev. D 2004, 69, 044026. [Google Scholar] [CrossRef]
- Kumar, S.; Nunes, R.C. Echo of interactions in the dark sector. Phys. Rev. D 2017, 96, 103511. [Google Scholar] [CrossRef] [Green Version]
- Di Valentino, E.; Melchiorri, A.; Mena, O. Can interacting dark energy solve the H0 tension? Phys. Rev. D 2017, 96, 043503. [Google Scholar] [CrossRef] [Green Version]
- An, R.; Feng, C.; Wang, B. Relieving the tension between weak lensing and cosmic microwave background with interacting dark matter and dark energy models. J. Cosmol. Astropart. Phys. 2018, 2018, 038. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Mukherjee, A.; Di Valentino, E.; Pan, S. Interacting dark energy with time varying equation of state and the H0 tension. Phys. Rev. D 2018, 98, 123527. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Nunes, R.C.; Yadav, S.K. Dark sector interaction: A remedy of the tensions between CMB and LSS data. Eur. Phys. J. C 2019, 79, 576. [Google Scholar] [CrossRef]
- Pan, S.; Yang, W.; Singha, C.; Saridakis, E.N. Observational constraints on sign-changeable interaction models and alleviation of the H0 tension. Phys. Rev. D 2019, 100, 083539. [Google Scholar] [CrossRef] [Green Version]
- Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S. Interacting dark energy in the early 2020s: A promising solution to the H0 and cosmic shear tensions. Phys. Dark Universe 2020, 30, 100666. [Google Scholar] [CrossRef]
- Benoit, A.; Ade, P.; Amblard, A.; Ansari, R.; Aubourg, E.; Bargot, S.; Bartlett, J.G.; Bhatia, R.S.; Blanchard, A.; Bock, J.J.; et al. Cosmological constraints from Archeops. Astro. Astrophys. 2003, 399, L25–L30. [Google Scholar] [CrossRef]
- Particle Data Group. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Zaroubi, S. The Epoch of Reionization. In The First Galaxies; Astrophysics and Space Science Library; Wiklind, T., Mobasher, B., Bromm, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 396, p. 45. [Google Scholar]
- Bromm, V.; Yoshida, N.; Hernquist, L.; McKee, C.F. The formation of the first stars and galaxies. Nature 2009, 459, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Bromm, V.; Coppi, P.S.; Larson, R.B. The Formation of the First Stars. I. The Primordial Star-forming Cloud. Astrophys. J. 2002, 564, 23–51. [Google Scholar] [CrossRef]
- Nunes, R.C.; Pacucci, F. Effects of the Hubble parameter on the cosmic growth of the first quasars. Mon. Not. R. Astron. Soc. 2020, 496, 888–893. [Google Scholar] [CrossRef]
- Bolotin, Y.L.; Kostenko, A.; Lemets, O.A.; Yerokhin, D.A. Cosmological evolution with interaction between dark energy and dark matter. Int. J. Mod. Phys. D 2015, 24, 1530007. [Google Scholar] [CrossRef] [Green Version]
- Ryan, J.; Doshi, S.; Ratra, B. Constraints on dark energy dynamics and spatial curvature from Hubble parameter and baryon acoustic oscillation data. Mon. Not. R. Astron. Soc. 2018, 480, 759–767. [Google Scholar] [CrossRef] [Green Version]
- Ryan, J.; Chen, Y.; Ratra, B. Baryon acoustic oscillation, Hubble parameter, and angular size measurement constraints on the Hubble constant, dark energy dynamics, and spatial curvature. Mon. Not. R. Astron. Soc. 2019, 488, 3844–3856. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Ryan, J.; Ratra, B. Cosmological constraints from HII starburst galaxy apparent magnitude and other cosmological measurements. Mon. Not. R. Astron. Soc. 2020, 497, 3191–3203. [Google Scholar] [CrossRef]
- Cao, S.; Ryan, J.; Khadka, N.; Ratra, B. Cosmological constraints from higher-redshift gamma-ray burst, H II starburst galaxy, and quasar (and other) data. Mon. Not. R. Astron. Soc. 2021, 501, 1520–1538. [Google Scholar] [CrossRef]
- Cao, S.; Ryan, J.; Ratra, B. Using Pantheon and DES supernova, baryon acoustic oscillation, and Hubble parameter data to constrain the Hubble constant, dark energy dynamics, and spatial curvature. arXiv 2021, arXiv:2101.08817. [Google Scholar]
- Moresco, M.; Cimatti, A.; Jimenez, R.; Pozzetti, L.; Zamorani, G.; Bolzonella, M.; Dunlop, J.; Lamareille, F.; Mignoli, M.; Pearce, H.; et al. Improved constraints on the expansion rate of the Universe up to z ~ 1.1 from the spectroscopic evolution of cosmic chronometers. J. Cosmol. Astropart. Phys. 2012, 8, 006. [Google Scholar] [CrossRef] [Green Version]
- Moresco, M.; Pozzetti, L.; Cimatti, A.; Jimenez, R.; Maraston, C.; Verde, L.; Thomas, D.; Citro, A.; Tojeiro, R.; Wilkinson, D. A 6% measurement of the Hubble parameter at z~0.45: Direct evidence of the epoch of cosmic re-acceleration. J. Cosmol. Astropart. Phys. 2016, 5, 014. [Google Scholar] [CrossRef] [Green Version]
- Moresco, M.; Jimenez, R.; Verde, L.; Pozzetti, L.; Cimatti, A.; Citro, A. Setting the Stage for Cosmic Chronometers. I. Assessing the Impact of Young Stellar Populations on Hubble Parameter Measurements. Astrophys. J. 2018, 868, 84. [Google Scholar] [CrossRef] [Green Version]
- Moresco, M.; Jimenez, R.; Verde, L.; Cimatti, A.; Pozzetti, L. Setting the Stage for Cosmic Chronometers. II. Impact of Stellar Population Synthesis Models Systematics and Full Covariance Matrix. Astrophys. J. 2020, 898, 82. [Google Scholar] [CrossRef]
- Alam, S.; Ata, M.; Bailey, S.; Beutler, F.; Bizyaev, D.; Blazek, J.A.; Bolton, A.S.; Brownstein, J.R.; Burden, A.; Chuang, C.H.; et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 2017, 470, 2617–2652. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.L.; Duan, X.W.; Meng, X.L.; Zhang, T.J. Cosmological model-independent test of ΛCDM with two-point diagnostic by the observational Hubble parameter data. Eur. Phys. J. C 2018, 78, 313. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.L.; Teng, H.Y.; Wan, H.Y.; Yu, H.R.; Zhang, T.J. Testing backreaction effects with observational Hubble parameter data. Eur. Phys. J. C 2018, 78, 170. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.L.; Li, S.; Yu, H.R.; Zhang, T.J. Statefinder diagnostic and constraints on the Palatini f(R) gravity theories. Res. Astron. Astrophys. 2018, 18, 026. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhang, H.; Yuan, S.; Liu, S.; Zhang, T.J.; Sun, Y.C. Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven. Res. Astron. Astrophys. 2014, 14, 1221–1233. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, R.; Verde, L.; Treu, T.; Stern, D. Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the CMB. Astrophys. J. 2003, 593, 622–629. [Google Scholar] [CrossRef]
- Simon, J.; Verde, L.; Jimenez, R. Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D Part. Fields, Gravit. Cosmol. 2005, 71, 123001. [Google Scholar] [CrossRef] [Green Version]
- Moresco, M.; Verde, L.; Pozzetti, L.; Jimenez, R.; Cimatti, A. New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to z ~1.75. J. Cosmol. Astropart. Phys. 2012, 2012, 053. [Google Scholar] [CrossRef] [Green Version]
- Gaztañaga, E.; Cabré, A.; Hui, L. Clustering of luminous red galaxies - IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z). Mon. Not. R. Astron. Soc. 2009, 399, 1663–1680. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Cuesta, A.J.; Padmanabhan, N.; Eisenstein, D.J.; McBride, C.K. Measuring DA and H at z = 0.35 from the SDSS DR7 LRGs using baryon acoustic oscillations. Mon. Not. R. Astron. Soc. 2013, 431, 2834–2860. [Google Scholar] [CrossRef] [Green Version]
- Blake, C.; Brough, S.; Colless, M.; Contreras, C.; Couch, W.; Croom, S.; Croton, D.; Davis, T.M.; Drinkwater, M.J.; Forster, K.; et al. The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1. Mon. Not. R. Astron. Soc. 2012, 425, 405–414. [Google Scholar]
- Ratsimbazafy, A.L.; Loubser, S.I.; Crawford, S.M.; Cress, C.M.; Bassett, B.A.; Nichol, R.C.; Väisänen, P. Age-dating luminous red galaxies observed with the Southern African Large Telescope. Mon. Not. R. Astron. Soc. 2017, 467, 3239–3254. [Google Scholar] [CrossRef] [Green Version]
- Stern, D.; Jimenez, R.; Verde, L.; Kamionkowski, M.; Stanford, S.A. Cosmic chronometers: Constraining the equation of state of dark energy. I: H(z) measurements. J. Cosmol. Astropart. Phys. 2010, 2010, 8. [Google Scholar] [CrossRef] [Green Version]
- Samushia, L.; Reid, B.A.; White, M.; Percival, W.J.; Cuesta, A.J.; Lombriser, L.; Manera, M.; Nichol, R.C.; Schneider, D.P.; Bizyaev, D.; et al. The clustering of galaxies in the SDSS-III DR9 baryon oscillation spectroscopic survey: Testing deviations from Λ and general relativity using anisotropic clustering of galaxies. Mon. Not. R. Astron. Soc. 2013, 429, 1514–1528. [Google Scholar] [CrossRef]
- Moresco, M. Raising the bar: New constraints on the Hubble parameter with cosmic chronometers at z ∼ 2. Mon. Not. R. Astron. Soc. Lett. 2015, 450, L16–L20. [Google Scholar] [CrossRef] [Green Version]
- Delubac, T.; Bautista, J.E.; Rich, J.; Kirkby, D.; Bailey, S.; Font-Ribera, A.; Slosar, A.; Lee, K.G.; Pieri, M.M.; Hamilton, J.C.; et al. Baryon Acoustic Oscillations in the Lyα forest of BOSS DR11 quasars. Astron. Astrophys. 2015, 574, A59. [Google Scholar] [CrossRef] [Green Version]
- Font-Ribera, A.; Kirkby, D.; Miralda-Escudé, J.; Ross, N.P.; Slosar, A.; Rich, J.; Aubourg, É.; Bailey, S.; Bhardwaj, V.; Bautista, J.; et al. Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations. J. Cosmol. Astropart. Phys. 2014, 2014, 027. [Google Scholar] [CrossRef]
- Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 2013, 125, 306. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A. GetDist: A Python package for analysing Monte Carlo samples. arXiv 2019, arXiv:astro-ph.IM/1910.13970, arXiv:astro–phIM/191013970. [Google Scholar]
- Friaça, A.C.S.; Alcaniz, J.S.; Lima, J.A.S. An old quasar in a young dark energy-dominated universe? Mon. Not. R. Astron. Soc. 2005, 362, 1295–1300. [Google Scholar] [CrossRef] [Green Version]
z | a | Method b | Ref. |
---|---|---|---|
I | Zhang et al. (2014)-[47] | ||
I | Jimenez et al. (2003)-[48] | ||
I | Zhang et al. (2014)-[47] | ||
I | Simon et al. (2005)-[49] | ||
I | Moresco et al. (2012)-[50] | ||
I | Moresco et al. (2012)-[50] | ||
I | Zhang et al. (2014)-[47] | ||
II | Gaztaaga et al. (2009)-[51] | ||
I | Simon et al. (2005)-[49] | ||
I | Zhang et al. (2014)-[47] | ||
II | Xu et al. (2013)-[52] | ||
I | Moresco et al. (2012)-[50] | ||
I | Moresco et al. (2016)-[40] | ||
I | Simon et al. (2005)-[49] | ||
I | Moresco et al. (2016)-[40] | ||
I | Moresco et al. (2016)-[40] | ||
II | Gaztaaga et al. (2009)-[51] | ||
II | Blake et al. (2012)-[53] | ||
I | Moresco et al. (2016)-[40] | ||
I | Ratsimbazafy et al. (2017)-[54] | ||
I | Moresco et al. (2016)-[40] | ||
I | Stern et al. (2010)-[55] | ||
II | Samushia et al. (2013)-[56] | ||
I | Moresco et al. (2012)-[50] | ||
II | Blake et al. (2012)-[53] | ||
I | Moresco et al. (2012)-[50] | ||
II | Blake et al. (2012)-[53] | ||
I | Moresco et al. (2012)-[50] | ||
I | Moresco et al. (2012)-[50] | ||
I | Stern et al. (2010)-[55] | ||
I | Simon et al. (2005)-[49] | ||
I | Moresco et al. (2012)-[50] | ||
I | Simon et al. (2005)-[49] | ||
I | Moresco (2015)-[57] | ||
I | Simon et al. (2005)-[49] | ||
I | Simon et al. (2005)-[49] | ||
I | Simon et al. (2005)-[49] | ||
I | Moresco (2015)-[57] | ||
II | Delubac et al. (2015)-[58] | ||
II | Font-Ribera et al. (2014)-[59] |
Model | Data Set | a | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | OHD | – | – | 0.020 | 71.34 | 1.210 | 0.333 | – | 15.85 | 35 | 0.45 | 25.85 | 34.30 | 0.35 | 2.04 | |
+ BAO | 0.0010 | 0.0742 | 0.171 | 66.64 | 0.907 | 0.472 | – | 17.85 | 36 | 0.50 | 29.85 | 40.27 | 1.43 | 3.16 | ||
Model 2 | OHD | – | – | 0.383 | 76.39 | – | – | 0.167 | 17.50 | 36 | 0.49 | 25.50 | 32.26 | 0.00 | 0.00 | |
+ BAO | 0.2598 | 0.0064 | 0.579 | 67.90 | – | – | 0.206 | 18.42 | 37 | 0.50 | 28.42 | 37.11 | 0.00 | 0.00 | ||
Model 3 | OHD | – | – | 0.157 | 70.48 | – | – | 0.112 | 18.47 | 36 | 0.51 | 26.47 | 33.23 | 0.97 | 0.97 | |
+ BAO | 0.1330 | 0.0195 | 0.361 | 65.12 | – | – | 19.65 | 37 | 0.53 | 29.65 | 38.34 | 1.23 | 1.23 |
Model | Data Set | a | |||||||
---|---|---|---|---|---|---|---|---|---|
Model 1 | OHD | – | – | – | |||||
+ BAO | – | ||||||||
Model 2 | OHD | – | – | – | – | ||||
+ BAO | – | – | |||||||
Model 3 | OHD | – | – | – | – | ||||
+ BAO | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, S.; Zhang, T.-J.; Wang, X.; Zhang, T. Cosmological Constraints on the Coupling Model from Observational Hubble Parameter and Baryon Acoustic Oscillation Measurements. Universe 2021, 7, 57. https://doi.org/10.3390/universe7030057
Cao S, Zhang T-J, Wang X, Zhang T. Cosmological Constraints on the Coupling Model from Observational Hubble Parameter and Baryon Acoustic Oscillation Measurements. Universe. 2021; 7(3):57. https://doi.org/10.3390/universe7030057
Chicago/Turabian StyleCao, Shulei, Tong-Jie Zhang, Xinya Wang, and Tingting Zhang. 2021. "Cosmological Constraints on the Coupling Model from Observational Hubble Parameter and Baryon Acoustic Oscillation Measurements" Universe 7, no. 3: 57. https://doi.org/10.3390/universe7030057
APA StyleCao, S., Zhang, T. -J., Wang, X., & Zhang, T. (2021). Cosmological Constraints on the Coupling Model from Observational Hubble Parameter and Baryon Acoustic Oscillation Measurements. Universe, 7(3), 57. https://doi.org/10.3390/universe7030057