Fast Radio Bursts

A special issue of Universe (ISSN 2218-1997). This special issue belongs to the section "Space Science".

Deadline for manuscript submissions: closed (30 September 2021) | Viewed by 25657

Special Issue Editors


E-Mail Website
Guest Editor
INAF – Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (CA), Italy
Interests: neutron stars; pulsars; relativistic binaries; magnetars; fast radio bursts

E-Mail Website
Guest Editor
1. Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetsky pr. 13, Moscow 119234, Russia
2. Department of Physics, National Research University ‘Higher School of Economics’, Myasnitskaya str. 20, Moscow 101000, Russia
Interests: neutron stars; black holes; binary systems; pulsars
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fast radio bursts (FRBs) are enigmatic transients that appear several thousand times a day in the sky, yet we still are not sure about their origin. Important observational results related to this phenomenon have been obtained regularly since 2013 thanks to old and new instruments such as Parkes, CHIME, ASKAP, UTMOST, FAST, and SRT. These observational results have also been accompanied by many theoretical studies. Recent discoveries of periodicity in activity periods of several repeating FRBs and of simultaneous X/gamma-ray and FRB-like radio bursts from a Galactic magnetar shed new light on properties of sources, but also pose new questions.

FRBs are of great interest by themselves, as they have very spectacular observational appearance, and we still do not know the exact mechanism of emission of these sources, which is a topic of intensive discussion. However, these transients are proposed as important “instruments” in cosmology, extragalactic studies, and fundamental physics. In particular, FRBs are used to probe intergalactic medium and outskirts of galaxies and to put constraints on fundamental parameters.

The purpose of this Special Issue is to present contributions that describe recent observational and theoretical results on FRBs.

Papers on multi-messenger observations, usage of FRBs as probes of the Universe, emission mechanisms, and population studies of these transients are especially welcome.


Dr. Marta Burgay
Prof. Dr. Sergei Popov
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Universe is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Fast radio bursts
  • Magnetar radio emission
  • Radio astronomy
  • Multi-messenger observations
  • Transient radio sources

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

33 pages, 13439 KiB  
Review
The Low Frequency Perspective on Fast Radio Bursts
by Maura Pilia
Universe 2022, 8(1), 9; https://doi.org/10.3390/universe8010009 - 24 Dec 2021
Cited by 6 | Viewed by 3608
Abstract
Fast radio bursts (FRBs) represent one of the most exciting astrophysical discoveries of the recent past. The study of their low-frequency emission, which was only effectively picked up about ten years after their discovery, has helped shape the field thanks to some of [...] Read more.
Fast radio bursts (FRBs) represent one of the most exciting astrophysical discoveries of the recent past. The study of their low-frequency emission, which was only effectively picked up about ten years after their discovery, has helped shape the field thanks to some of the most important detections to date. Observations between 400 and 800 MHz, carried out by the CHIME/FRB telescope, in particular, have led to the detection of ∼500 FRBs in little more than 1 year and, among them, ∼20 repeating sources. Detections at low frequencies have uncovered a nearby population that we can study in detail via continuous monitoring and targeted campaigns. The latest, most important discoveries include: periodicity, both at the days level in repeaters and at the millisecond level in apparently non-repeating sources; the detection of an FRB-like burst from a galactic magnetar; and the localisation of an FRB inside a globular cluster in a nearby galaxy. The systematic study of the population at low frequencies is important for the characterisation of the environment surrounding the FRBs and, at a global level, to understand the environment of the local universe. This review is intended to give an overview of the efforts leading to the current rich variety of low-frequency studies and to put into a common context the results achieved in order to trace a possible roadmap for future progress in the field. Full article
(This article belongs to the Special Issue Fast Radio Bursts)
Show Figures

Figure 1

34 pages, 4404 KiB  
Review
A Decade and a Half of Fast Radio Burst Observations
by Manisha Caleb and Evan Keane
Universe 2021, 7(11), 453; https://doi.org/10.3390/universe7110453 - 20 Nov 2021
Cited by 27 | Viewed by 4155
Abstract
Fast radio bursts (FRBs) have a story which has been told and retold many times over the past few years as they have sparked excitement and controversy since their pioneering discovery in 2007. The FRB class encompasses a number of microsecond- to millisecond-duration [...] Read more.
Fast radio bursts (FRBs) have a story which has been told and retold many times over the past few years as they have sparked excitement and controversy since their pioneering discovery in 2007. The FRB class encompasses a number of microsecond- to millisecond-duration pulses occurring at Galactic to cosmological distances with energies spanning about 8 orders of magnitude. While most FRBs have been observed as singular events, a small fraction of them have been observed to repeat over various timescales leading to an apparent dichotomy in the population. ∼50 unique progenitor theories have been proposed, but no consensus has emerged for their origin(s). However, with the discovery of an FRB-like pulse from the Galactic magnetar SGR J1935+2154, magnetar engine models are the current leading theory. Overall, FRB pulses exhibit unique characteristics allowing us to probe line-of-sight magnetic field strengths, inhomogeneities in the intergalactic/interstellar media, and plasma turbulence through an assortment of extragalactic and cosmological propagation effects. Consequently, they are formidable tools to study the Universe. This review follows the progress of the field between 2007 and 2020 and presents the science highlights of the radio observations. Full article
(This article belongs to the Special Issue Fast Radio Bursts)
Show Figures

Figure 1

33 pages, 8719 KiB  
Review
Probing the Universe with Fast Radio Bursts
by Shivani Bhandari and Chris Flynn
Universe 2021, 7(4), 85; https://doi.org/10.3390/universe7040085 - 1 Apr 2021
Cited by 20 | Viewed by 6365
Abstract
Fast Radio Bursts (FRBs) represent a novel tool for probing the properties of the universe at cosmological distances. The dispersion measures of FRBs, combined with the redshifts of their host galaxies, has very recently yielded a direct measurement of the baryon content of [...] Read more.
Fast Radio Bursts (FRBs) represent a novel tool for probing the properties of the universe at cosmological distances. The dispersion measures of FRBs, combined with the redshifts of their host galaxies, has very recently yielded a direct measurement of the baryon content of the universe, and has the potential to directly constrain the location of the “missing baryons”. The first results are consistent with the expectations of ΛCDM for the cosmic density of baryons, and have provided the first constraints on the properties of the very diffuse intergalactic medium (IGM) and circumgalactic medium (CGM) around galaxies. FRBs are the only known extragalactic sources that are compact enough to exhibit diffractive scintillation in addition to showing exponential tails which are typical of scattering in turbulent media. This will allow us to probe the turbulent properties of the circumburst medium, the host galaxy ISM/halo, and intervening halos along the path, as well as the IGM. Measurement of the Hubble constant and the dark energy parameter w can be made with FRBs, but require very large samples of localised FRBs (>103) to be effective on their own—they are best combined with other independent surveys to improve the constraints. Ionisation events, such as for He ii, leave a signature in the dispersion measure—redshift relation, and if FRBs exist prior to these times, they can be used to probe the reionisation era, although more than 103 localised FRBs are required. Full article
(This article belongs to the Special Issue Fast Radio Bursts)
Show Figures

Figure 1

42 pages, 1383 KiB  
Review
Multiwavelength Observations of Fast Radio Bursts
by Luciano Nicastro, Cristiano Guidorzi, Eliana Palazzi, Luca Zampieri, Massimo Turatto and Angela Gardini
Universe 2021, 7(3), 76; https://doi.org/10.3390/universe7030076 - 23 Mar 2021
Cited by 38 | Viewed by 5231
Abstract
The origin and phenomenology of the Fast Radio Burst (FRB) remains unknown despite more than a decade of efforts. Though several models have been proposed to explain the observed data, none is able to explain alone the variety of events so far recorded. [...] Read more.
The origin and phenomenology of the Fast Radio Burst (FRB) remains unknown despite more than a decade of efforts. Though several models have been proposed to explain the observed data, none is able to explain alone the variety of events so far recorded. The leading models consider magnetars as potential FRB sources. The recent detection of FRBs from the galactic magnetar SGR J1935+2154 seems to support them. Still, emission duration and energetic budget challenge all these models. Like for other classes of objects initially detected in a single band, it appeared clear that any solution to the FRB enigma could only come from a coordinated observational and theoretical effort in an as wide as possible energy band. In particular, the detection and localisation of optical/NIR or/and high-energy counterparts seemed an unavoidable starting point that could shed light on the FRB physics. Multiwavelength (MWL) search campaigns were conducted for several FRBs, in particular for repeaters. Here we summarize the observational and theoretical results and the perspectives in view of the several new sources accurately localised that will likely be identified by various radio facilities worldwide. We conclude that more dedicated MWL campaigns sensitive to the millisecond–minute timescale transients are needed to address the various aspects involved in the identification of FRB counterparts. Dedicated instrumentation could be one of the key points in this respect. In the optical/NIR band, fast photometry looks to be the only viable strategy. Additionally, small/medium size radiotelescopes co-pointing higher energies telescopes look a very interesting and cheap complementary observational strategy. Full article
(This article belongs to the Special Issue Fast Radio Bursts)
Show Figures

Figure 1

30 pages, 400 KiB  
Review
Emission Mechanisms of Fast Radio Bursts
by Yuri Lyubarsky
Universe 2021, 7(3), 56; https://doi.org/10.3390/universe7030056 - 4 Mar 2021
Cited by 77 | Viewed by 4234
Abstract
Fast radio bursts (FRBs) are recently discovered mysterious single pulses of radio emission, mostly coming from cosmological distances (∼1 Gpc). Their short duration, ∼1 ms, and large luminosity demonstrate coherent emission. I review the basic physics of coherent emission mechanisms proposed for FRBs. [...] Read more.
Fast radio bursts (FRBs) are recently discovered mysterious single pulses of radio emission, mostly coming from cosmological distances (∼1 Gpc). Their short duration, ∼1 ms, and large luminosity demonstrate coherent emission. I review the basic physics of coherent emission mechanisms proposed for FRBs. In particular, I discuss the curvature emission of bunches, the synchrotron maser, and the emission of radio waves by variable currents during magnetic reconnection. Special attention is paid to magnetar flares as the most promising sources of FRBs. Non-linear effects are outlined that could place bounds on the power of the outgoing radiation. Full article
(This article belongs to the Special Issue Fast Radio Bursts)
Back to TopTop