Light and Airy: A Simple Solution for Relativistic Quantum Acceleration Radiation
Abstract
:1. Introduction
2. Reality, Acceleration, and Inertia
3. Trajectory Motion
4. Energy Flux and Total Energy
4.1. Energy Flux
4.2. Total Energy
4.3. Negative Energy Flux
5. Particle Spectrum
6. Analytic Time Evolution
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Necessity of Negativity
Appendix B. Zero-Energy Resonance
Appendix C. Entanglement Entropy and the Speed of Light
References
- Moore, G.T. Quantum Theory of the Electromagnetic Field in a Variable-Length One-Dimensional Cavity. J. Math. Phys. 1970, 11, 2679–2691. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum Field Theory in Curved Space-Time. Phys. Rept. 1975, 19, 295–357. [Google Scholar] [CrossRef]
- Fulling, S.A.; Davies, P.C.W. Radiation from a moving mirror in two dimensional space-time: Conformal anomaly. Proc. R. Soc. Lond. A Math. Phys. Sci. 1976, 348, 393–414. [Google Scholar]
- Davies, P.; Fulling, S. Radiation from Moving Mirrors and from Black Holes. Proc. R. Soc. Lond. A Math. Phys. Sci. 1977, A356, 237–257. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on black hole evaporation. Phys. Rev. D 1976, 14, 870. [Google Scholar] [CrossRef] [Green Version]
- Johansson, J.R.; Johansson, G.; Wilson, C.M.; Nori, F. Dynamical Casimir Effect in a Superconducting Coplanar Waveguide. Phys. Rev. Lett. 2009, 103, 147003. [Google Scholar] [CrossRef] [Green Version]
- Johansson, J.R.; Johansson, G.; Wilson, C.M.; Nori, F. Dynamical Casimir effect in superconducting microwave circuits. Phys. Rev. A 2010, 82, 052509. [Google Scholar] [CrossRef] [Green Version]
- Johansson, J.R.; Johansson, G.; Wilson, C.M.; Delsing, P.; Nori, F. Nonclassical microwave radiation from the dynamical Casimir effect. Phys. Rev. A 2013, 87, 043804. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.M.; Johansson, G.; Pourkabirian, A.; Simoen, M.; Johansson, J.R.; Duty, T.; Nori, F.; Delsing, P. Observation of the dynamical Casimir effect in a superconducting circuit. Nature 2011, 479, 376–379. [Google Scholar] [CrossRef]
- Nation, P.D.; Johansson, J.R.; Blencowe, M.P.; Nori, F. Stimulating Uncertainty: Amplifying the Quantum Vacuum with Superconducting Circuits. Rev. Mod. Phys. 2012, 84, 1. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Walker, W.R.; Davies, P.C.W. An exactly soluble moving-mirror problem. J. Phys. A Math. Gen. 1982, 15, L477–L480. [Google Scholar] [CrossRef]
- Good, M.R.R.; Anderson, P.R.; Evans, C.R. Mirror Reflections of a Black Hole. Phys. Rev. D 2016, 94, 065010. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.; Ong, Y.C. Particle spectrum of the Reissner–Nordström black hole. Eur. Phys. J. C 2020, 80, 1169. [Google Scholar] [CrossRef]
- Good, M.R.; Foo, J.; Linder, E.V. Accelerating boundary analog of a Kerr black hole. arXiv 2020, arXiv:2006.01349. [Google Scholar]
- Good, M.R.; Zhakenuly, A.; Linder, E.V. Mirror at the edge of the universe: Reflections on an accelerated boundary correspondence with de Sitter cosmology. Phys. Rev. D 2020, 102, 045020. [Google Scholar] [CrossRef]
- Liberati, S.; Rothman, T.; Sonego, S. Nonthermal nature of incipient extremal black holes. Phys. Rev. D 2000, 62, 024005. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R. Extremal Hawking radiation. Phys. Rev. D 2020, 101, 104050. [Google Scholar] [CrossRef]
- Rothman, T. Nonthermal nature of extremal Kerr black holes. Phys. Lett. A 2000, 273, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Foo, J.; Good, M.R. Hawking radiation particle spectrum of a Kerr-Newman black hole. arXiv 2020, arXiv:2006.09681. [Google Scholar]
- Good, M.R.R.; Yelshibekov, K.; Ong, Y.C. On Horizonless Temperature with an Accelerating Mirror. JHEP 2017, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.; Ong, Y.C.; Myrzakul, A.; Yelshibekov, K. Information preservation for null shell collapse: A moving mirror model. Gen. Rel. Grav. 2019, 51, 92. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R. Spacetime Continuity and Quantum Information Loss. Universe 2018, 4, 122. [Google Scholar] [CrossRef] [Green Version]
- Myrzakul, A.; Good, M.R. Unitary evaporation via modified Regge-Wheeler coordinate. In Proceedings of the 15th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, Rome, Italy, 1–7 July 2018. [Google Scholar]
- Good, M.R.R.; Ong, Y.C. Signatures of Energy Flux in Particle Production: A Black Hole Birth Cry and Death Gasp. JHEP 2015, 7, 145. [Google Scholar] [CrossRef]
- Good, M.R.R. Reflecting at the Speed of Light; World Scientific: Singapore, 2017; pp. 113–116. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.; Linder, E.V.; Wilczek, F. Moving mirror model for quasithermal radiation fields. Phys. Rev. D 2020, 101, 025012. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Linder, E.V.; Wilczek, F. Finite thermal particle creation of Casimir light. Mod. Phys. Lett. A 2020, 35, 2040006. [Google Scholar] [CrossRef]
- Good, M.R.R.; Linder, E.V. Slicing the Vacuum: New Accelerating Mirror Solutions of the Dynamical Casimir Effect. Phys. Rev. D 2017, 96, 125010. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Anderson, P.R.; Evans, C.R. Time dependence of particle creation from accelerating mirrors. Phys. Rev. D 2013, 88, 025023. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.; Linder, E.V. Eternal and evanescent black holes and accelerating mirror analogs. Phys. Rev. D 2018, 97, 065006. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.; Linder, E.V. Finite Energy but Infinite Entropy Production from Moving Mirrors. Phys. Rev. D 2019, 99, 025009. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, O. Exact Treatment of Interacting Bosons in Rotating Systems and Lattices. Ph.D. Thesis, Aarhus University, Aarhus, Denmark, 2012. [Google Scholar]
- Birrell, N.; Davies, P. Quantum Fields in Curved Space; Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press: Cambridge, UK, 1984. [Google Scholar] [CrossRef]
- Carlitz, R.D.; Willey, R.S. Reflections on moving mirrors. Phys. Rev. D 1987, 36, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- Walker, W.R. Particle and energy creation by moving mirrors. Phys. Rev. D 1985, 31, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Ford, L.; Roman, T.A. The Quantum interest conjecture. Phys. Rev. D 1999, 60, 104018. [Google Scholar] [CrossRef] [Green Version]
- Ford, L.; Roman, T.A. Averaged energy conditions and quantum inequalities. Phys. Rev. D 1995, 51, 4277–4286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Good, M.; Abdikamalov, E. Radiation from an Inertial Mirror Horizon. Universe 2020, 6, 131. [Google Scholar] [CrossRef]
- Nikishov, A.I. On vacuum vacuum amplitude and Bogolyubov coefficients. J. Exp. Theor. Phys. 2003, 96, 180–192. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R. On Spin-Statistics and Bogoliubov Transformations in Flat Spacetime With Acceleration Conditions. Int. J. Mod. Phys. A 2013, 28, 1350008. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, A.; Navarro-Salas, J. Modeling Black Hole Evaporation; Imperial College Press: London, UK, 2005. [Google Scholar]
- Bianchi, E.; Smerlak, M. Entanglement entropy and negative energy in two dimensions. Phys. Rev. D 2014, 90, 041904. [Google Scholar] [CrossRef] [Green Version]
- Senn, P. Threshold anomalies in one-dimensional scattering. Am. J. Phys. 1988, 56, 916–921. [Google Scholar] [CrossRef]
- Myrzakul, A.; Xiong, C.; Good, M.R.R. Relativistic quantum information as radiation reaction: Entanglement entropy and self-force of a moving mirror analog to the CGHS black hole. arXiv 2021, arXiv:2101.08139. [Google Scholar]
- Fitkevich, M.; Levkov, D.; Zenkevich, Y. Dilaton gravity with a boundary: From unitarity to black hole evaporation. arXiv 2020, arXiv:2004.13745. [Google Scholar] [CrossRef]
- Chen, P.; Yeom, D.H. Entropy evolution of moving mirrors and the information loss problem. Phys. Rev. D 2017, 96, 025016. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Good, M.R.R.; Linder, E.V. Light and Airy: A Simple Solution for Relativistic Quantum Acceleration Radiation. Universe 2021, 7, 60. https://doi.org/10.3390/universe7030060
Good MRR, Linder EV. Light and Airy: A Simple Solution for Relativistic Quantum Acceleration Radiation. Universe. 2021; 7(3):60. https://doi.org/10.3390/universe7030060
Chicago/Turabian StyleGood, Michael R. R., and Eric V. Linder. 2021. "Light and Airy: A Simple Solution for Relativistic Quantum Acceleration Radiation" Universe 7, no. 3: 60. https://doi.org/10.3390/universe7030060
APA StyleGood, M. R. R., & Linder, E. V. (2021). Light and Airy: A Simple Solution for Relativistic Quantum Acceleration Radiation. Universe, 7(3), 60. https://doi.org/10.3390/universe7030060