What Is Matter According to Particle Physics, and Why Try to Observe Its Creation in a Lab?
Abstract
:1. Introduction
⋆ Is it possible to observe the creation of matter particles in the laboratory?
2. Matter and Antimatter in Particle Physics
2.1. General Features
2.2. Waves, Relativity, and Charge
2.3. Matter Particles
⋆ have spin 1/2 and are subject to Fermi-Dirac statistics
⋆ These laws apply to all known interactions and they are part of the current definition of what matter particles are.
- Experimental tests of L are less easy than those of B, in particular because of the elusive nature of neutrinos, but they are rather as important, as we will see below.
- There is an interesting theoretical question, about the origin in the known universe of the excess of baryons with respect to the number of anti-baryons.
3. Are Neutrinos Particles of Matter, or Are They Not?
3.1. Majorana’s Hypothesis
3.2. The Structure of Weak Interactions
3.3. Majorana Neutrinos and Weak Interactions
- the possibility that the neutrino and antineutrino coincide in the rest-frame—i.e., that Majorana’s hypothesis is correct—does not formally contradict what we know;
- most of the empirical knowledge we have about neutrinos concerns only the ultra-relativistic limit instead, and the characteristic manifestations of Majorana hypothesis are suppressed in this limit.
4. Status of Baryon and Lepton Number Conservation Laws
4.1. Neutrino Oscillations and the Evidence of Neutrino Masses
4.2. Global Symmetries in the Standard Model
4.3. Standard Model and Majorana Neutrinos
4.4. Theoretical Remarks
⋆ the structure of the standard model does not contradict and in fact revives Majorana’s hypothesis: neutrinos, sole among all matter particles, are likely to be their own antiparticles;
⋆ neutrino masses are expected to be very small, and their value can be regarded as a special observational window on the physics far beyond the standard model itself. (However, it should be noted of the item, as it stands it is horrible. e.g., if the couplings are small, it is possible to obtain small Majorana masses with lighter .)
5. Matter Creation in the Lab
⋆ a violation of the symmetry due to the net creation of two matter particles (electrons).
5.1. Historical Introduction
- the period of theoretical novelty, in which the hope of observing very large effects was highlighted by Furry and Majorana’s neutrinos were actively discussed by scientists such as Stueckelberg, Kemmer, Touschek, Pauli, Harish-Chandra, Michel, Yang, Tiomno, etc.;
- the period begun by the understanding of the () structure of weak interactions, where, on the other hand, there was an exaggeration in the opposite direction, and doubt was cast whether Majorana’s theory should be dismissed—more in Appendix A.4;
- the current period, where the stress shifted from the concept of Majorana’s neutrinos to the more precise one of Majorana neutrino masses, subsequently including their meaning in the context of the extensions of the standard model.
5.2. What We Know about the Relevant Majorana Neutrino Mass
the oscillations probe neither the phases of nor the mass of the lightest neutrino .
- In principle, by means of extremely precise measurements of the absolute neutrino mass (a parameter discussed in [122,123,124,125,126]) in the laboratory. Current experiments indicate eV at 90%, and the sensitivity will reach 200 meV in the near future [127]. The current limit directly translate into eV.
- From cosmology measurements that probe , as suggested in [128]. Even if they are based on a cosmological model that is conceptually complex and still under verification, the sensitivity of the most recent measurements is just as impressive: see, e.g., [129,130,131]. Proceeding as in [132,133], we get [150] meV at 1 [2], which translates into [40] meV.
6. Summary and Discussion
Funding
Acknowledgments
Conflicts of Interest
Appendix A. On Majorana Spinors
Appendix A.1. Illustration of the Usefulness of Majorana Representation
Hermiticity | + | − | + | + | + | + | − |
reality | − | − | − | − | + | − | − |
symmetry | − | + | − | − | + | − | + |
Appendix A.2. Dirac and Majorana Mass in One-Neutrino Transitions
- at the order , we can have admixtures with the “wrong type” of particles (antineutrinos rather than neutrinos or vice versa);
- the operators corresponding to the “sterile” states are completely absent.
Appendix A.3. Electron Creation and Parameter mee
Appendix A.4. A Premature Dismissal of Majorana’s Ideas
References
- Feynman, R.P. The reason for anti-particles. In Elementary Particles and the Laws of Physics, The 1986 Dirac Memorial Lectures; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Stueckelberg, E.C.G. La signification du temps propre en mécanique ondulatoire and Remarque à propos de la création de paires de particules en théorie de relativité. Helv. Phys. Acta 1941, 14, 321–322. (In French) [Google Scholar]
- Jackson, J.D.; Okun, L.B. Historical roots of gauge invariance. Rev. Mod. Phys. 2001, 73, 663. [Google Scholar] [CrossRef] [Green Version]
- Majorana, E. Teoria simmetrica dell’elettrone e del positrone. Nuovo Cim. 1937, 14, 171. (In Italian) [Google Scholar] [CrossRef]
- Dirac, P.A.M. The quantum theory of the electron. Proc. R. Soc. Lond. 1928, A117, 610. [Google Scholar]
- Dirac, P.A.M. The quantum theory of the electron. Part II. Proc. R. Soc. Lond. 1928, A118, 351. [Google Scholar]
- Dirac, P.A.M. Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. 1931, A133, 60. [Google Scholar]
- Gell-Mann, M. A schematic model of baryons and mesons. Phy. Lett. 1964, 8, 214. [Google Scholar] [CrossRef]
- Zweig, G. An SU(3) model for strong interaction symmetry and its breaking. CERN-TH-401 & 412 (1964). In Developments in the Quark Theory of Hadrons; Lichtenberg, D.B., Rosen, S.P., Eds.; Hadronic Press: Palm Harbor, FL, USA, 1980; Volume 1, pp. 1964–1978. [Google Scholar]
- Yang, C. Fermi’s beta-decay theory. Int. J. Mod. Phys. A 2012, 27, 1230005. [Google Scholar] [CrossRef]
- Wigner, E.P. Invariance in physical theory. Proc. Am. Philos. Soc. 1949, 93, 521. [Google Scholar] [PubMed]
- Marx, G. Die wechselwirkung der elementar-teilchen und die erhaltungssätze. Acta Phys. Hung. 1953, 3, 55. (In German) [Google Scholar] [CrossRef]
- Zel’dovich, Y.B. On the theory of elementary particles. Conservation of the nuclear charge and a possible new type of V-particles. Dokl. Akad. Nauk SSSR 86, 505 (1952). In Selected Works of Ya. B. Zel’dovich, Vol. II: Particles, Nuclei, and the Universe; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Konopinski, E.J.; Mahmoud, H.M. The universal Fermi interaction. Phys. Rev. 1953, 92, 1045. [Google Scholar] [CrossRef]
- Lee, T. History of the weak interactions. CERN Cour. 1987, 27, 7–12. [Google Scholar]
- Weyl, H. Elektron und gravitation. I. Zeitschrift für Physik 1929, 56, 330. (In German) [Google Scholar] [CrossRef]
- Stueckelberg, E.C.G. Über die methode der physikalischen naturberschreibung. Naturforschende Gesellschaf Basel Verhandlungen 1936, 47, 181. (In German) [Google Scholar]
- Racah, G. Sulla simmetria tra particelle e antiparticelle. Nuovo Cim. 1937, 14, 322. (In Italian) [Google Scholar] [CrossRef]
- Lee, T.; Yang, C. Question of parity conservation in weak interactions. Phys. Rev. 1956, 104, 254. [Google Scholar] [CrossRef]
- Wu, C.; Ambler, E.; Hayward, R.W.; Hoppes, D.D.; Hudson, R.P. Experimental test of parity conservation in β decay. Phys. Rev. 1957, 105, 1413. [Google Scholar] [CrossRef]
- Salam, A. On parity conservation and neutrino mass. Nuovo Cim. 1957, 5, 299. [Google Scholar] [CrossRef]
- Landau, L.D. On the conservation laws for weak interactions. Nucl. Phys. 1957, 3, 127. [Google Scholar] [CrossRef]
- Lee, T.; Yang, C. Parity nonconservation and a two component yheory of the neutrino. Phys. Rev. 1957, 105, 1671. [Google Scholar] [CrossRef] [Green Version]
- Goldhaber, M.; Grodzins, L.; Sunyar, A.W. Helicity of neutrinos. Phys. Rev. 1958, 109, 1015. [Google Scholar] [CrossRef] [Green Version]
- Sudarshan, E.C.G.; Marshak, R.E. The nature of the four-fermion interaction. Chirality invariance and the universal Fermi interaction. Phys. Rev. 1957, 109, 1860. [Google Scholar] [CrossRef]
- Feynman, R.P.; Gell-Mann, M. Theory of Fermi interaction. Phys. Rev. 1958, 109, 193. [Google Scholar] [CrossRef] [Green Version]
- Case, K.M. Reformulation of the Majorana theory of the neutrino. Phys. Rev. 1957, 107, 307. [Google Scholar] [CrossRef]
- Greuling, E.; Whitten, R.C. Lepton conservation and double-beta decay. Ann. Phys. 1960, 11, 510. [Google Scholar] [CrossRef]
- Shchepkin, M.G. On leptonic charge conservation. Yadernaya fizika 1973, 17, 820. (In Russian) [Google Scholar]
- Pontecorvo, B.M. Mesonium and anti-mesonium. Sov. Phys. JETP 1957, 6, 429. [Google Scholar]
- Bilenky, S.M.; Hošek, J.; Petcov, S.T. On oscillations of neutrinos with Dirac and Majorana masses. Phys. Lett. 1980, B94, 495. [Google Scholar] [CrossRef]
- Barbieri, R.; Ellis, J.R.; Galliard, M.K. Neutrino masses and oscillations in SU(5). Phys. Lett. 1980, B90, 249. [Google Scholar] [CrossRef] [Green Version]
- Doi, M.; Kotani, T.; Nishiura, H.; Okuda, K.; Takasugi, E. Neutrino masses and the double beta decay. Phys. Lett. 1981, B103, 219. [Google Scholar] [CrossRef]
- Li, L.F.; Wilczek, F. Physical processes involving Majorana neutrinos. Phys. Rev. 1982, D25, 143. [Google Scholar] [CrossRef]
- Schechter, J.; Valle, J.W.F. Neutrinoless double beta decay in SU(2)×U(1) theories. Phys. Rev. 1982, D25, 2951. [Google Scholar]
- Kayser, B.; Shrock, R.E. Distinguishing between Dirac and Majorana neutrinos in neutral current reactions. Phys. Lett. 1982, B112, 137. [Google Scholar] [CrossRef]
- Kayser, B. Majorana neutrinos and their electromagnetic properties. Phys. Rev. 1982, D26, 1662. [Google Scholar] [CrossRef] [Green Version]
- Dell’Oro, S.; Marcocci, S.; Viel, M.; Vissani, F. Neutrinoless double beta decay: 2015 review. Adv. High Energy Phys. 2016, 2016, 2162659. [Google Scholar] [CrossRef] [Green Version]
- Pontecorvo, B.M. Pages in the development of neutrino physics. Sov. Phys. Uspekhi 1983, 26, 1087. [Google Scholar] [CrossRef]
- Bilenky, S.M.; Blokhintseva, T.D.; Cifarelli, L.; Matveev, V.A.; Pokrovskaya, I.G.; Sapozhnikov, M.G. (Eds.) Bruno Pontecorvo Selected Scientific Works, 2nd ed.; SIF: Bologna, Italy, 2013. [Google Scholar]
- Fantini, G.; Rosso, A.G.; Vissani, F.; Zema, V. Introduction to the formalism of neutrino oscillations. Adv. Ser. Direct. High Energy Phys. 2018, 28, 37. [Google Scholar]
- Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; et al. Observation of electron neutrino appearance in a muon neutrino beam. Phys. Rev. Lett. 2014, 112, 061802. [Google Scholar] [CrossRef] [Green Version]
- Adamson, P.; Ader, C.; Andrews, M.; Anfimov, N.; Anghel, I.; Arms, K.; Arrieta-Diaz, E.; Aurisano, A.; Ayres, D.S.; Backhouse, C.; et al. First measurement of electron neutrino appearance in NOνA. Phys. Rev. Lett. 2016, 116, 151806. [Google Scholar] [CrossRef]
- Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Asada, T.; Autiero, D.; Dhahbi, A.B.; Badertscher, A.; et al. Evidence for νμ→ντ appearance in the CNGS neutrino beam with the OPERA experiment. Phys. Rev. 2014, D89, 051102. [Google Scholar]
- Abe, K.; Hayato, Y.; Iida, T.; Iyogi, K.; Kameda, J.; Koshio, Y.; Kozuma, Y.; Marti, L.; Miura, M.; Moriyama, S.; et al. Evidence for the appearance of atmospheric tau neutrinos in Super-Kamiokande. Phys. Rev. Lett. 2013, 110, 181802. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Measurement of atmospheric tau neutrino appearance with IceCube DeepCore. Phys. Rev. 2017, D99, 032007. [Google Scholar] [CrossRef] [Green Version]
- Pontecorvo, B.M. Inverse beta processes and nonconser-vation of lepton charge. Sov. Phys. JETP 1958, 7, 172. [Google Scholar]
- Gell-Mann, M.; Pais, A. Behavior of neutral particles under charge conjugation. Phys. Rev. 1955, 97, 1387. [Google Scholar] [CrossRef] [Green Version]
- Pontecorvo, B. Neutrino experiments and the problem of conservation of leptonic charge. Sov. Phys. JETP 1968, 26, 984. [Google Scholar]
- Katayama, Y.; Matumoto, K.; Tanaka, S.; Yamada, E. Possible unified models of elementary earticles with two neutrinos. Prog. Theor. Phys. 1962, 28, 675. [Google Scholar] [CrossRef] [Green Version]
- Maki, Z.; Nakagawa, M.; Sakata, S. Remarks on the unified model of elementary particles. Prog. Theor. Phys. 1962, 28, 870. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, M.; Okonogi, H.; Sakata, S.; Toyoda, A. Possible existence of a neutrino with mass and partial conservation of muon charge. Prog. Theor. Phys. 1963, 30, 727. [Google Scholar] [CrossRef] [Green Version]
- Wolfenstein, L. Neutrino oscillations in matter. Phys. Rev. 1978, D17, 2369. [Google Scholar] [CrossRef]
- Mikheyev, S.P.; Smirnov, A.Y. Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos. Sov. J. Nucl. Phys. 1985, 42, 913. [Google Scholar]
- Cleveland, B.T.; Daily, T.; Davis, R., Jr.; Distel, J.R.; Lande, K.; Lee, C.K.; Wildenhain, P.S.; Ullman, J. Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys. J. 1998, 496, 505. [Google Scholar] [CrossRef]
- Hirata, K.S.; Inoue, K.; Ishida, T.; Kajita, T.; Kihara, K.; Nakahata, M.; Nakamura, K.; Ohara, S.; Sato, N.; Suzuki, Y.; et al. Real time, directional measurement of B-8 solar neutrinos in the Kamiokande-II detector. Phys. Rev. D 1991, 44, 2241. [Google Scholar] [CrossRef]
- Kaether, F.; Hampel, W.; Heusser, G.; Kiko, J.; Kirsten, T. Reanalysis of the GALLEX solar neutrino flux and source experiments. Phys. Lett. B 2010, 685, 47. [Google Scholar] [CrossRef] [Green Version]
- Abdurashitov, J.N.; Gavrin, V.N.; Gorbachev, V.V.; Gurkina, P.P.; Ibragimova, T.V.; Kalikhov, A.V.; Khairnasov, N.G.; Knodel, T.V.; Mirmov, I.N.; Shikhin, A.A.; et al. Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period. Phys. Rev. C 2009, 80, 015807. [Google Scholar] [CrossRef]
- Bahcall, J.N. Neutrino Astrophysics; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Bellerive, A.; Klein, J.R.; McDonald, A.B.; Noble, A.J.; Poon, A.W. The Sudbury Neutrino Observatory. Nucl. Phys. B 2016, 908, 30. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Marti, L.; Miura, M.; Moriyama, S.; et al. Solar neutrino measurements in Super-Kamiokande-IV. Phys. Rev. D 2016, 94, 052010. [Google Scholar] [CrossRef] [Green Version]
- Agostini, M.; Altenmuller, K.; Appel, S.; Atroshchenko, V.; Bagdasarian, Z.; Basilico, D. First simultaneous precision spectroscopy of pp, 7Be, and pep solar neutrinos with Borexino phase-II. Phys. Rev. D 2019, 100, 082004. [Google Scholar] [CrossRef] [Green Version]
- Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Koga, M.; Matsuda, R.; Matsuda, S.; et al. Reactor on-off antineutrino measurement with KamLAND. Phys. Rev. D 2013, 88, 033001. [Google Scholar] [CrossRef] [Green Version]
- Hirata, K.S. Observation of a small atmospheric muon-neutrino/electron-neutrino ratio in Kamiokande. Phys. Lett. B 1992, 280, 146. [Google Scholar] [CrossRef]
- Fukuda, Y. Atmospheric muon-neutrino/electron-neutrino ratio in the multiGeV energy range. Phys. Lett. B 1994, 335, 237. [Google Scholar] [CrossRef]
- Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 1998, 81, 1562. [Google Scholar] [CrossRef] [Green Version]
- Ambrosio, M.; Antolini, R.; Aramo, C.; Auriemma, G.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; et al. Measurement of the atmospheric neutrino induced upgoing muon flux using MACRO. Phys. Lett. B 1998, 434, 451. [Google Scholar] [CrossRef] [Green Version]
- Allison, W.W.; Alner, G.J.; Ayres, D.S.; Barr, G.; Barrett, W.L.; Bode, C.; Border, P.M.; Brooks, C.B.; Cobb, J.H.; Cotton, R.J.; et al. The atmospheric neutrino flavor ratio from a 3.9 fiducial kiloton year exposure of Soudan-2. Phys. Lett. B 1999, 449, 137. [Google Scholar] [CrossRef] [Green Version]
- Ahn, M.H.; Aoki, S.; Bhang, H.; Boyd, S.; Casper, D.; Choi, J.H.; Fukuda, S.; Fukuda, Y.; Gajewski, W.; Hara, T.; et al. Indications of neutrino oscillation in a 250 km long baseline experiment. Phys. Rev. Lett. 2003, 90, 041801. [Google Scholar] [CrossRef] [Green Version]
- Adey, D.; An, F.P.; Balantekin, A.B.; Balantekin, H.R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G.F.; Cao, J.; Chan, Y.L.; et al. Measurement of electron antineutrino oscillation with 1958 days of operation at Daya Bay. Phys. Rev. Lett. 2018, 121, 241805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bak, G.; Choi, J.H.; Jang, H.I.; Jang, J.S.; Jeon, S.H.; Joo, K.K.; Ju, K.; Jung, D.E.; Kim, J.G.; Kim, J.H.; et al. Measurement of reactor antineutrino oscillation amplitude and frequency at RENO. Phys. Rev. Lett. 2018, 121, 201801. [Google Scholar] [CrossRef] [Green Version]
- De Kerret, H. First Double Chooz θ13 measurement via total neutron capture detection. Nat. Phys. 2020, 16, 558. [Google Scholar]
- Capozzi, F.; Lisi, E.; Marrone, A.; Palazzo, A. Current unknowns in the three neutrino framework. Prog. Part Nucl. Phys. 2018, 102, 48. [Google Scholar] [CrossRef] [Green Version]
- De Salas, P.F.; Forero, D.V.; Ternes, C.A.; Tórtola, M.; Valle, J.W.F. Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity. Phys. Lett. 2018, B782, 633. [Google Scholar] [CrossRef]
- Esteban, I.; González-García, M.C.; Hernández-Cabezudo, A.; Maltoni, M.; Schwetz, T. Global analysis of three-flavour neutrino oscillations: Synergies and tensions in the determination of θ23, δCP, and the mass ordering. J. High Energy Phys. 2019, 106. [Google Scholar] [CrossRef]
- Esteban, I.; González-García, M.C.; Maltoni, M.; Schwetz, T.; Zhou, A. The fate of hints: Updated global analysis of three-flavor neutrino oscillations. J. High Energy Phys. 2020, 178. [Google Scholar] [CrossRef]
- Abe, K.; Aihara, H.; Andreopoulos, C.; Anghel, I.; Ariga, A.; Ariga, T.; Asfandiyarov, R.; Askins, M.; Back, J.J.; Ballett, P.; et al. Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande. Prog. Theor. Exp. Phys. 2015, 2015, 053C02. [Google Scholar]
- An, F.; An, G.; An, Q.; Antonelli, V.; Baussan, E.; Beacom, J.; Bezrukov, L.; Blyth, S.; Brugnera, R.; Avanzini, M.B.; et al. Neutrino physics with JUNO. J. Phys. G 2016, 43, 030401. [Google Scholar] [CrossRef]
- Abi, B. Deep underground neutrino experiment (DUNE), far detector technical design report, Vol. II DUNE physics. arXiv 2020, arXiv:2002.03005. [Google Scholar]
- Glashow, S.L. Partial symmetries of weak interactions. Nucl. Phys. 1961, 22, 579. [Google Scholar] [CrossRef]
- Weinberg, S. A model of leptons. Phys. Rev. Lett. 1967, 19, 1264. [Google Scholar] [CrossRef]
- Salam, A. Weak and electromagnetic interactions. In Proceedings of the 8th Nobel Symposium, Aspenasgarden, Lerum, 19–25 May 1968; Volume 367. [Google Scholar]
- Bardeen, W. Anomalous Ward identities in spinor field theories. Phys. Rev. 1969, 184, 1848. [Google Scholar] [CrossRef]
- Bouchiat, C.; Iliopoulos, J.; Meyer, P. An anomaly-free version of Weinberg’s model. Phys. Lett. B 1972, 38, 519. [Google Scholar] [CrossRef]
- Hooft, G.; Veltman, M.J.G. Regularization and renormalization of gauge fields. Nucl. Phys. B 1972, 44, 189. [Google Scholar] [CrossRef] [Green Version]
- Hooft, G. Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett. 1976, 37, 8. [Google Scholar] [CrossRef]
- Kuzmin, V.A.; Rubakov, V.A.; Shaposhnikov, M.E. On anomalous electroweak baryon-number non-conservation in the early universe. Phys. Lett. 1985, B155, 36. [Google Scholar] [CrossRef]
- Kajantie, K.; Laine, M.; Rummukainen, K.; Shaposhnikov, M.E. Is there a hot electroweak phase transition at mH larger or equal to mW? Phys. Rev. Lett. 1996, 77, 2887. [Google Scholar] [CrossRef] [Green Version]
- Minkowski, P. μ→eγ at a rate of 1 out of 109 muon decays? Phys. Lett. 1977, B67, 421. [Google Scholar] [CrossRef]
- Yanagida, T. Horizontal gauge symmetry and masses of neutrinos. In Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba, Japan, 13–14 February 1979; Volume 95. [Google Scholar]
- Glashow, S.L. Overview. Summary Talk at Neutrino 1979, Bergen, Norway. 18–22 June 1979. [Google Scholar]
- Gell-Mann, M.; Ramond, P.; Slansky, R. Complex spinors and unified theories. In Proceedings of the Supergravity Workshop, Stony Brook, NY, USA, 27–29 September 1979; Volume 315. [Google Scholar]
- Mohapatra, R.N.; Senjanovic, G. Neutrino mass and spontaneous parity nonconservation. Phys. Rev. Lett. 1980, 44, 912. [Google Scholar] [CrossRef] [Green Version]
- Pati, J.C.; Salam, A. Unified lepton-hadron symmetry and a gauge theory of the basic interactions. Phys. Rev. D 1973, 8, 1240. [Google Scholar] [CrossRef]
- Pati, J.C.; Salam, A. Lepton number as the fourth color. Phys. Rev. D 1974, 10, 275. [Google Scholar] [CrossRef] [Green Version]
- Fukugita, M.; Yanagida, T. Baryogenesis without grand unification. Phys. Lett. 1986, B174, 45. [Google Scholar] [CrossRef]
- Weinberg, S. Baryon and lepton nonconserving processes. Phys. Rev. Lett. 1979, 43, 1566. [Google Scholar] [CrossRef]
- Wilczek, F.; Zee, A. Operator analysis of nucleon decay. Phys. Rev. Lett. 1979, 43, 1571. [Google Scholar] [CrossRef] [Green Version]
- Touschek, B. Zur theorie des doppelten β-zerfalls. Zeitschrift für Physik 1948, 125, 108. (In German) [Google Scholar] [CrossRef]
- Inghram, M.G.; Reynolds, J.H. Double beta-decay of Te-130. Phys. Rev. 1950, 78, 822. [Google Scholar] [CrossRef]
- Fiorini, E.; Pullia, A.; Bertolini, G.; Cappellani, F.; Restelli, G. A search for lepton nonconservation in double β decay with a germanium detector. Phys. Lett. 1967, B25, 602. [Google Scholar] [CrossRef]
- Bellotti, E.; Cremonesi, O.; Fiorini, E.; Liguori, C.; Ragazzi, S. Multielement proportional chamber for Xe-136 β decay. AIP Conf. Proc. 1984, 108, 42. [Google Scholar]
- Miyajima, M.; Sasaki, S.; Tawara, H. Search for double beta decay products of Xe-136 in liquid xenon. IEEE Trans. Nucl. Sci. 1994, 41, 835. [Google Scholar] [CrossRef]
- Tretyak, V.I.; Zdesenko, Y.G. Tables of double beta decay data: An update. At. Data Nucl. Data Tables 2002, 80, 83. [Google Scholar] [CrossRef]
- Zdesenko, Y.G. The future of double beta decay research. Rev. Mod. Phys. 2003, 74, 663. [Google Scholar] [CrossRef]
- Vergados, J.D.; Ejiri, H.; Šimkovic, F. Neutrinoless double beta decay and neutrino mass. Int. J. Mod. Phys. E 2016, 25, 1630007. [Google Scholar] [CrossRef] [Green Version]
- Engel, J.; Menéndez, J. Status and future of nuclear matrix elements for neutrinoless double-Beta decay: A review. Rep. Prog. Phys. 2017, 80, 046301. [Google Scholar] [CrossRef] [PubMed]
- Dolinski, M.J.; Poon, A.W.P.; Rodejohann, W. Neutrinoless double-beta decay: Status and prospects. Ann. Rev. Nucl. Part. Sci. 2019, 69, 219. [Google Scholar] [CrossRef] [Green Version]
- Tretyak, V.I. False starts in history of searches for 2β decay, or discoverless double beta decay. AIP Conf. Proc. 2011, 1417, 129. [Google Scholar]
- Davis, R., Jr. Attempt to detect the antineutrinos from a nuclear reactor by the 37Cl(ν¯,e-)37Ar reaction. Phys. Rev. 1955, 97, 766. [Google Scholar] [CrossRef] [Green Version]
- Furry, W.H. On transition probabilities in double beta-disintegration. Phys. Rev. 1939, 56, 1184. [Google Scholar] [CrossRef]
- Goeppert-Mayer, M. Double beta-disintegration. Phys. Rev. 1935, 48, 512. [Google Scholar] [CrossRef]
- Bianchi, S.D. Rethinking antiparticles. Hermann Weyl’s contribution to neutrino physics. Stud. Hist. Philos. Mod. Phys. 2018, 61, 68. [Google Scholar] [CrossRef]
- Klapdor-Kleingrothaus, H.V. Sixty Years of Double Beta Decay: From Nuclear Physics to Beyond Standard Model Particle Physics; World Scientific: Singapore, 2001. [Google Scholar]
- Fogli, G.L.; Lisi, E.; Montanino, D. A comprehensive analysis of solar, atmospheric, accelerator and reactor neutrino experiments in a hierarchical three generation scheme. Phys. Rev. 1994, D49, 3626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capozzi, F.; Valentino, E.D.; Lisi, E.; Marrone, A.; Melchiorri, A.; Palazzo, A. Global constraints on absolute neutrino masses and their ordering. Phys. Rev. 2017, D95, 096014. [Google Scholar] [CrossRef] [Green Version]
- Gando, A.; Gando, Y.; Hachiya, T.; Hayashi, A.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Karino, Y.; Koga, M.; et al. Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys. Rev. Lett. 2016, 117, 082503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alduino, C.; Alessandria, F.; Alfonso, K.; Andreotti, E.; Arnaboldi, C.; Avignone, F.T., III; Azzolini, O.; Balata, M.; Bandac, I.; Banks, T.I.; et al. First results from CUORE: A search for lepton number violation via 0νββ decay of 130Te. Phys. Rev. Lett. 2018, 120, 132501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. Final result of CUPID-0 phase-I in the search for the 82Se neutrinoless double-β decay. Phys. Rev. Lett. 2019, 123, 032501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostini, M.; Araujo, G.R.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; et al. Final results of GERDA on the search for neutrinoless double-β decay. Phys. Rev. Lett. 2020, 125, 252502. [Google Scholar] [CrossRef] [PubMed]
- Vissani, F. Signal of neutrinoless double beta decay, neutrino spectrum and oscillation scenarios. J. High Energy Phys. 1999, 1999, 022. [Google Scholar] [CrossRef]
- Shrock, R.E. New tests for, and bounds on, neutrino masses and lepton mixing. Phys. Lett. 1980, B96, 159. [Google Scholar] [CrossRef]
- McKellar, B.H.J. The Influence of mixing of finite mass neutrinos on beta decay spectra. Phys. Lett. 1980, B97, 93. [Google Scholar] [CrossRef]
- Kobzarev, I.Y.; Martemyanov, B.V.; Okun, L.B.; Shchepkin, M.G. The phenomenology of neutrino oscillations. Sov. J. Nucl. Phys. 1980, 32, 823. [Google Scholar]
- Vissani, F. Nonoscillation searches of neutrino mass in the age of oscillations. Nucl. Phys. B Proc. Suppl. 2001, 100, 273. [Google Scholar] [CrossRef] [Green Version]
- Farzan, Y.; Smirnov, A.Y. On the effective mass of the electron neutrino in beta decay. Phys. Lett. 2003, B557, 224. [Google Scholar] [CrossRef] [Green Version]
- Aker, M.; Altenmüller, K.; Arenz, M.; Babutzka, M.; Barrett, J.; Bauer, S.; Beck, M.; Beglarian, A.; Behrens, J.; Bergmann, T.; et al. Improved upper limit on the neutrino mass from a direct kinematic method by KATRIN. Phys. Rev. Lett. 2019, 123, 221802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogli, G.; Lisi, E.; Marrone, A.; Melchiorri, A.; Palazzo, A.; Serra, P.; Silk, J. Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data. Phys. Rev. 2004, D70, 113003. [Google Scholar] [CrossRef] [Green Version]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Yèche, C.; Palanque-Delabrouille, N.; Baur, J.; Des Bourboux, H.D.M. Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100. J. Cosmol. Astropart. Phys. 2017, 6, 047. [Google Scholar] [CrossRef] [Green Version]
- Palanque-Delabrouille, N.; Yèche, C.; Schöneberg, N.; Lesgourgues, J.; Walther, M.; Chabanier, S. Hints, neutrino bounds and WDM constraints from SDSS DR14 Lyman-α and Planck full-survey data. J. Cosmol. Astropart. Phys. 2020, 4, 038. [Google Scholar] [CrossRef]
- Agostini, M.; Benato, G.; Dell’Oro, S.; Pirro, S.; Vissani, F. Discovery probabilities of Majorana neutrinos based on cosmological data. Phys. Rev. 2021, D103, 033008. [Google Scholar]
- Dell’Oro, S.; Marcocci, S.; Vissani, F. Empirical Inference on the Majorana Mass of the Ordinary Neutrinos. Phys. Rev. 2019, D100, 073003. [Google Scholar] [CrossRef] [Green Version]
- Dell’Oro, S.; Marcocci, S.; Viel, M.; Vissani, F. The contribution of light Majorana neutrinos to neutrinoless double β decay and cosmology. J. Cosmol. Astropart. Phys. 2015, 12, 023. [Google Scholar] [CrossRef]
- Capozzi, F.; Valentino, E.D.; Lisi, E.; Marrone, A.; Melchiorri, A.; Palazzo, A. Addendum to “Global constraints on absolute neutrino masses and their ordering”. Phys. Rev. 2020, D101, 116013. [Google Scholar]
- Serpe, J.N.F.J. Sur la théorie abrégée des particules de spin 1/2. Physica 1952, 18, 295. (In French) [Google Scholar] [CrossRef]
- Feinberg, G.; Goldhaber, M. Microscopic tests of symmetry principles. Proc. Natl. Acad. Sci. USA 1959, 45, 1301. [Google Scholar] [CrossRef] [Green Version]
- Pontecorvo, B. Superweak interactions and double beta decay. Phys. Lett. 1968, B26, 630. [Google Scholar] [CrossRef]
- Vissani, F. Majorana Neutrinos: What, Why, Where? Invit. Sem. at the WIN Meeting, Bari. 2019. Available online: https://agenda.infn.it/event/13938/contributions/91583/attachments/64054/77749/vissani-win-2019.pdf (accessed on 2 March 2021).
- Vissani, F. A History of Some Recent Attempts to Go Beyond the Standard model. Invit. Sem. at the Workshop Gravity, Information and Fundamental Symmetries of the Max Planck Society, Munich. 2019. Available online: https://www.mpi-hd.mpg.de/lin/events/ra-workshop/talks/Vissani-sm.pdf (accessed on 2 March 2021).
- Vissani, F. Cos’è la Materia Per la Fisica Delle Particelle e Perché Tentare di Osservarne la Creazione. Invit. Sem. at the Meeting of the Italian Physics Society (SIF), Milan. 2020. (In Italian). Available online: https://www.sif.it/static/SIF/resources/public/files/congr20/ri/Vissani.pdf (accessed on 2 March 2021).
- McLennan, J.A., Jr. Parity nonconservation and the theory of the neutrino. Phys. Rev. 1957, 106, 821. [Google Scholar] [CrossRef]
- Pursey, D.L. Invariance properties of Fermi interactions. Nuovo Cim. 1957, 6, 204. [Google Scholar] [CrossRef]
- Pauli, W. On the conservation of the lepton charge. Nuovo Cim. 1957, 6, 250. [Google Scholar] [CrossRef]
- Enz, C.D. Fermi interaction with non-conservation of «lepton charge» and of parity. Nuovo Cim. 1957, 6, 266. [Google Scholar] [CrossRef]
- Radicati, L.A.; Touschek, B. On the equivalence theorem for the massless neutrino. Nuovo Cim. 1957, 6, 1694. [Google Scholar] [CrossRef]
- Primakoff, H.; Rosen, S.P. Double beta decay. Rep. Prog. Phys. 1959, 22, 121. [Google Scholar] [CrossRef]
- Morita, M. Theory of beta decay. Prog. Theor. Phys. Suppl. 1963, 26, 1. [Google Scholar] [CrossRef]
- Wong, S.S.M. Introductory Nuclear Physics; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Jehle, H. Two-component wave equations. Phys. Rev. 1949, 75, 1609. [Google Scholar] [CrossRef]
- Fukugita, M.; Yanagida, T. Physics of Neutrinos and Applications to Astrophysics; Springer: Berlin, Germany, 2003. [Google Scholar]
s | s | s | s | s | s | s | 2000 | 2010 | |
---|---|---|---|---|---|---|---|---|---|
Majorana [4] | 3 | 3 | 8 | 5 | 17 | 43 | 67 | 159 | 745 |
Goeppert-M. [112] | 2 | 2 | 6 | 0 | 0 | 18 | 19 | 41 | 221 |
Racah [18] | 2 | 1 | 6 | 1 | 6 | 19 | 16 | 31 | 133 |
Furry [111] | 0 | 2 | 6 | 0 | 1 | 25 | 30 | 71 | 351 |
Case [27] | - | - | 1 | 10 | 10 | 36 | 43 | 34 | 36 |
theory | B, L | V-A, SU(2) | SM, oscill. | SM | GUT, | SUSY | glob.anal. | cosm. | |
exp. and obs. | n,e | , V-A | anom. | SM, | , | oscill. | oscill. | Higgs,cosm. |
Matter | Salient | Valid | Reason for |
---|---|---|---|
Components | Features | Until | Inadequacy |
atoms | species, mass | [1838] 1909 | [atoms of electricity] electron |
nuclei and e | charge, mass, spin | [1930] 1956 | [Fermi th.] neutrons and neutrinos |
p, n, e, , … | B, L, …, “ , ” | [1961] 1968 | [standard model] quarks |
quarks and leptons | B-L, L-, L-, “ , ” | [1962] 2010 | [lepton mixing] appearance exp. |
quark/antilepton | B-L, “ , ” | [1937] ? | [Majorana mass] 2n→2p+2e |
fermions | mass, spin | [1977?] ??? | [supersymmetry?] ??? |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vissani, F. What Is Matter According to Particle Physics, and Why Try to Observe Its Creation in a Lab? Universe 2021, 7, 61. https://doi.org/10.3390/universe7030061
Vissani F. What Is Matter According to Particle Physics, and Why Try to Observe Its Creation in a Lab? Universe. 2021; 7(3):61. https://doi.org/10.3390/universe7030061
Chicago/Turabian StyleVissani, Francesco. 2021. "What Is Matter According to Particle Physics, and Why Try to Observe Its Creation in a Lab?" Universe 7, no. 3: 61. https://doi.org/10.3390/universe7030061
APA StyleVissani, F. (2021). What Is Matter According to Particle Physics, and Why Try to Observe Its Creation in a Lab? Universe, 7(3), 61. https://doi.org/10.3390/universe7030061