Role of Single-Particle Energies in Microscopic Interacting Boson Model Double Beta Decay Calculations
Abstract
:1. Introduction
2. Role of Single-Particle Energies in IBM-2 Calculations
3. Considered Sets of Single-Particle Energies
3.1. Single-Particle Energies for the 28-50 Shell
3.2. Single-Particle Energies for the 50-82 Shell
4. Impact of Single-Particle Energies on Pair Structure Coefficients
5. Impact of the SPEs on IBM-2 Calculations
5.1. Neutrinoless Double Beta Decay
5.2. Double Charge Exchange Reaction
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Anton, G.; Badhrees, I.; Barbeau, P.S.; Beck, D.; Belov, V.; Bhatta, T.; Breidenbach, M.; Brunner, T.; Cao, G.F.; Cen, W.R.; et al. (EXO-200 Collaboration). Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset. Phys. Rev. Lett. 2019, 123, 161802. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.Q.; Alduino, C.; Alfonso, K.; Avignone, F.T., III; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Biassoni, M.; Branca, A.; et al. (CUORE Collaboration). Improved Limit on Neutrinoless Double-Beta Decay in Te-130 with CUORE. Phys. Rev. Lett. 2020, 124, 122501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gando, A.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashi, A.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Karino, Y.; et al. (KamLANDZen Collaboration). Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. Phys. Rev. Lett. 2016, 117, 082503. [Google Scholar] [CrossRef] [Green Version]
- Agostini, M.; Araujo, G.R.; Bakalyarov, A.M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; et al. (GERDA Collaboration). Final Results of GERDA on the Search for Neutrinoless Double-β Decay. Phys. Rev. Lett. 2020, 125, 252502. [Google Scholar] [CrossRef]
- Haxton, W.C.; Stephenson, G.J., Jr. Double beta decay. Prog. Part. Nucl. Phys. 1984, 12, 409. [Google Scholar] [CrossRef]
- Doi, M.; Kotani, T.; Takasugi, E. Double beta Decay and Majorana Neutrino. Prog. Theor. Phys. Suppl. 1985, 83, 1. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, R.N. New Contributions to Neutrinoless Double beta Decay in Supersymmetric Theories. Phys. Rev. D 1986, 34, 3457. [Google Scholar] [CrossRef] [PubMed]
- Vergados, J.D. Neutrinoless double β-decay without Majorana neutrinos in supersymmetric theories. Phys. Lett. B 1987, 184, 55. [Google Scholar] [CrossRef]
- Tomoda, T. Double beta decay. Rep. Prog. Phys. 1991, 54, 53. [Google Scholar] [CrossRef]
- Morales, A. Review on double beta decay experiments and comparison with theory. Nucl. Phys. B Proc. Suppl. 1999, 77, 335. [Google Scholar] [CrossRef] [Green Version]
- Avignone, F.T., III; Elliott, S.R.; Engel, J. Double beta decay, Majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 2008, 80, 481. [Google Scholar] [CrossRef] [Green Version]
- Kotila, J.; Iachello, F. Phase-space factors for double-β decay. Phys. Rev. C 2012, 85, 034316. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S. Average and recommended half-life values for two-neutrino double beta decay: Upgrade-2019. AIP Conf. Proc. 2019, 2165, 020002. [Google Scholar]
- Paes, B.; Santagati, G.; Vsevolodovna, R.M.; Cappuzzello, F.; Carbone, D.; Cardozo, E.N.; Cavallaro, M.; García-Tecocoatzi, H.; Gargano, A.; Ferreira, J.L.; et al. Long-range versus short-range correlations in the two-neutron transfer reaction 64Ni(18O,16O)66Ni. Phys. Rev. C 2017, 96, 044612. [Google Scholar] [CrossRef] [Green Version]
- Freeman, S.J.; Schiffer, J.P. Constraining the 0ν2β matrix elements by nuclear structure observables. J. Phys. G 2012, 39, 124004. [Google Scholar] [CrossRef] [Green Version]
- Kay, B.P.; Bloxham, T.; McAllister, S.A.; Clark, J.A.; Deibel, C.M.; Freedman, S.J.; Freeman, S.J.; Han, K.; Howard, A.M.; Mitchell, A.J.; et al. Valence neutron properties relevant to the neutrinoless double-β decay of 130Te. Phys. Rev. C 2013, 87, 011302. [Google Scholar] [CrossRef] [Green Version]
- Entwisle, J.P.; Kay, B.P.; Tamii, A.; Adachi, S.; Aoi, N.; Clark, J.A.; Freeman, S.J.; Fujita, H.; Fujita, Y.; Furuno, T.; et al. Change of nuclear configurations in the neutrinoless double-β decay of 130Te→130Xe and 136Xe→136Ba. Phys. Rev. C 2016, 93, 064312. [Google Scholar] [CrossRef] [Green Version]
- Szwec, S.V.; Kay, B.P.; Cocolios, T.E.; Entwisle, J.P.; Freeman, S.J.; Gaffney, L.P.; Guimarães, V.; Hammache, F.; McKee, P.P.; Parr, E.; et al. Rearrangement of valence neutrons in the neutrinoless double-β decay of 136Xe. Phys. Rev. C 2016, 94, 054314. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, J.P.; Freeman, S.J.; Clark, J.A.; Deibel, C.; Fitzpatrick, C.R.; Gros, S.; Heinz, A.; Hirata, D.; Jiang, C.L.; Kay, B.P.; et al. Nuclear structure relevant to neutrinoless double β decay: 76Ge and 76Se. Phys. Rev. Lett. 2008, 100, 112501. [Google Scholar] [CrossRef] [Green Version]
- Kay, B.P.; Schiffer, J.P.; Freeman, S.J.; Adachi, T.; Clark, J.A.; Deibel, C.M.; Fujita, H.; Fujita, Y.; Grabmayr, P.; Hatanaka, K.; et al. Nuclear structure relevant to neutrinoless double β decay: The valence protons in 76Ge and 76Se. Phys. Rev. C. 2009, 79, 021301. [Google Scholar] [CrossRef] [Green Version]
- Ejiri, H.; Suhonen, J.; Zuber, K. Neutrino nuclear responses for astro-neutrinos, single β-decays, and double β-decays. Phys. Rep. 2019, 797, 1–102. [Google Scholar] [CrossRef]
- Ejiri, H.; Richard, P.; Ferguson, S.; Heffner, R.; Perry, D. Electric dipole transition from the f7/2 isobaric analogue state to the 2d5/2 ground state in 141Pr. Phys. Rev. Lett. 1968, 21, 373–376. [Google Scholar] [CrossRef]
- Ejiri, H.; Titov, A.; Bosewell, M.; Yang, A. Neutrino nuclear response and photonuclear reactions. Phys. Rev. C 2013, 88, 054610. [Google Scholar] [CrossRef] [Green Version]
- Jokiniemi, L.; Suhonen, J. Muon-capture strength functions in intermediate nuclei of 0νββ decays. Phys. Rev. C 2019, 100, 014619. [Google Scholar] [CrossRef] [Green Version]
- Jokiniemi, L.; Suhonen, J. Comparative analysis of muon capture and 0νββ decay matrix elements. Phys. Rev. C 2020, 102, 024303. [Google Scholar] [CrossRef]
- Jokiniemi, L.; Kotila, J.; Suhonen, J. Comparative Analysis of Nuclear Matrix Elements of 0νβ+β+ Decay and Muon Capture in 106Cd. Front. Phys. 2021. accepted. [Google Scholar]
- Cirigliano, V.; Gardner, S.; Holstein, B. Beta decays and non-standard interactions in the LHC era. Prog. Part. Nucl. Phys. 2013, 71, 93. [Google Scholar] [CrossRef] [Green Version]
- Kostensalo, J.; Suhonen, J. gA-driven shapes of electron spectra of forbidden β decays in the nuclear shell model. Phys. Rev. C 2017, 96, 024317. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, N.; Iachello, F. Two neutrino double-β decay in the interacting boson-fermion model. Prog. Theor. Exp. Phys. 2013, 2013, 043D01. [Google Scholar] [CrossRef] [Green Version]
- Barea, J.; Kotila, J.; Iachello, F. 0νββ and 2νββ nuclear matrix elements in the interacting boson model with isospin restoration. Phys. Rev. C 2015, 91, 034304. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S. Average and recommended half-life values for two-neutrino double beta decay. Nucl. Phys. A 2015, 935, 52. [Google Scholar] [CrossRef] [Green Version]
- Horoi, M.; Neacsu, A. Shell model predictions for 124Sn double-β decay. Phys. Rev. C 2016, 93, 024308. [Google Scholar] [CrossRef] [Green Version]
- Suhonen, J.; Civitarese, O. Double-beta-decay nuclear matrix elements in the QRPA framework. J. Phys. G 2012, 39, 085105. [Google Scholar] [CrossRef]
- Rodin, V.A.; Faessler, A.; Šimkovic, F.; Vogel, P. Assessment of uncertainties in QRPA 0νββ-decay nuclear matrix elements. Nucl. Phys. A 2006, 766, 107. [Google Scholar]
- Caurier, E.; Poves, A.; Zuker, A.P. A full 0ℏω description of the 2νββ decay of 48Ca. Phys. Lett. B 1990, 252, 13. [Google Scholar] [CrossRef]
- Ichimura, M.; Sakai, H.; Wakasa, T. Spin-isospin responses via (p, n) and (n, p) reactions. Prog. Part. Nucl. Phys. 2006, 56, 446. [Google Scholar] [CrossRef]
- Freckers, D.; Puppe, P.; Thies, J.H.; Ejiri, H. Gamow-Teller strength extraction from (3He,t) reactions. Nucl. Phys. A 2013, 916, 219. [Google Scholar] [CrossRef]
- Yako, K.; Sasano, M.; Miki, K.; Sakai, H.; Dozono, M.; Frekers, D.; Greenfield, M.B.; Hatanaka, K.; Ihara, E.; Kato, M.; et al. Gamow-Teller Strength Distributions in 48Sc by the 48Ca(p, n) and 48Ti(n, p) Reactions and Two-Neutrino Double-β Decay Nuclear Matrix Elements. Phys. Rev. Lett. 2009, 103, 012503. [Google Scholar] [CrossRef]
- Suhonen, J.; Civitarese, O. Probing the quenching of gA by single and double beta decays. Phys. Lett. B 2013, 725, 153. [Google Scholar] [CrossRef] [Green Version]
- Caurier, E.; Nowacki, F.; Poves, A. Shell Model description of the ββ decay of 136Xe. Phys. Lett. B 2012, 711, 62. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, T.R.; Martínez-Pinedo, G. Neutrinoless double beta decay studied with configuration mixing methods. Prog. Part. Nucl. Phys. 2011, 66, 436. [Google Scholar] [CrossRef] [Green Version]
- Bertulani, C.A. Heavy-ion charge exchange in the eikonal approximation. Nucl. Phys. A 1993, 554, 493. [Google Scholar] [CrossRef]
- Lenske, H. Theory of heavy ion charge exchange scattering at low and intermediate energies. Nucl. Phys. A 1988, 482, 343. [Google Scholar] [CrossRef]
- Vergados, J.D. Pion-double-charge-exchange contribution to neutrinoless double-β decay. Phys. Rev. D 1982, 25, 914. [Google Scholar] [CrossRef]
- Fazely, A.; Liu, L.C. Neutrinoless Double-β Decay and Its Relation to Pion Double Charge Exchange. Phys. Rev. Lett. 1986, 57, 968. [Google Scholar] [CrossRef]
- Mordechai, S.; Auerbach, N.; Burlein, M.; Fortune, H.T.; Greene, S.J.; Moore, C.F.; Morris, C.L.; O’Donnell, J.M.; Rawool, M.W.; Silk, J.D.; et al. Pion Double Charge Exchange to the Double Dipole Resonance. Phys. Rev. Lett. 1988, 61, 531. [Google Scholar] [CrossRef]
- Moreno, O.; Moya de Guerra, E.; Sarriguren, P.; Faessler, A. Theoretical mean-field and experimental occupation probabilities in the double-β decay system 76Ge to 76Se. Phys. Rev. C 2019, 81, 041303. [Google Scholar] [CrossRef] [Green Version]
- Suhonen, J.; Civitarese, O. Single and double beta decays in the A=100, A=116 and A=128 triplets of isobars. Nucl. Phys. A 2014, 924, 1. [Google Scholar] [CrossRef]
- Neacsu, A.; Horoi, M. Shell model studies of the 130Te neutrinoless double-β decay. Phys. Rev. C 2015, 91, 024309. [Google Scholar] [CrossRef] [Green Version]
- Kotila, J.; Barea, J. Occupation probabilities of single particle levels using the microscopic interacting boson model: Application to some nuclei of interest in neutrinoless double-β decay. Phys. Rev. C 2016, 94, 034320. [Google Scholar] [CrossRef] [Green Version]
- Arima, A.; Iachello, F. Interacting boson model of collective states. 1. The Vibrational limit. Ann. Phys. 1976, 99, 253–317. [Google Scholar] [CrossRef]
- Arima, A.; Iachello, F. Interacting boson model of collective nuclear states. II. The rotational limit. Ann. Phys. 1978, 111, 201–238. [Google Scholar] [CrossRef]
- Arima, A.; Iachello, F. Interacting boson model of collective nuclear states. 4. The O(6) limit. Ann. Phys. 1979, 123, 468–492. [Google Scholar] [CrossRef]
- Arima, A.; Ohtsuka, T.; Iachello, F.; Talmi, I. Collective nuclear states as symmetric couplings of proton and neutron excitations. Phys. Lett. B 1977, 66, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, T.; Arima, A.; Iachello, F.; Talmi, I. Shell model description of interacting bosons. Phys. Lett. A 1978, 76, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, T.; Arima, A.; Iachello, F. Nuclear shell model and interacting bosons. Nucl. Phys. A 1978, 309, 1–33. [Google Scholar] [CrossRef]
- Barea, J.; Iachello, F. Neutrinoless double- β decay in the microscopic interacting boson model. Phys. Rev. C 2009, 79, 044301. [Google Scholar] [CrossRef]
- Talmi, I. Generalized seniority and structure of semi-magic nuclei. Nucl. Phys. A 1971, 172, 1. [Google Scholar] [CrossRef]
- Klein, A.; Valliéres, M. New method for studying the microscopic foundations of the interacting boson model. Phys. Lett. B 1981, 98, 5. [Google Scholar] [CrossRef]
- Scholten, O. Microscopic calculations for the interacting boson model. Phys. Rev. C 1983, 28, 1783. [Google Scholar] [CrossRef]
- Scholten, O. Single particle degrees of freedom in the interacting boson model. Prog. Part. Nucl. Phys. 1985, 14, 189. [Google Scholar] [CrossRef]
- Yoshinaga, N.; Mizusaki, T.; Arima, A.; Devi, Y.D. Microscopic foundations of the interacting boson Model from the shell-model point of view. Prog. Theor. Phys. Suppl. 1996, 125, 65. [Google Scholar] [CrossRef]
- Pittel, S.; Duval, P.D.; Barrett, B.R. The microscopic Interacting Boson Model for nondegenerate orbits. Ann. Phys. 1982, 144, 168–199. [Google Scholar] [CrossRef]
- Frank, A.; Van Isacker, P. Commutator algebra for the microscopic interacting boson model with nondegenerate orbits. Phys. Rev. C 1982, 26, 1661. [Google Scholar] [CrossRef]
- Lipas, P.O.; Koskinen, M.; Harter, H.; Nojarov, R.; Faessler, A. Microscopic IBA calculations of (e,e′) M1 form factors. Nucl. Phys. A 1990, 509, 509–540. [Google Scholar] [CrossRef]
- Engel, J. Uncertainties in nuclear matrix elements for neutrinoless double-beta decay. J. Phys. G Nucl. Part. Phys. 2015, 42, 034017. [Google Scholar] [CrossRef]
- Baldridge, W.J. Shell-model studies for the 132Sn region. I. Few proton cases. Phys. Rev. C 1978, 18, 530. [Google Scholar] [CrossRef]
- Suhonen, J. From Nucleons to Nucleus. Concepts of Microscopic Nuclear Theory; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Šimkovic, F.; Faessler, A.; Müther, H.; Rodin, V.; Stauf, M. 0νββ-decay nuclear matrix elements with self-consistent short-range correlations. Phys Rev C. 2009, 79, 055501. [Google Scholar] [CrossRef] [Green Version]
- Deppisch, F.F.; Graf, L.; Iachello, F.; Kotila, J. Analysis of light neutrino exchange and short-range mechanisms in 0νββ decay. Phys. Rev. D 2020, 102, 095016. [Google Scholar] [CrossRef]
- Barea, J.; Kotila, J.; Iachello, F. Nuclear matrix elements for double-β decay. Phys. Rev. C 2013, 87, 014315. [Google Scholar] [CrossRef] [Green Version]
- Šimkovic, F.; Rodin, V.; Faessler, A.; Vogel, P. 0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration. Phys. Rev. C. 2013, 87, 045501. [Google Scholar] [CrossRef] [Green Version]
- Hyvärinen, J.; Suhonen, J. Nuclear matrix elements for 0ββ decays with light or heavy Majorana-neutrino exchange. Phys. Rev. C. 2015, 91, 024613. [Google Scholar] [CrossRef]
- Fang, D.L.; Faessler, A.; Šimkovic, F. 0νββ-decay nuclear matrix element for light and heavy neutrino mass mechanisms from deformed quasiparticle random-phase approximation calculations for 76Ge, 82Se, 130Te, 136Xe, and 150Nd with isospin restoration. Phys. Rev. C. 2018, 97, 045503. [Google Scholar] [CrossRef] [Green Version]
- Menéndez, J. Neutrinoless ββ decay mediated by the exchange of light and heavy neutrinos: The role of nuclear structure correlations. J. Phys. G Nucl. Part. Phys. 2018, 45, 014003. [Google Scholar] [CrossRef] [Green Version]
- Cappuzzello, F.; Cavallaro, M.; Agodi, C.; Bondi, M.; Carbone, D.; Cunsolo, A.; Foti, A. Heavy-ion double charge exchange reactions: A tool toward 0νββ nuclear matrix elements. Eur. Phys. J. A 2015, 51, 145. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, N.; Menéndez, J.; Yako, K. Double Gamow-Teller Transitions and its Relation to Neutrinoless Decay. Phys. Rev. Lett. 2018, 120, 142502. [Google Scholar] [CrossRef] [Green Version]
- Santopinto, E.; García-Tecocoatzi, H.; Magaña Vsevolodovna, R.I.; Ferretti, J. (NUMEN Collaboration). Heavy-ion double-charge-exchange and its relation to neutrinoless double-β decay. Phys. Rev. C 2018, 98, 061601. [Google Scholar] [CrossRef] [Green Version]
Orbital | Protons (I) (Particles) | Protons (II) (Particles) | Protons (I) (Holes) | Protons (II) (Holes) |
---|---|---|---|---|
1.179 | 1.106 | 0.678 | 0.931 | |
0.000 | 0.000 | 1.107 | 2.198 | |
0.340 | 1.028 | 1.518 | 2.684 | |
2.640 | 3.009 | 0.000 | 0.000 |
Orbital | Neutrons (I) (Holes) | Neutrons (II) (Holes) |
---|---|---|
0.588 | 1.896 | |
1.095 | 3.009 | |
1.451 | 2.240 0 | |
0.000 | 0.000 |
Orbital | Protons (I) (Particles) | Protons (II) (Particles) |
---|---|---|
2.990 | 2.990 | |
2.440 | 2.690 | |
0.962 | 0.960 | |
0.000 | 0.000 | |
2.792 | 2.760 |
Orbital | Neutrons (I) (Particles) | Neutrons (II) (Particles) | Neutrons (I) (Holes) | Neutrons (II) (Holes) |
---|---|---|---|---|
0.775 | 1.205 | 0.332 | 0.332 | |
1.142 | 2.042 | 0.000 | 0.000 | |
0.000 | 0.000 | 1.654 | 1.655 | |
0.172 | 2.200 | 2.434 | 2.434 | |
2.868 | 2.170 | 0.069 | 0.070 |
Protons (I) (Particles) | Protons (II) (Particles) | Protons (I) (Holes) | Protons (II) (Holes) | |
---|---|---|---|---|
−0.701 | −0.850 | 0.765 | 0.689 | |
−1.650 | −1.867 | 0.602 | 0.408 | |
−1.187 | −0.884 | 0.500 | 0.352 | |
0.409 | 0.439 | −1.337 | −1.401 | |
−0.742 | −0.322 | −0.149 | −0.092 | |
−0.280 | −0.866 | −0.088 | −0.048 | |
−0.280 | −0.234 | −0.154 | −0.099 | |
0.381 | 0.222 | 0.071 | 0.040 | |
−0.373 | −0.182 | −0.088 | −0.052 | |
0.096 | 0.093 | 0.966 | 0.988 |
Neutrons (I) (Holes) | Neutrons (II) (Holes) | |
---|---|---|
0.807 | 0.468 | |
0.603 | 0.336 | |
0.512 | 0.418 | |
−1.329 | −1.416 | |
−0.157 | −0.063 | |
−0.089 | −0.037 | |
−0.164 | −0.091 | |
0.073 | 0.039 | |
−0.092 | −0.064 | |
0.963 | 0.990 |
Protons (I) (Particles) | Protons (II) (Particles) | |
---|---|---|
0.384 | 0.382 | |
0.449 | 0.414 | |
0.818 | 0.817 | |
1.765 | 1.769 | |
−0.405 | −0.406 | |
−0.058 | −0.054 | |
0.045 | 0.040 | |
0.094 | 0.092 | |
0.058 | 0.053 | |
0.134 | 0.131 | |
0.190 | 0.170 | |
−0.133 | −0.131 | |
0.951 | 0.957 | |
−0.076 | −0.075 |
Neutrons (I) (Particles) | Neutrons (II) (Particles) | Neutrons (I) (Holes) | Neutrons (II) (Holes) | |
---|---|---|---|---|
0.888 | 0.852 | −0.998 | −0.999 | |
0.749 | 0.614 | −1.394 | −1.395 | |
1.463 | 1.921 | −0.469 | −0.469 | |
1.280 | 0.584 | −0.357 | −0.357 | |
−0.431 | −0.589 | −1.288 | 1.287 | |
−0.193 | −0.118 | −0.402 | −0.402 | |
0.121 | 0.068 | 0.490 | 0.492 | |
0.395 | 0.324 | 0.159 | 0.159 | |
0.173 | 0.115 | 0.098 | 0.098 | |
0.550 | 0.899 | 0.078 | 0.078 | |
0.392 | 0.149 | 0.176 | 0.176 | |
−0.267 | −0.088 | −0.037 | −0.037 | |
0.472 | 0.098 | 0.065 | 0.065 | |
−0.111 | −0.124 | −0.722 | −0.721 |
Isotope | ||||||||
---|---|---|---|---|---|---|---|---|
Ge | ||||||||
Se | ||||||||
Mo | ||||||||
Cd | ||||||||
Te | ||||||||
Te | ||||||||
Xe |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotila, J. Role of Single-Particle Energies in Microscopic Interacting Boson Model Double Beta Decay Calculations. Universe 2021, 7, 66. https://doi.org/10.3390/universe7030066
Kotila J. Role of Single-Particle Energies in Microscopic Interacting Boson Model Double Beta Decay Calculations. Universe. 2021; 7(3):66. https://doi.org/10.3390/universe7030066
Chicago/Turabian StyleKotila, Jenni. 2021. "Role of Single-Particle Energies in Microscopic Interacting Boson Model Double Beta Decay Calculations" Universe 7, no. 3: 66. https://doi.org/10.3390/universe7030066
APA StyleKotila, J. (2021). Role of Single-Particle Energies in Microscopic Interacting Boson Model Double Beta Decay Calculations. Universe, 7(3), 66. https://doi.org/10.3390/universe7030066