AGB Winds with Gas-Dust Drift in Stellar Evolution Codes
Abstract
:1. Introduction
2. Theory and Methods
2.1. Mean-Flow Equations for Dust-Driven Winds
2.2. Further Simplifications Required for Implementation in Stellar Evolution Modelling
2.3. Grain Growth
3. Results: How Drift Will Affect Dust Formation and Mass-Loss Evolution
3.1. Estimate of the Drift Velocity
- High mass-loss rates can often be associated with insignificant drift;
- High luminosity can lead to significant drift even for strong, dense winds;
- The drift velocity should approach a constant mean value.
3.2. Effects on the Dust Growth Rate
3.3. Wind Acceleration, Drag and Growth: An Intricate Interplay between Forces
3.4. A New Correlation between Wind Properties and
- Assume and compute the wind-velocity profile and grain growth from the equations given in Section 2 for a prescribed value of ;
- Use the correlation above to infer the corresponding and calculate the wind-velocity profile and grain growth again, now using the adjusted value (which is assumed to be the same throughout the wind region);
- Repeat step 2 until the difference between the current and the previous value is less than a predefined target value .
4. Discussion
4.1. Why Should We Bother?
4.2. Is Complete Momentum Coupling Applicable?
4.3. Can One Estimate the Drift Velocity from the Simple Wind Model?
4.4. A Grid of Mass-Loss Models as Input
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marini, E.; Dell’Agli, F.; Groenewegen, M.A.T.; García-Hernández, D.A.; Mattsson, L.; Kamath, D.; Ventura, P.; D’Antona, F.; Tailo, M. Understanding the evolution and dust formation of carbon stars in the LMC with a look at the JWST. arXiv 2020, arXiv:2012.12289. [Google Scholar]
- Marini, E.; Dell’Agli, F.; Di Criscienzo, M.; Puccetti, S.; García-Hernández, D.A.; Mattsson, L.; Ventura, P. Discovery of Stars Surrounded by Iron Dust in the Large Magellanic Cloud. Astrophys. J. Lett. 2019, 871, L16. [Google Scholar] [CrossRef]
- Dell’Agli, F.; García-Hernández, D.A.; Ventura, P.; Schneider, R.; Di Criscienzo, M.; Rossi, C. AGB stars in the SMC: Evolution and dust properties based on Spitzer observations. Mon. Not. R. Astron. Soc. 2015, 454, 4235–4249. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, M.; Wood, P.R.; Sloan, G.C.; Zijlstra, A.A.; van Loon, J.T.; Groenewegen, M.A.T.; Blommaert, J.A.D.L.; Cioni, M.R.L.; Feast, M.W.; Habing, H.J.; et al. Spitzer observations of acetylene bands in carbon-rich asymptotic giant branch stars in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 2006, 371, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Ferrarotti, A.S.; Gail, H.P. Composition and quantities of dust produced by AGB-stars and returned to the interstellar medium. Astron. Astrophys. 2006, 447, 553–576. [Google Scholar] [CrossRef]
- Ventura, P.; di Criscienzo, M.; Schneider, R.; Carini, R.; Valiante, R.; D’Antona, F.; Gallerani, S.; Maiolino, R.; Tornambé, A. The transition from carbon dust to silicate production in low-metallicity asymptotic giant branch and super-asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 2012, 420, 1442–1456. [Google Scholar] [CrossRef] [Green Version]
- Nanni, A.; Bressan, A.; Marigo, P.; Girardi, L. Evolution of thermally pulsing asymptotic giant branch stars-II. Dust production at varying metallicity. Mon. Not. R. Astron. Soc. 2013, 434, 2390–2417. [Google Scholar] [CrossRef] [Green Version]
- Blöcker, T. Stellar evolution of low and intermediate-mass stars. I. Mass loss on the AGB and its consequences for stellar evolution. Astron. Astrophys. 1995, 297, 727–738. [Google Scholar]
- Wachter, A.; Schröder, K.P.; Winters, J.M.; Arndt, T.U.; Sedlmayr, E. An improved mass-loss description for dust-driven superwinds and tip-AGB evolution models. Astron. Astrophys. 2002, 384, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Guandalini, R.; Busso, M.; Ciprini, S.; Silvestro, G.; Persi, P. Infrared photometry and evolution of mass-losing AGB stars. I. Carbon stars revisited. Astron. Astrophys. 2006, 445, 1069–1080. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, L.; Wahlin, R.; Höfner, S.; Eriksson, K. Intense mass loss from C-rich AGB stars at low metallicity? Astron. Astrophys. 2008, 484, L5–L8. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, L.; Wahlin, R.; Höfner, S. Dust driven mass loss from carbon stars as a function of stellar parameters. I. A grid of solar-metallicity wind models. Astron. Astrophys. 2010, 509, A14. [Google Scholar] [CrossRef]
- Mattsson, L.; Höfner, S. Dust-driven mass loss from carbon stars as a function of stellar parameters. II. Effects of grain size on wind properties. Astron. Astrophys. 2011, 533, A42. [Google Scholar] [CrossRef]
- Mattsson, L.; Aringer, B.; Andersen, A.C. How Important Are Metal-Poor AGB Stars As Cosmic Dust Producers? In Why Galaxies Care about AGB Stars III: A Closer Look in Space and Time; Astronomical Society of the Pacific Conference Series; Kerschbaum, F., Wing, R.F., Hron, J., Eds.; ASP: San Francisco, CA, USA, 2015; Volume 497, pp. 385–390. [Google Scholar]
- Bladh, S.; Eriksson, K.; Marigo, P.; Liljegren, S.; Aringer, B. Carbon star wind models at solar and sub-solar metallicities: A comparative study. I. Mass loss and the properties of dust-driven winds. Astron. Astrophys. 2019, 623, A119. [Google Scholar] [CrossRef] [Green Version]
- Höfner, S. Winds of M-type AGB stars driven by micron-sized grains. Astron. Astrophys. 2008, 491, L1–L4. [Google Scholar] [CrossRef] [Green Version]
- Höfner, S.; Bladh, S.; Aringer, B.; Ahuja, R. Dynamic atmospheres and winds of cool luminous giants. I. Al2O3 and silicate dust in the close vicinity of M-type AGB stars. Astron. Astrophys. 2016, 594, A108. [Google Scholar] [CrossRef] [Green Version]
- Bladh, S.; Liljegren, S.; Höfner, S.; Aringer, B.; Marigo, P. An extensive grid of DARWIN models for M-type AGB stars. I. Mass-loss rates and other properties of dust-driven winds. Astron. Astrophys. 2019, 626, A100. [Google Scholar] [CrossRef] [Green Version]
- Sandin, C.; Höfner, S. Three-component modeling of C-rich AGB star winds. I. Method and first results. Astron. Astrophys. 2003, 398, 253–266. [Google Scholar] [CrossRef] [Green Version]
- Sandin, C.; Höfner, S. Three-component modeling of C-rich AGB star winds. II. The effects of drift in long period variables. Astron. Astrophys. 2003, 404, 789–807. [Google Scholar] [CrossRef]
- Sandin, C.; Höfner, S. Three-component modeling of C-rich AGB star winds. III. Micro-physics of drift-dependent dust formation. Astron. Astrophys. 2004, 413, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Sandin, C. Three-component modelling of C-rich AGB star winds. IV. Revised interpretation with improved numerical descriptions. Mon. Not. R. Astron. Soc. 2008, 385, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Sandin, C.; Mattsson, L. Three-component modelling of C-rich AGB star winds - V. Effects of frequency-dependent radiative transfer including drift. Mon. Not. R. Astron. Soc. 2020, 499, 1531–1560. [Google Scholar] [CrossRef]
- Mattsson, L. Winds of AGB stars:. the two roles of atmospheric dust. Mem. Soc. Astron. Ital. 2016, 87, 249. [Google Scholar]
- Krüger, D.; Gauger, A.; Sedlmayr, E. Two-fluid models for stationary dust-driven winds. I. Momentum and energy balance. Astron. Astrophys. 1994, 290, 573–589. [Google Scholar]
- Krüger, D.; Patzer, A.B.C.; Sedlmayr, E. On the growth of carbonaceous grains in circumstellar envelopes. Astron. Astrophys. 1996, 313, 891–896. [Google Scholar]
- Schaaf, S.A. Mechanics of Rarefied Gases. In Handbuch der Physik: Strömungsmechanik II; Springer: Berlin, Germany, 1963; Volume VIII/2, pp. 591–624. [Google Scholar]
- Gail, H.P.; Sedlmayr, E. Mineral formation in stellar winds. I. Condensation sequence of silicate and iron grains in stationary oxygen rich outflows. Astron. Astrophys. 1999, 347, 594–616. [Google Scholar]
- Lucy, L.B. The Formation of Resonance Lines in Extended and Expanding Atmospheres. Astrophys. J. 1971, 163, 95. [Google Scholar] [CrossRef]
- Lucy, L.B. Mass Loss by Cool Carbon Stars. Astrophys. J. 1976, 205, 482–491. [Google Scholar] [CrossRef]
- Gilman, R.C. On the Coupling of Grains to the Gas in Circumstellar Envelopes. Astrophys. J. 1972, 178, 423–426. [Google Scholar] [CrossRef]
- Kwok, S. Radiation pressure on grains as a mechanism for mass loss in red giants. Astrophys. J. 1975, 198, 583–591. [Google Scholar] [CrossRef]
- Habing, H.J.; Tignon, J.; Tielens, A.G.G.M. Calculations of the outflow velocity of envelopes of cool giants. Astron. Astrophys. 1994, 286, 523–534. [Google Scholar]
- Höfner, S.; Olofsson, H. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements. Astron. Astrophys. 2018, 26, 1. [Google Scholar] [CrossRef] [Green Version]
- Elitzur, M.; Ivezić, Ž. Dusty winds - I. Self-similar solutions. Mon. Not. R. Astron. Soc. 2001, 327, 403–421. [Google Scholar] [CrossRef] [Green Version]
- Schöier, F.L.; Olofsson, H. Models of circumstellar molecular radio line emission. Mass loss rates for a sample of bright carbon stars. Astron. Astrophys. 2001, 368, 969–993. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, L. On the Winds of Carbon Stars and the Origin of Carbon: A Theoretical Study; Acta Universitatis Upsaliensis: Uppsala, Sweden, 2009. [Google Scholar]
- Paxton, B.; Bildsten, L.; Dotter, A.; Herwig, F.; Lesaffre, P.; Timmes, F. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 2011, 192, 3. [Google Scholar] [CrossRef]
- Mattsson, L. Dust driven mass loss from carbon stars as a function of stellar parameters.-A Fortran module for use in stellar evolution codes. 2021; unpublished. [Google Scholar]
- Marigo, P.; Cummings, J.D.; Curtis, J.L.; Kalirai, J.; Chen, Y.; Tremblay, P.E.; Ramirez-Ruiz, E.; Bergeron, P.; Bladh, S.; Bressan, A.; et al. Carbon star formation as seen through the non-monotonic initial-final mass relation. Nat. Astron. 2020, 4, 1102–1110. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattsson, L.; Sandin, C. AGB Winds with Gas-Dust Drift in Stellar Evolution Codes. Universe 2021, 7, 113. https://doi.org/10.3390/universe7050113
Mattsson L, Sandin C. AGB Winds with Gas-Dust Drift in Stellar Evolution Codes. Universe. 2021; 7(5):113. https://doi.org/10.3390/universe7050113
Chicago/Turabian StyleMattsson, Lars, and Christer Sandin. 2021. "AGB Winds with Gas-Dust Drift in Stellar Evolution Codes" Universe 7, no. 5: 113. https://doi.org/10.3390/universe7050113
APA StyleMattsson, L., & Sandin, C. (2021). AGB Winds with Gas-Dust Drift in Stellar Evolution Codes. Universe, 7(5), 113. https://doi.org/10.3390/universe7050113