Variational Principles in Teleparallel Gravity Theories
Abstract
:1. Introduction
2. Teleparallel Geometries
2.1. Tetrad Formulation
2.2. Metric-Affine Formulation
2.3. Relation between Different Formulations
3. Teleparallel Gravity Actions and Field Equations
3.1. Metric-Affine Formulation
3.1.1. General Action and Variation
3.1.2. General Teleparallel Gravity
3.1.3. Metric Teleparallel Gravity
3.1.4. Symmetric Teleparallel Gravity
3.2. Tetrad Formulation
3.2.1. General Action and Variation
3.2.2. General Teleparallel Gravity
3.2.3. Metric Teleparallel Gravity
3.2.4. Symmetric Teleparallel Gravity
3.3. Relation between Metric-Affine and Tetrad Formulations
3.3.1. General Action and Variation
3.3.2. General Teleparallel Gravity
3.3.3. Metric Teleparallel Gravity
3.3.4. Symmetric Teleparallel Gravity
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiménez, J.B.; Heisenberg, L.; Koivisto, T.S. The Geometrical Trinity of Gravity. Universe 2019, 5, 173. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Riemann-Geometrie mit Aufrechterhaltung des Begriffes des Fernparallelismus. Sitzber. Preuss. Akad. Wiss. 1928, 17, 217–221. [Google Scholar]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity; Springer: Dordrecht, The Netherlands, 2013; Volume 173. [Google Scholar] [CrossRef]
- Maluf, J.W. The teleparallel equivalent of general relativity. Ann. Phys. 2013, 525, 339–357. [Google Scholar] [CrossRef]
- Nester, J.M.; Yo, H.J. Symmetric teleparallel general relativity. Chin. J. Phys. 1999, 37, 113. [Google Scholar]
- Adak, M.; Kalay, M.; Sert, O. Lagrange formulation of the symmetric teleparallel gravity. Int. J. Mod. Phys. 2006, D15, 619–634. [Google Scholar] [CrossRef] [Green Version]
- Adak, M. The Symmetric teleparallel gravity. Turk. J. Phys. 2006, 30, 379–390. [Google Scholar]
- Mol, I. The Non-Metricity Formulation of General Relativity. Adv. Appl. Clifford Algebr. 2017, 27, 2607–2638. [Google Scholar] [CrossRef] [Green Version]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T. Coincident General Relativity. Phys. Rev. 2018, D98, 044048. [Google Scholar] [CrossRef] [Green Version]
- Adak, M. Gauge Approach to The Symmetric Teleparallel Gravity. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1850198. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Iosifidis, D.; Jiménez-Cano, A.; Koivisto, T.S. General teleparallel quadratic gravity. Phys. Lett. 2020, B805, 135422. [Google Scholar] [CrossRef]
- Böhmer, C.G.; Jensko, E. Modified gravity: A unified approach. arXiv 2021, arXiv:103.15906. [Google Scholar]
- Cai, Y.F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rept. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Böhmer, C.G.; Krššák, M. New classes of modified teleparallel gravity models. Phys. Lett. 2017, B775, 37–43. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Ualikhanova, U. Covariant formulation of scalar-torsion gravity. Phys. Rev. 2018, D97, 104011. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, M. Scalar-torsion theories of gravity I: General formalism and conformal transformations. Phys. Rev. 2018, D98, 064002. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, M.; Pfeifer, C. Scalar-torsion theories of gravity II: L(T,X,Y,ϕ) theory. Phys. Rev. 2018, D98, 064003. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, M. Scalar-torsion theories of gravity III: Analogue of scalar-tensor gravity and conformal invariants. Phys. Rev. 2018, D98, 064004. [Google Scholar] [CrossRef] [Green Version]
- Järv, L.; Rünkla, M.; Saal, M.; Vilson, O. Nonmetricity formulation of general relativity and its scalar-tensor extension. Phys. Rev. 2018, D97, 124025. [Google Scholar] [CrossRef] [Green Version]
- Rünkla, M.; Vilson, O. Family of scalar-nonmetricity theories of gravity. Phys. Rev. 2018, D98, 084034. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Dialektopoulos, K.F.; Said, J.L. Can Horndeski Theory be recast using Teleparallel Gravity? Phys. Rev. 2019, D100, 064018. [Google Scholar] [CrossRef] [Green Version]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T.S.; Pekar, S. Cosmology in f(Q) geometry. Phys. Rev. 2020, D101, 103507. [Google Scholar] [CrossRef]
- Hehl, F.W.; McCrea, J.D.; Mielke, E.W.; Ne’eman, Y. Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rept. 1995, 258, 1–171. [Google Scholar] [CrossRef] [Green Version]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T.S. Teleparallel Palatini theories. JCAP 2018, 1808, 039. [Google Scholar] [CrossRef] [Green Version]
- Krššák, M.; Saridakis, E.N. The covariant formulation of f(T) gravity. Class. Quant. Grav. 2016, 33, 115009. [Google Scholar] [CrossRef] [Green Version]
- Golovnev, A.; Koivisto, T.; Sandstad, M. On the covariance of teleparallel gravity theories. Class. Quant. Grav. 2017, 34, 145013. [Google Scholar] [CrossRef]
- Krssak, M.; Van Den Hoogen, R.J.; Pereira, J.G.; Boehmer, C.G.; Coley, A.A. Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach. Class. Quant. Grav. 2019, 36, 183001. [Google Scholar] [CrossRef] [Green Version]
- Ray, J.R. Nonholonomic constraints. Am. J. Phys. 1966, 34, 406, Erratum in 1966, 34, 1202. [Google Scholar] [CrossRef]
- Flannery, M.R. The enigma of nonholonomic constraints. Am. J. Phys. 2005, 73, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. Coupling matter in modified Q gravity. Phys. Rev. 2018, D98, 084043. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Koivisto, T.S.; Olmo, G.J.; Lobo, F.S.N.; Diego, R.G. Novel couplings between nonmetricity and matter. In Proceedings of the 15th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG15), Rome, Italy, 1–7 July 2019. [Google Scholar]
- Yano, K. The Theory of Lie Derivatives and Its Applications; North-Holland: Amsterdam, The Netherlands, 1957. [Google Scholar]
- Ulhoa, S.C.; Santos, A.F.; Furtado, T.F.; Khanna, F.C. On Gravitational Casimir Effect and Stefan-Boltzmann Law at Finite Temperature. Adv. High Energy Phys. 2019, 2019, 2031075. [Google Scholar] [CrossRef]
- Bahamonde, S.; Faizal, M. Is Gravity Actually the Curvature of Spacetime? Int. J. Mod. Phys. 2019, D28, 1944021. [Google Scholar] [CrossRef]
- Ulhoa, S.C.; Santos, A.F.; Furtado, T.F.; Khanna, F.C. On Hawking entropy revisited. Int. J. Mod. Phys. 2021, A36, 2150041. [Google Scholar] [CrossRef]
- Baez, J.C.; Wise, D.K. Teleparallel Gravity as a Higher Gauge Theory. Commun. Math. Phys. 2015, 333, 153–186. [Google Scholar] [CrossRef]
- Hohmann, M. Spacetime and observer space symmetries in the language of Cartan geometry. J. Math. Phys. 2016, 57, 082502. [Google Scholar] [CrossRef] [Green Version]
- Fontanini, M.; Huguet, E.; Le Delliou, M. Teleparallel gravity equivalent of general relativity as a gauge theory: Translation or Cartan connection? Phys. Rev. 2019, D99, 064006. [Google Scholar] [CrossRef] [Green Version]
- Le Delliou, M.; Huguet, E.; Fontanini, M. Teleparallel theory as a gauge theory of translations: Remarks and issues. Phys. Rev. 2020, D101, 024059. [Google Scholar] [CrossRef] [Green Version]
- Huguet, E.; Le Delliou, M.; Fontanini, M.; Lin, Z.C. Teleparallel gravity as a gauge theory: Coupling to matter using the Cartan connection. Phys. Rev. 2021, D103, 044061. [Google Scholar] [CrossRef]
- Huguet, E.; Le Delliou, M.; Fontanini, M. Cartan approach to Teleparallel Equivalent to General Relativity: A review. In Proceedings of the Teleparallel Gravity Workshop in Tartu (Telegrav 2020), Tartu, Estonia, 15–19 June 2020. [Google Scholar]
- Hehl, F.W.; Itin, Y.; Obukhov, Y.N. On Kottler’s path: Origin and evolution of the premetric program in gravity and in electrodynamics. Int. J. Mod. Phys. 2016, D25, 1640016. [Google Scholar] [CrossRef] [Green Version]
- Itin, Y.; Hehl, F.W.; Obukhov, Y.N. Premetric equivalent of general relativity: Teleparallelism. Phys. Rev. 2017, D95, 084020. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, M.; Järv, L.; Krššák, M.; Pfeifer, C. Teleparallel theories of gravity as analogue of nonlinear electrodynamics. Phys. Rev. 2018, D97, 104042. [Google Scholar] [CrossRef] [Green Version]
- Itin, Y.; Obukhov, Y.N.; Boos, J.; Hehl, F.W. Premetric teleparallel theory of gravity and its local and linear constitutive law. Eur. Phys. J. 2018, C78, 907. [Google Scholar] [CrossRef]
- Koivisto, T.; Hohmann, M.; Marzola, L. Axiomatic derivation of coincident general relativity and its premetric extension. Phys. Rev. 2021, D103, 064041. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hohmann, M. Variational Principles in Teleparallel Gravity Theories. Universe 2021, 7, 114. https://doi.org/10.3390/universe7050114
Hohmann M. Variational Principles in Teleparallel Gravity Theories. Universe. 2021; 7(5):114. https://doi.org/10.3390/universe7050114
Chicago/Turabian StyleHohmann, Manuel. 2021. "Variational Principles in Teleparallel Gravity Theories" Universe 7, no. 5: 114. https://doi.org/10.3390/universe7050114
APA StyleHohmann, M. (2021). Variational Principles in Teleparallel Gravity Theories. Universe, 7(5), 114. https://doi.org/10.3390/universe7050114