Minisuperspace Quantization of f(T, B) Cosmology
Abstract
:1. Introduction
2. Cosmology
2.1. The Theory
Minisuperspace Description
3. Wheeler-DeWitt Equation
3.1. Quantum Operators
3.2. Potential Function
3.3. Potential Function
4. Semi-Classical Limit
4.1. Classical Limit
4.2. Potential Function
4.3. Potential Function
4.4. Quantum Potentiality
4.5. Potential Function
4.6. Potential Function
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tegmark, M.; Blanton, M.R.; Strauss, M.A.; Hoyle, F.; Schlegel, D.; Scoccimarro, R.; SDSS Collaboration. The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey. Astrophys. J. 2004, 606, 702. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, M.; Rubin, D.; Aldering, G.; Agostinho, R.J.; Amadon, A.; Amanullah, R.; Yun, J.L. Improved Cosmological Constraints from New, Old and Combined Supernova Datasets. Astrophys. J. 2008, 686, 749. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, E.; Dunkley, J.; Nolta, M.R.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Limon, M.; Page, L.; et al. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. Astrophys. J. Suppl. Ser. 2009, 180, 330. [Google Scholar] [CrossRef] [Green Version]
- Di Valentino, E.; Mean, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the Realm of the Hubble tension—A Review of Solutions. arXiv 2021, arXiv:2103.01183. [Google Scholar]
- Nariai, H.; Tomita, K. On the Removal of Initial Singularity in a Big-Bang Universe in Terms of a Renormalized Theory of Gravitation. II: Criteria for Obtaining a Physically Reasonable Model. Prog. Theor. Phys. 1971, 46, 776. [Google Scholar] [CrossRef] [Green Version]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99. [Google Scholar] [CrossRef]
- Barrow, J.D.; Cotsakis, S. Inflation and the conformal structure of higher-order gravity theories. Phys. Lett. B 1988, 214, 515. [Google Scholar] [CrossRef]
- Buchdahl, H.A. Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 1970, 150, 1. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P.; Faraoni, V. f (R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59. [Google Scholar] [CrossRef] [Green Version]
- Faraoni, V. Cosmology in Scalar-Tensor Gravity; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Unzicker, A.; Case, T. Translation of Einstein’s attempt of a unified field theory with teleparallelism. arXiv 2005, arXiv:physics/0503046. [Google Scholar]
- Hayashi, K.; Shirafuji, T. New general relativity. Phys. Rev. D 1979, 19, 3524. [Google Scholar] [CrossRef]
- Bengochea, G.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. D 2009, 79, 124019. [Google Scholar] [CrossRef] [Green Version]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rept. 2012, 513, 1. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.I.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 2007, 4, 115. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R, T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Modified Gauss–Bonnet theory as gravitational alternative for dark energy. Phys. Rev. D 2005, 74, 086005. [Google Scholar] [CrossRef] [Green Version]
- Nunes, R.C. Structure formation in f(T) gravity and a solution for H0 tension. J. Cosmol. Astropart. Phys. 2018, 2018, 052. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.D.; Sáez-Chillón Gómez, D.; Sharov, G.S. Analyzing the H0 tension in f(R) gravity. Nucl. Phys. B 2021, 966, 115377. [Google Scholar] [CrossRef]
- Nunes, R.C.; Bonilla, A.; Pan, S.; Saridakis, E.N. Observational Constraints on f(T) gravity from varying fundamental constants. Eur. Phys. J. C 2016, 77, 230. [Google Scholar] [CrossRef] [Green Version]
- Nunes, R.C.; Pan, S.; Saridakis, E.N.; Abreu, E.M.C. New observational constraints on f(R) gravity from cosmic chronometers. J. Cosmol. Astropart. Phys. 2017, 1701, 5. [Google Scholar] [CrossRef] [Green Version]
- Anagnostopoulos, F.K.; Basilakos, S.; Saridakis, E.N. Observational constraints on Myrzakulov gravity. arXiv 2020, arXiv:2012.06524. [Google Scholar]
- Anagnostopoulos, F.K.; Basilakos, S.; Saridakis, E.N. Bayesian analysis of f(T) gravity using fσ8 data. Phys. Rev. D 2019, 100, 083517. [Google Scholar] [CrossRef] [Green Version]
- Khyllep, W.; Paliathanasis, A.; Dutta, J. Cosmological solutions and growth index of matter perturbations in f(Q) gravity. arXiv 2021, arXiv:2103.08372. [Google Scholar]
- Moreira, A.R.P.; Silva, J.E.G.; Almeida, C.A.S. Thick brane in f(T, B) gravity. Phys. Rev. D 2021, 103, 064046. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: inflation, bounce and late-time evolution. Phys. Rept. 2017, 692, 1. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.D.; Oikonomou, V.K.; Fronimos, F.P. Rectifying Einstein-Gauss-Bonnet inflation in view of GW170817. Nucl. Phys. B 2020, 958, 115135. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Swampland implications of GW170817-compatible Einstein-Gauss-Bonnet gravity. Phys. Lett. B 2020, 805, 135437. [Google Scholar] [CrossRef]
- Myrzakulov, R. FRW Cosmology in F(R,T) gravity. Eur. Phys. J. C 2012, 72, 1. [Google Scholar] [CrossRef]
- Bahamonde, S.; Bohmer, C.G.; Wright, M. Modified teleparallel theories of gravity. Phys. Rev. D 2015, 92, 104042. [Google Scholar] [CrossRef]
- Farrugia, G.; Said, J.L.; Finch, A. Gravitoelectromagnetism, solar system tests, and weak-field solutions in f (T, B) gravity with observational constraints. Universe 2020, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Caruana, M.; Farrugia, G.; Said, J.L. Cosmological bouncing solutions in f(T, B) gravity. Eur. Phys. J. C 2020, 80, 640. [Google Scholar] [CrossRef]
- Bahamonde, S.; Gaskis, V.; Kiorpelidi, S.; Koivisto, T.; Said, J.L. Cosmological perturbations in modified teleparallel gravity models: Boundary term extension. Eur. Phys. J. C 2021, 81, 53. [Google Scholar] [CrossRef]
- Escamilla-Rivera, C.; Said, J.L. Cosmological viable models in f(T, B) theory as solutions to the H0 tension. Eur. Phys. J. C 2020, 80, 677. [Google Scholar]
- Paliathanasis, A. Cosmological evolution and exact solutions in a fourth-order theory of gravity. Phys. Rev. D 2017, 95, 064062. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A. De Sitter and scaling solutions in a higher-order modified teleparallel theory. J. Cosmol. Astropart. Phys. 2017, 1708, 027. [Google Scholar] [CrossRef] [Green Version]
- Karpathopoulos, L.; Basilakos, S.; Leon, G.; Paliathanasis, A.; Tsamparlis, M. Cartan symmetries and global dynamical systems analysis in a higher-order modified teleparallel theory. Gen. Rel. Gravit. 2018, 50, 79. [Google Scholar] [CrossRef] [Green Version]
- De Witt, B.S. Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev. 1967, 160, 1113. [Google Scholar] [CrossRef] [Green Version]
- Vakili, B. Noether symmetric f(R) quantum cosmology and its classical correlations. Phys. Lett. B 2008, 669, 211. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Báez, V.; Ramírez, C. Quantum Cosmology of Quadratic Theories with a FRW Metric. Adv. Math. Phys. 2017, 2017, 1056514. [Google Scholar] [CrossRef]
- Alonso-Serrano, A.; Bouhmadi-Lopez, M.; Martin-Moruno, P. f(R) quantum cosmology: Avoiding the big rip. Phys. Rev. D 2018, 98, 104004. [Google Scholar] [CrossRef] [Green Version]
- Zampeli, A.; Pailas, T.; Terzis, P.A.; Christodoulakis, T. Conditional symmetries in axisymmetric quantum cosmologies with scalar fields and the fate of the classical singularities. J. Cosmol. Astropart. Phys. 2016, 1605, 066. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A. Similarity solutions for the Wheeler–DeWitt equation in f(R)-cosmology. Eur. Phys. J. C 2019, 79, 1031. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A. Quantum potentiality in Inhomogeneous Cosmology. Universe 2021, 7, 52. [Google Scholar] [CrossRef]
- Paliathanais, A. Dust fluid component from Lie symmetries in Scalar field Cosmology. Mod. Phys. Lett. A 2017, 32, 1750206. [Google Scholar] [CrossRef]
- Peres, A. Critique of the Wheeler-DeWitt Equation, On Einstein’s Path; Harvey, A., Ed.; Springer: New York, NY, USA, 1999. [Google Scholar]
- Maluf, J.W. Hamiltonian formulation of the teleparallel description of general relativity. J. Math. Phys. 1994, 35, 335. [Google Scholar] [CrossRef]
- Arcos, H.I.; Pereira, J.G. Torsion Gravity: A Reappraisal. Int. J. Mod. Phys. D 2004, 13, 2193. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.P.; Shepley, L.C. Homogeneous Relativistic Cosmologies; Princeton Series in Physics, 59; Princeton University Press: Princeton, NJ, USA, 1975. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries of Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 2000. [Google Scholar]
- Paliathanasis, A.; Tsamparlis, M. The geometric origin of Lie point symmetries of the Schrödinger and the Klein–Gordon equations. Int. J. Geom. Methods Mod. Phys. 2014, 11, 1450037. [Google Scholar] [CrossRef] [Green Version]
- Bialynicki-Birula, I.; Cieplak, M.; Kaminski, J. Theory of Quanta; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Phys. Rev. 1952, 85, 166. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. II. Phys. Rev. 1952, 85, 180. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paliathanasis, A. Minisuperspace Quantization of f(T, B) Cosmology. Universe 2021, 7, 150. https://doi.org/10.3390/universe7050150
Paliathanasis A. Minisuperspace Quantization of f(T, B) Cosmology. Universe. 2021; 7(5):150. https://doi.org/10.3390/universe7050150
Chicago/Turabian StylePaliathanasis, Andronikos. 2021. "Minisuperspace Quantization of f(T, B) Cosmology" Universe 7, no. 5: 150. https://doi.org/10.3390/universe7050150
APA StylePaliathanasis, A. (2021). Minisuperspace Quantization of f(T, B) Cosmology. Universe, 7(5), 150. https://doi.org/10.3390/universe7050150