From Center-Vortex Ensembles to the Confining Flux Tube
Abstract
:1. Introduction
2. Center-Vortex Ensembles
3. Abelian Effective Description of Center Vortices
3.1. Three Dimensions
- In the center-vortex condensate, the effective description is dominated by the soft Goldstone modes, . Then, the calculation of the center-element average is neither Gaussian nor dominated by a saddle-point, as it involves a compact scalar field and large fluctuations;
- This is better formulated in the lattice, where the Goldstone mode sector is governed by a 3d XY model with frustrationThe external source in Equation (12) translates into the frustration if is crossed by the link and is trivial otherwise;
- In the expansion of the partition function, due to the measure , the terms that contribute contain products of the composite (or its conjugate) over links organized forming loops. Otherwise, the integrals over the site variables at the line edges vanish (see Figure 1);
3.2. Four Dimensions
- In the center-vortex condensate, the effective theory is dominated by the soft Goldstone modes, which are represented by an emergent compact Abelian gauge field . In the center-vortex context, we proposed another natural one based on (see Section 5.3);
- The lattice version of the Goldstone mode sector is given by a Wilson action with frustration;
- In the expansion of the partition function, the relevant configurations to compute the gauge model correspond to link-variables on the edges of plaquettes organized on closed surfaces (see Figure 2);
- The frustration is non-trivial on plaquettes that intersect . Every time a closed surface links , a center-element for quarks in the representation is generated.
4. Center-Vortex Gauge Fields, Matching Rules, and Correlations
4.1. Thick Center Vortices and Intermediate Casimir Scaling
4.2. Center-Vortex Sectors in Continuum YM Theory
5. Mixed Ensembles of Oriented and Non-Oriented Center Vortices
5.1. 3d Ensemble with Asymptotic Casimir Law
5.1.1. Including N-Vortex Matching
5.1.2. Including Non-Oriented Center Vortices in 3d
5.2. Saddle-Point Analysis in 3d
5.3. A 4d Ensemble with Asymptotic Casimir Law
5.4. Including Non-Oriented Center Vortices in 4d
5.5. Analysis of the Saddle Point in 4d
6. Discussion
Funding
Conflicts of Interest
Appendix A. Non-Abelian Diffusion
1 | Namely, a SSB pattern with discrete classical vacua in d and multiple connected vacua in d. |
2 | Similarly to the 3d case, this phase should be stabilized by a quartic interaction. |
References
- Wilson, K.G. Confinement of quarks. Phys. Rev. D 1974, 10, 2445. [Google Scholar] [CrossRef]
- Bali, G.S. QCD forces and heavy quark bound states. Phys. Rep. 2001, 343, 1. [Google Scholar] [CrossRef] [Green Version]
- Hooft, G. On the phase transition towards permanent quark confinement. Nucl. Phys. 1978, B138, 1. [Google Scholar] [CrossRef]
- Stokes, F.M.; Kamleh, W.; Leinweber, D.B. Visualizations of coherent center domains in local Polyakov loops. Ann. Phys. 2014, 348, 341. [Google Scholar] [CrossRef] [Green Version]
- Kratochvila, S.; de Forcrand, P. Observing string breaking with Wilson loops. Nucl. Phys. 2003, B671, 103. [Google Scholar] [CrossRef] [Green Version]
- Debbio, L.D.; Faber, M.; Giedt, J.; Greensite, J.; Olejnik, S. Center dominance and Z2 vortices in SU(2) lattice gauge theory. Phys. Rev. 1997, D55, 2298. [Google Scholar]
- Debbio, L.D.; Faber, M.; Giedt, J.; Greensite, J.; Olejnik, S. Detection of center vortices in the lattice Yang-Mills vacuum. Phys. Rev. 1998, D58, 094501. [Google Scholar] [CrossRef] [Green Version]
- De Forcrand, P.; Pepe, M. Center vortices and monopoles without lattice Gribov copies. Nucl. Phys. B 2001, 598, 557. [Google Scholar] [CrossRef] [Green Version]
- Faber, M.; Greensite, J.; Olejník, S. Direct Laplacian Center Gauge. J. High Energy Phys. 2001, 1, 053. [Google Scholar] [CrossRef]
- Golubich, R.; Faber, M. The Road to Solving the Gribov Problem of the Center Vortex Model in Quantum Chromodynamics. Acta Phys. Polon. Suppl. 2020, 13, 59. [Google Scholar] [CrossRef]
- Engelhardt, M.; Reinhardt, H. Center projection vortices in continuum Yang–Mills theory. Nucl. Phys. 2000, B567, 249. [Google Scholar] [CrossRef] [Green Version]
- Alexandrou, C.; de Forcrand, P.; D’Elia, M. The role of center vortices in QCD. Nucl. Phys. A 2000, 663, 1031. [Google Scholar] [CrossRef] [Green Version]
- de Forcrand, P.; D’Elia, M. Relevance of center vortices to QCD. Phys. Rev. Lett. 1999, 82, 4582. [Google Scholar] [CrossRef] [Green Version]
- Höllwieser, R.; Schweigler, T.; Faber, M.; Heller, U.M. Center vortices and chiral symmetry breaking in SU(2) lattice gauge theory. Phys. Rev. D 2013, 88, 114505. [Google Scholar] [CrossRef] [Green Version]
- Nejad, S.M.H.; Faber, M.; Höllwieser, R. Colorful plane vortices and chiral symmetry breaking in SU(2) lattice gauge theory. J. High Energy Phys. 2015, 10, 108. [Google Scholar] [CrossRef] [Green Version]
- Deldar, S.; Dehghan, Z.; Faber, M.; Golubich, R.; Höllwieser, R. Influence of Fermions on Vortices in SU(2)-QCD. Universe 2021, 7, 130. [Google Scholar]
- Trewartha, D.; Kamleh, W.; Leinweber, D. Evidence that centre vortices underpin dynamical chiral symmetry breaking in SU(3) gauge theory. Phys. Lett. 2015, B747, 373. [Google Scholar] [CrossRef] [Green Version]
- Trewartha, D.; Kamleh, W.; Leinweber, D. Connection between center vortices and instantons through gauge-field smoothing. Phys. Rev. 2015, D92, 074507. [Google Scholar] [CrossRef] [Green Version]
- Biddle, J.C.; Kamleh, W.; Leinweber, D.B. Visualization of center vortex structure. Phys. Rev. D 2020, 102, 034504. [Google Scholar] [CrossRef]
- Langfeld, K.; Reinhardt, H.; Tennert, O. Confinement and scaling of the vortex vacuum of SU(2) lattice gauge theory. Phys. Lett. 1998, B419, 317. [Google Scholar] [CrossRef] [Green Version]
- Boyko, P.Y.; Polikarpov, M.I.; Zakharov, V.I. Geometry of percolating monopole clusters. Nucl. Phys. Proc. Suppl. 2003, 119, 724. [Google Scholar] [CrossRef] [Green Version]
- Bornyakov, V.G.; Boyko, P.Y.; Polikarpov, M.I.; Zakharov, V.I. Monopole clusters at short and large distances. Nucl. Phys. 2003, B672, 222. [Google Scholar] [CrossRef] [Green Version]
- Langfeld, K. Vortex structures in pure lattice gauge theory. Phys. Rev. 2004, D69, 014503. [Google Scholar]
- Greensite, J. An Introduction to the Confinement Problem, 2nd ed.; Springer Nature Switzerland: Cham, Switzerland, 2020. [Google Scholar]
- Lucini, B.; Teper, M. Confining strings in gauge theories. Phys. Rev. 2001, D64, 105019. [Google Scholar]
- Faber, M.; Greensite, J.; Olejník, S. Casimir scaling from center vortices: Towards an understanding of the adjoint string tension. Phys. Rev. 1998, D57, 2603. [Google Scholar] [CrossRef] [Green Version]
- Greensite, J.; Langfeld, K.; Olejník, S.; Reinhardt, H.; Tok, T. Color screening, Casimir scaling, and domain structure in G(2) and SU(N) gauge theories. Phys. Rev. 2007, D75, 034501. [Google Scholar] [CrossRef] [Green Version]
- Lucini, B.; Teper, M.; Wenger, U. Glueballs and k-strings in SU(N) gauge theories: Calculations with improved operators. J. High Energy Phys. 2004, 6, 012. [Google Scholar] [CrossRef]
- Lüscher, M.; Weisz, P. Quark confinement and the bosonic string. J. High Energy Phys. 2002, 7, 049. [Google Scholar] [CrossRef] [Green Version]
- Athenodorou, A.; Teper, M. SU(N) gauge theories in 2 + 1 dimensions: Glueball spectra and k-string tensions. J. High Energy Phys. 2017, 2, 015. [Google Scholar] [CrossRef] [Green Version]
- Athenodorou, A.; Teper, M. On the mass of the world-sheet ‘axion’ in SU(N) gauge theories in 3 + 1 dimensions. Phys. Lett. 2017, B771, 408. [Google Scholar] [CrossRef]
- Cea, P.; Cosmai, L.; Cuteri, F.; Papa, A. Flux tubes in the QCD vacuum. Phys. Rev. 2017, D95, 114511. [Google Scholar] [CrossRef] [Green Version]
- Yanagihara, R.; Iritani, T.; Kitazawa, M.; Asakawa, M.; Hatsuda, T. Distribution of stress tensor around static quark–anti-quark from Yang–Mills gradient flow. Phys. Lett. 2019, B789, 210. [Google Scholar] [CrossRef]
- Yanagihara, R.; Kitazawa, M. A study of stress-tensor distribution around the flux tube in the Abelian–Higgs model. Prog. Theor. Exp. Phys. 2019, 9, 093B02, Erratum in Prog. Theor. Exp. Phys. 2020, 7, 079201. [Google Scholar] [CrossRef]
- Engelhardt, M.; Reinhardt, H. Center vortex model for the infrared sector of Yang–Mills theory—Confinement and deconfinement. Nucl. Phys. 2000, B585, 591. [Google Scholar] [CrossRef] [Green Version]
- Engelhardt, M.; Quandt, M.; Reinhardt, H. Center vortex model for the infrared sector of SU(3) Yang–Mills theory—Confinement and deconfinement. Nucl. Phys. 2004, B685, 227. [Google Scholar] [CrossRef] [Green Version]
- Reinhardt, H. Topology of center vortices. Nucl. Phys. 2002, B628, 133. [Google Scholar] [CrossRef] [Green Version]
- de Lemos, A.L.L.; Oxman, L.E.; Teixeira, B.F.I. Derivation of an Abelian effective model for instanton chains in 3D Yang-Mills theory. Phys. Rev. 2012, D85, 125014. [Google Scholar] [CrossRef] [Green Version]
- Oxman, L.E.; Reinhardt, H. Effective theory of the D=3 center vortex ensemble. Eur. Phys. J. 2018, D78, 177. [Google Scholar] [CrossRef] [Green Version]
- Kleinert, H. Gauge Fields in Condensed Matter. No. Bd. 2 in Gauge Fields in Condensed Matte; World Scientific: Singapore, 1989. [Google Scholar]
- Kleinert, H. Path Integrals in Quantum Mechanics, Statics, Polymer Physics, and Financial Markets; World Scientific: Singapore, 2006. [Google Scholar]
- Fredrickson, G.H. The Equilibrium Theory of Inhomogeneous Polymers, 1st ed.; Clarendon Press: Oxford, UK, 2006; p. 452. [Google Scholar]
- Durhuus, B.; Ambjørn, J.; Jonsson, T. Quantum Geometry: A Statistical Field Theory Approach; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Wheater, J.F. Random surfaces: From polymer membranes to strings. J. Phys. 1994, A27, 3323. [Google Scholar] [CrossRef]
- Rey, S.J. Higgs mechanism for Kalb-Ramond gauge field. Phys. Rev. 1989, D40, 3396. [Google Scholar] [CrossRef] [PubMed]
- Oxman, L.E. 4D ensembles of percolating center vortices and monopole defects: The emergence of flux tubes with -ality and gluon confinement. Phys. Rev. 2018, D98, 036018. [Google Scholar] [CrossRef] [Green Version]
- Cornwall, J.M. Finding Dynamical Masses in Continuum QCD. In Proceedings of the Workshop on Non-Perturbative Quantum Chromodynamics; Milton, K.A., Samuel, M.A., Eds.; Birkhäuser: Stuttgart, Germany, 1983. [Google Scholar]
- Deldar, S. Potentials between static SU(3) sources in the fat-center-vortices model. J. High Energy Phys. 2001, 1, 013. [Google Scholar] [CrossRef] [Green Version]
- Fosco, C.D.; Kovner, A. Vortices and bags in dimensions. Phys. Rev. 2001, D63, 045009. [Google Scholar]
- Kogan, I.I.; Kovner, A. Monopoles, Vortices and Strings: Confinement and Deconfinement in 2+1 Dimensions at Weak Coupling. arXiv 2002, arXiv:hep-th/0205026. [Google Scholar]
- Oxman, L.E.; Santos-Rosa, G.C. Detecting topological sectors in continuum Yang-Mills theory and the fate of BRST symmetry. Phys. Rev. 2015, D92, 125025. [Google Scholar] [CrossRef] [Green Version]
- Singer, I.M. Commun. Some remarks on the Gribov ambiguity. Math. Phys. 1978, 60, 7. [Google Scholar] [CrossRef]
- Fiorentini, D.; Junior, D.R.; Oxman, L.E.; Simões, G.M.; Sobreiro, R.F. Study of Gribov copies in a Yang-Mills ensemble. Phys. Rev. 2021, D103, 114010. [Google Scholar]
- Fiorentini, D.; Junior, D.R.; Oxman, L.E.; Sobreiro, R.F. Renormalizability of the center-vortex free sector of Yang-Mills theory. Phys. Rev. 2020, D101, 085007. [Google Scholar]
- Gorsky, A.; Shifman, M.; Yung, A. Non-Abelian Meissner effect in Yang-Mills theories at weak coupling. Phys. Rev. 2005, D71, 045010. [Google Scholar] [CrossRef] [Green Version]
- Hanany, A.; Tong, D. Vortices, Instantons and branes. J. High Energy Phys. 2003, 307, 037. [Google Scholar] [CrossRef]
- Auzzi, R.; Bolognesi, S.; Evslin, J.; Konishi, K.; Yung, A. Nonabelian superconductors: Vortices and confinement in N = 2 SQCD. Nucl. Phys. B 2003, 673, 187. [Google Scholar] [CrossRef] [Green Version]
- Shifman, M.; Yung, A. Non-Abelian string junctions as confined monopoles. Phys. Rev. 2004, D70, 045004. [Google Scholar] [CrossRef] [Green Version]
- Hanany, A.; Tong, D. Vortex strings and four-dimensional gauge dynamics. J. High Energy Phys. 2004, 404, 066. [Google Scholar] [CrossRef]
- Markov, V.; Marshakov, A.; Yung, A. Non-Abelian vortices in N = 1* gauge theory. Nucl. Phys. 2005, B709, 267. [Google Scholar] [CrossRef] [Green Version]
- Balachandran, A.P.; Digal, S.; Matsuura, T. Semisuperfluid strings in high density QCD. Phys. Rev. 2006, D73, 074009. [Google Scholar] [CrossRef] [Green Version]
- Eto, M.; Isozumi, Y.; Nitta, M.; Ohashi, K.; Sakai, N. Moduli space of non-Abelian vortices. Phys. Rev. Lett. 2006, 96, 161601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eto, M.; Konishi, K.; Marmorini, G.; Nitta, M.; Ohashi, K.; Vinci, W.; Yokoi, N. Non-Abelian vortices of higher winding numbers. Phys. Rev. 2006, D74, 065021. [Google Scholar] [CrossRef] [Green Version]
- Nakano, E.; Nitta, M.; Matsuura, T. Non-Abelian strings in high-density QCD: Zero modes and interactions. Phys. Rev. 2008, D78, 045002. [Google Scholar] [CrossRef] [Green Version]
- Ambjørn, J.; Giedt, J.; Greensite, J. Vortex Structure vs. Monopole Dominance in Abelian-Projected Gauge Theory. J. High Energy Phys. 2000, 2, 033. [Google Scholar] [CrossRef] [Green Version]
- Greensite, J.; Höllwieser, R. Double-winding Wilson loops and monopole confinement mechanisms. Phys. Rev. 2015, D91, 054509. [Google Scholar] [CrossRef] [Green Version]
- Junior, D.R.; Oxman, L.E.; Simões, G.M. 3D Yang-Mills confining properties from a non-Abelian ensemble perspective. J. High Energy Phys. 2020, 1, 180. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Feng, D.H.; Gilmore, R. Coherent states: Theory and some applications. Rev. Mod. Phys. 1990, 62, 867. [Google Scholar] [CrossRef]
- Perelemov, A. Generalized Coherent States and Their Applications; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- De Vega, H.J.; Schaposnik, F.A. Vortices and electrically charged vortices in non-Abelian gauge theories. Phys. Rev. 1986, D34, 3206. [Google Scholar] [CrossRef] [PubMed]
- Auzzi, R.; Kumar, S.P. Non-Abelian k-vortex dynamics in N = 1* theory and its gravity dual. J. High Energy Phys. 2008, 12, 77. [Google Scholar] [CrossRef]
- Oxman, L.E. Confinement of quarks and valence gluons in SU(N) Yang-Mills-Higgs models. J. High Energy Phys. 2013, 3, 038. [Google Scholar] [CrossRef]
- Oxman, L.E.; Vercauteren, D. Exploring center strings in and relativistic Yang-Mills-Higgs models. Phys. Rev. 2017, D95, 025001. [Google Scholar]
- Oxman, L.E.; Simões, G.M. k—strings with exact Casimir law and Abelian-like profiles. Phys. Rev. 2019, D99, 016011. [Google Scholar] [CrossRef] [Green Version]
- Junior, D.R.; Oxman, L.E.; Simões, G.M. BPS strings and the stability of the asymptotic Casimir law in adjoint flavor-symmetric Yang-Mills-Higgs models. Phys. Rev. 2020, D102, 074005. [Google Scholar]
- Nishino, S.; Kondo, K.-I.; Shibata, A.; Sasago, T.; Kato, S. Type of dual superconductivity for the SU(2) Yang–Mills theory. Eur. Phys. J. C 2019, 79, 774. [Google Scholar] [CrossRef]
- Oxman, L.E.; Santos-Rosa, G.C.; Teixeira, B.F.I. Coloured loops in 4D and their effective field representation. J. Phys. 2014, A47, 305401. [Google Scholar] [CrossRef]
3d XY | Effective Fields |
---|---|
large loops are favored | negative tension |
multiple small loops are disfavored | positive stiffness |
multiple occupation of links is disfavored | repulsive interactions |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junior, D.R.; Oxman, L.E.; Simões, G.M. From Center-Vortex Ensembles to the Confining Flux Tube. Universe 2021, 7, 253. https://doi.org/10.3390/universe7080253
Junior DR, Oxman LE, Simões GM. From Center-Vortex Ensembles to the Confining Flux Tube. Universe. 2021; 7(8):253. https://doi.org/10.3390/universe7080253
Chicago/Turabian StyleJunior, David R., Luis E. Oxman, and Gustavo M. Simões. 2021. "From Center-Vortex Ensembles to the Confining Flux Tube" Universe 7, no. 8: 253. https://doi.org/10.3390/universe7080253
APA StyleJunior, D. R., Oxman, L. E., & Simões, G. M. (2021). From Center-Vortex Ensembles to the Confining Flux Tube. Universe, 7(8), 253. https://doi.org/10.3390/universe7080253