A Bayesian Inference Framework for Gamma-ray Burst Afterglow Properties
Abstract
:1. Introduction
2. GRB Afterglow
Jet Structuring
3. Parameter Estimation
- )
- )
- ),
4. Results and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Abbott, B.P.; Birney, R.; Jawahar, S.; Lockerbie, N.A.; Reid, S.; Tokmakov, K.V. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, A.; Veres, P.; Burns, E.; Briggs, M.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C.; Preece, R.; Poolakkil, S.; Roberts, O.; et al. An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. ApJL 2017, 848, L14. [Google Scholar] [CrossRef] [Green Version]
- Savchenko, V.; Ferrigno, C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T.L.; Diehl, R.; Domingo, A.; et al. INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. ApJL 2017, 848, L15. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. ApJL 2017, 848, L13. [Google Scholar] [CrossRef]
- Abbott, B.; Abbott, R.; Abbott, T.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.; Adya, V.; Affeldt, C.; et al. GW190425: Observation of a compact binary coalescence with total mass 3.4 M⊙. ApJL 2020, 892, L3. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Observation of gravitational waves from two neutron star–black hole coalescences. ApJL 2021, 915, L5. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger observations of a binary neutron star merger. ApJL 2017, 848, L12. [Google Scholar] [CrossRef]
- Troja, E.; Piro, L.; van Eerten, H.; Wollaeger, R.T.; Im, M.; Fox, O.D.; Butler, N.R.; Cenko, S.B.; Sakamoto, T.; Fryer, C.L.; et al. The X-ray counterpart to the gravitational-wave event GW170817. Nature 2017, 551, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Dobie, D.; Kaplan, D.L.; Murphy, T.; Lenc, E.; Mooley, K.P.; Lynch, C.; Corsi, A.; Frail, D.; Kasliwal, M.; Hallinan, G. A Turnover in the Radio Light Curve of GW170817. ApJL 2018, 858, L15. [Google Scholar] [CrossRef]
- Lin, E.T.; Yu, H.F.; Kong, A.K. Bayesian analysis on the X-ray spectra of the binary neutron star merger GW170817. JHEAP 2019, 21, 1–5. [Google Scholar] [CrossRef]
- Hajela, A.; Margutti, R.; Bright, J.S.; Alexander, K.D.; Metzger, B.D.; Nedora, V.; Kathirgamaraju, A.; Margalit, B.; Radice, D.; Berger, E.; et al. The emergence of a new source of X-rays from the binary neutron star merger GW170817. arXiv 2021, arXiv:2104.02070. [Google Scholar]
- Troja, E.; O’Connor, B.; Ryan, G.; Piro, L.; Ricci, R.; Zhang, B.; Piran, T.; Bruni, G.; Cenko, S.B.; van Eerten, H. Accurate flux calibration of GW170817: Is the X-ray counterpart on the rise? arXiv 2021, arXiv:2104.13378. [Google Scholar]
- Troja, E.; van Eerten, H.; Zhang, B.; Ryan, G.; Piro, L.; Ricci, R.; O’Connor, B.; Wieringa, M.H.; Cenko, S.B.; Sakamoto, T. A thousand days after the merger: Continued X-ray emission from GW170817. MNRAS 2020, 498, 5643–5651. [Google Scholar] [CrossRef]
- Ghirlanda, G.; Salafia, O.S.; Paragi, Z.; Giroletti, M.; Yang, J.; Marcote, B.; Blanchard, J.; Agudo, I.; An, T.; Bernardini, M.G.; et al. Compact radio emission indicates a structured jet was produced by a binary neutron star merger. Science 2019, 363, 968–971. [Google Scholar] [CrossRef] [Green Version]
- Lyman, J.D.; Lamb, G.P.; Levan, A.J.; Mandel, I.; Tanvir, N.R.; Kobayashi, S.; Gompertz, B.; Hjorth, J.; Fruchter, A.S.; Kangas, T.; et al. The optical afterglow of the short gamma-ray burst associated with GW170817. Nat. Astron. 2018, 2, 751–754. [Google Scholar] [CrossRef]
- Lamb, G.P.; Lyman, J.D.; Levan, A.J.; Tanvir, N.R.; Kangas, T.; Fruchter, A.S.; Gompertz, B.; Hjorth, J.; Mandel, I.; Oates, S.R.; et al. The Optical Afterglow of GW170817 at One Year Post-merger. ApJL 2019, 870, L15. [Google Scholar] [CrossRef] [Green Version]
- Resmi, L.; Schulze, S.; Ishwara-Chandra, C.H.; Misra, K.; Buchner, J.; De Pasquale, M.; Sánchez-Ramírez, R.; Klose, S.; Kim, S.; Tanvir, N.R.; et al. Low-frequency View of GW170817/GRB 170817A with the Giant Metrewave Radio Telescope. ApJL 2018, 867, 57. [Google Scholar] [CrossRef] [Green Version]
- Troja, E.; Piro, L.; Ryan, G.; van Eerten, H.; Ricci, R.; Wieringa, M.H.; Lotti, S.; Sakamoto, T.; Cenko, S.B. The outflow structure of GW170817 from late-time broad-band observations. MNRAS 2018, 478, L18–L23. [Google Scholar] [CrossRef]
- Tan, W.W.; Yu, Y.W. The jet structure and the intrinsic luminosity function of short gamma-ray bursts. ApJ 2020, 902, 83. [Google Scholar] [CrossRef]
- Wang, H.; Giannios, D. Multimessenger Parameter Estimation of GW170817: From Jet Structure to the Hubble Constant. ApJ 2021, 908, 200. [Google Scholar] [CrossRef]
- Nakar, E.; Piran, T. Afterglow constraints on the viewing angle of binary neutron star mergers and determination of the Hubble constant. ApJ 2021, 909, 114. [Google Scholar] [CrossRef]
- Peer, A. Dynamical Model of an Expanding Shell. ApJL 2012, 752, L8. [Google Scholar] [CrossRef]
- Lamb, G.P.; Mandel, I.; Resmi, L. Late-time evolution of afterglows from off-axis neutron star mergers. MNRAS 2018, 481, 2581–2589. [Google Scholar] [CrossRef] [Green Version]
- Lamb, G.P.; Kobayashi, S. Electromagnetic counterparts to structured jets from gravitational wave detected mergers. MNRAS 2017, 472, 4953–4964. [Google Scholar] [CrossRef]
- Lamb, G.P.; Kann, D.A.; Fernández, J.J.; Mandel, I.; Levan, A.J.; Tanvir, N.R. GRB jet structure and the jet break. arXiv 2021, arXiv:2104.11099. [Google Scholar]
- Lamb, G.P.; Tanvir, N.R.; Levan, A.J.; de Ugarte Postigo, A.; Kawaguchi, K.; Corsi, A.; Evans, P.A.; Gompertz, B.; Malesani, D.B.; Page, K.L.; et al. Short GRB 160821B: A Reverse Shock, a Refreshed Shock, and a Well-sampled Kilonova. ApJ 2019, 883, 48. [Google Scholar] [CrossRef]
- Ashton, G.; Hübner, M.; Lasky, P.D.; Talbot, C.; Ackley, K.; Biscoveanu, S.; Chu, Q.; Divakarla, A.; Easter, P.J.; Goncharov, B.; et al. BILBY: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy. ApJs 2019, 241, 27. [Google Scholar] [CrossRef] [Green Version]
- Speagle, J.S. DYNESTY: A dynamic nested sampling package for estimating Bayesian posteriors and evidences. MNRAS 2020, 493, 3132–3158. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, E.-T.; Hayes, F.; Lamb, G.P.; Heng, I.S.; Kong, A.K.H.; Williams, M.J.; Saha, S.; Veitch, J. A Bayesian Inference Framework for Gamma-ray Burst Afterglow Properties. Universe 2021, 7, 349. https://doi.org/10.3390/universe7090349
Lin E-T, Hayes F, Lamb GP, Heng IS, Kong AKH, Williams MJ, Saha S, Veitch J. A Bayesian Inference Framework for Gamma-ray Burst Afterglow Properties. Universe. 2021; 7(9):349. https://doi.org/10.3390/universe7090349
Chicago/Turabian StyleLin, En-Tzu, Fergus Hayes, Gavin P. Lamb, Ik Siong Heng, Albert K. H. Kong, Michael J. Williams, Surojit Saha, and John Veitch. 2021. "A Bayesian Inference Framework for Gamma-ray Burst Afterglow Properties" Universe 7, no. 9: 349. https://doi.org/10.3390/universe7090349
APA StyleLin, E. -T., Hayes, F., Lamb, G. P., Heng, I. S., Kong, A. K. H., Williams, M. J., Saha, S., & Veitch, J. (2021). A Bayesian Inference Framework for Gamma-ray Burst Afterglow Properties. Universe, 7(9), 349. https://doi.org/10.3390/universe7090349