Analog Particle Production Model for General Classes of Taub-NUT Black Holes
Abstract
:1. Introduction
2. Accelerated Boundary Correspondence
2.1. Taub-NUT Metric
2.2. Taub-NUT Mirror
2.3. Energy Flux and Particle Spectrum
3. Kerr–Newman Taub-NUT Mirror
3.1. Kerr–Newman Taub-NUT Metric
3.2. Kerr–Newman Taub-NUT Mirror
4. Extremal Kerr–Newman Taub-NUT Mirror
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Vanishing Two-Space Curvature (ε=0)
Appendix B. Taub-NUT Mirror (ε=0)
Appendix C. Energy Flux and Particle Spectrum (ε=0)
References
- Taub, A. Empty space-times admitting a three parameter group of motions. Ann. Math. 1951, 53, 472–490. [Google Scholar] [CrossRef]
- Newman, E.; Tamburino, L.; Unti, T. Empty space generalization of the Schwarzschild metric. J. Math. Phys. 1963, 4, 915. [Google Scholar] [CrossRef]
- Hawking, S.; Hunter, C.; Page, D.N. Nut charge, anti-de Sitter space and entropy. Phys. Rev. D 1999, 59, 044033. [Google Scholar] [CrossRef] [Green Version]
- Chamblin, A.; Emparan, R.; Johnson, C.V.; Myers, R.C. Large N phases, gravitational instantons and the nuts and bolts of AdS holography. Phys. Rev. D 1999, 59, 064010. [Google Scholar] [CrossRef] [Green Version]
- Emparan, R.; Johnson, C.V.; Myers, R.C. Surface terms as counterterms in the AdS/CFT correspondence. Phys. Rev. D 1999, 60, 104001. [Google Scholar] [CrossRef] [Green Version]
- Mann, R.B. Misner string entropy. Phys. Rev. D 1999, 60, 104047. [Google Scholar] [CrossRef] [Green Version]
- Kerr, R.P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 1963, 11, 237–238. [Google Scholar] [CrossRef]
- Hawking, S. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Fulling, S.A.; Davies, P.C.W. Radiation from a moving mirror in two dimensional space-time: Conformal anomaly. Proc. R. Soc. Lond. A Math. Phys. Sci. 1976, 348, 393–414. [Google Scholar]
- Davies, P.; Fulling, S. Radiation from Moving Mirrors and from Black Holes. Proc. R. Soc. Lond. A Math. Phys. Sci. 1977, A356, 237–257. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum Field Theory in Curved Space-Time. Phys. Rep. 1975, 19, 295–357. [Google Scholar] [CrossRef]
- Birrell, N.; Davies, P. Quantum Fields in Curved Space; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar] [CrossRef]
- Fabbri, A.; Navarro-Salas, J. Modeling Black Hole Evaporation; Imperial College Press: London, UK, 2005. [Google Scholar]
- Good, M.R.R.; Anderson, P.R.; Evans, C.R. Mirror Reflections of a Black Hole. Phys. Rev. D 2016, 94, 065010. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Ong, Y.C. Particle spectrum of the Reissner-Nordström black hole. arXiv 2020, arXiv:gr-qc/2004.03916. [Google Scholar]
- Good, M.R.; Foo, J.; Linder, E.V. Accelerating boundary analog of a Kerr black hole. arXiv 2020, arXiv:gr-qc/2006.01349. [Google Scholar]
- Foo, J.; Good, M.R. Hawking radiation particle spectrum of a Kerr–Newman black hole. arXiv 2020, arXiv:gr-qc/2006.09681. [Google Scholar]
- Kerner, R.; Mann, R.B. Tunnelling, temperature and Taub-NUT black holes. Phys. Rev. D 2006, 73, 104010. [Google Scholar] [CrossRef] [Green Version]
- Al-Badawi, A.; Halilsoy, M. On the physical meaning of the NUT parameter. Gen. Relativ. Gravit. 2006, 38, 1729–1734. [Google Scholar] [CrossRef]
- Griffiths, J.B.; Podolskỳ, J. Exact Space-Times in Einstein’s General Relativity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Misner, C.W. The Flatter regions of Newman, Unti and Tamburino’s generalized Schwarzschild space. J. Math. Phys. 1963, 4, 924–938. [Google Scholar] [CrossRef]
- Hajicek, P. Causality in non-Hausdorff space-times. Commun. Math. Phys. 1971, 21, 75–84. [Google Scholar] [CrossRef]
- Clément, G.; Gal’tsov, D.; Guenouche, M. Rehabilitating space-times with NUTs. Phys. Lett. B 2015, 750, 591–594. [Google Scholar] [CrossRef] [Green Version]
- Clément, G.; Gal’tsov, D.; Guenouche, M. NUT wormholes. Phys. Rev. D 2016, 93, 024048. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.; Kruskal, M.; Godfrey, B.B. Taub-NUT (Newman, Unti, Tamburino) Metric and Incompatible Extensions. Phys. Rev. D 1971, 4, 2945–2948. [Google Scholar] [CrossRef]
- Hennigar, R.A.; Kubizňák, D.; Mann, R.B. Thermodynamics of Lorentzian Taub-NUT spacetimes. Phys. Rev. D 2019, 100, 064055. [Google Scholar] [CrossRef] [Green Version]
- Bordo, A.B.; Gray, F.; Kubizňák, D. Thermodynamics and Phase Transitions of NUTty Dyons. J. High Energy Phys. 2019, 2019, 119. [Google Scholar] [CrossRef] [Green Version]
- Ballon Bordo, A.; Gray, F.; Kubizňák, D. Thermodynamics of Rotating NUTty Dyons. J. High Energy Phys. 2020, 2020, 84. [Google Scholar] [CrossRef]
- Ballon Bordo, A.; Gray, F.; Hennigar, R.A.; Kubizňák, D. The First Law for Rotating NUTs. Phys. Lett. B 2019, 798, 134972. [Google Scholar] [CrossRef]
- Good, M.R.R.; Yelshibekov, K.; Ong, Y.C. On Horizonless Temperature with an Accelerating Mirror. J. High Energy Phys. 2017, 2017, 13. [Google Scholar] [CrossRef] [Green Version]
- Carlitz, R.D.; Willey, R.S. Reflections on moving mirrors. Phys. Rev. D 1987, 36, 2327–2335. [Google Scholar] [CrossRef]
- Good, M.R.R. Reflections on a Black Mirror. In Everything about Gravity: Proceedings of the Second LeCosPA International Symposium; World Scientific: Singapore, 2017; pp. 560–565. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.R.; Good, M.R.R.; Evans, C.R. Black hole—Moving mirror I: An exact correspondence. In The Fourteenth Marcel Grossmann Meeting; World Scientific: Singapore, 2017; pp. 1701–1704. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Anderson, P.R.; Evans, C.R. Black hole—Moving mirror II: Particle creation. In The Fourteenth Marcel Grossmann Meeting; World Scientific: Singapore, 2017; pp. 1705–1708. [Google Scholar] [CrossRef] [Green Version]
- Strominger, A.; Vafa, C. Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 1996, 379, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Zel’dovich, Y.B.; Novikov, I.D. The hypothesis of cores retarded during expansion and the hot cosmological model. Soviet Astronomy 1967, 10, 602. [Google Scholar]
- Good, M.R.R.; Zhakenuly, A.; Linder, E.V. Mirror at the edge of the universe: Reflections on an accelerated boundary correspondence with de Sitter cosmology. Phys. Rev. D 2020, 102, 045020. [Google Scholar] [CrossRef]
- Siklos, S. Two completely singularity-free NUT spacetimes. Phys. Lett. A 1976, 59, 173–174. [Google Scholar] [CrossRef]
- Batic, D.; Nicolini, P. Fuzziness at the horizon. Phys. Lett. B 2010, 692, 32–35. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.; Ong, Y.C.; Myrzakul, A.; Yelshibekov, K. Information preservation for null shell collapse: A moving mirror model. Gen. Relativ. Gravit. 2019, 51, 92. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R. Spacetime Continuity and Quantum Information Loss. Universe 2018, 4, 122. [Google Scholar] [CrossRef] [Green Version]
- Myrzakul, A.; Good, M.R. Unitary evaporation via modified Regge-Wheeler coordinate. In Proceedings of the 15th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity Astrophysics, and Relativistic Field Theories, Rome, Italy, 1–7 July 2018. [Google Scholar]
- Good, M.R.R.; Ong, Y.C. Signatures of Energy Flux in Particle Production: A Black Hole Birth Cry and Death Gasp. J. High Energy Phys. 2015, 1507, 145. [Google Scholar] [CrossRef]
- Good, M.R.R. Reflecting at the Speed of Light. In Memorial Volume for Kerson Huang; World Scientific: Singapore, 2017; pp. 113–116. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Ong, Y.C.; Yeom, D.H. Black Hole Remnants and the Information Loss Paradox. Phys. Rep. 2015, 603, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Ford, L. Quantum Coherence Effects and the Second Law of Thermodynamics. Proc. R. Soc. Lond. A 1978, A364, 227–236. [Google Scholar] [CrossRef]
- Davies, P. Can Moving Mirrors Violate the Second Law of Thermodynamics? Phys. Lett. B 1982, 113, 215–218. [Google Scholar] [CrossRef]
- Walker, W. Negative Energy Fluxes and Moving Mirrors in Curved Space. Class. Quantum Gravity 1985, 2, L37. [Google Scholar] [CrossRef]
- Ford, L. Constraints on negative energy fluxes. Phys. Rev. D 1991, 43, 3972–3978. [Google Scholar] [CrossRef]
- Ford, L.; Roman, T.A. The Quantum interest conjecture. Phys. Rev. D 1999, 60, 104018. [Google Scholar] [CrossRef] [Green Version]
- Ford, L.; Roman, T.A. Energy flux correlations and moving mirrors. Phys. Rev. D 2004, 70, 125008. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Linder, E.V. Slicing the Vacuum: New Accelerating Mirror Solutions of the Dynamical Casimir Effect. Phys. Rev. D 2017, 96, 125010. [Google Scholar] [CrossRef] [Green Version]
- Cong, W.; Qian, C.; Good, M.R.; Mann, R.B. Effects of Horizons on Entanglement Harvesting. arXiv 2020, arXiv:gr-qc/2006.01720. [Google Scholar] [CrossRef]
- Bianchi, E.; Smerlak, M. Entanglement entropy and negative energy in two dimensions. Phys. Rev. D 2014, 90, 041904. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.; Linder, E.V.; Wilczek, F. Moving mirror model for quasithermal radiation fields. Phys. Rev. D 2020, 101, 025012. [Google Scholar] [CrossRef] [Green Version]
- Su, D.; Ho, C.M.; Mann, R.B.; Ralph, T.C. Black Hole Squeezers. Phys. Rev. D 2017, 96, 065017. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foo, J.; Good, M.R.R.; Mann, R.B. Analog Particle Production Model for General Classes of Taub-NUT Black Holes. Universe 2021, 7, 350. https://doi.org/10.3390/universe7090350
Foo J, Good MRR, Mann RB. Analog Particle Production Model for General Classes of Taub-NUT Black Holes. Universe. 2021; 7(9):350. https://doi.org/10.3390/universe7090350
Chicago/Turabian StyleFoo, Joshua, Michael R. R. Good, and Robert B. Mann. 2021. "Analog Particle Production Model for General Classes of Taub-NUT Black Holes" Universe 7, no. 9: 350. https://doi.org/10.3390/universe7090350
APA StyleFoo, J., Good, M. R. R., & Mann, R. B. (2021). Analog Particle Production Model for General Classes of Taub-NUT Black Holes. Universe, 7(9), 350. https://doi.org/10.3390/universe7090350