Evolution of Neutron Star Magnetic Fields
Abstract
:1. Introduction
2. Formation
3. Evolution (Theory)
3.1. Crustal Magnetic Field
3.1.1. Ohmic Evolution
3.1.2. Hall Evolution
3.2. Core Magnetic Field: Ambipolar Diffusion
3.3. Numerical Efforts
4. Observations
4.1. Magnetars
4.2. Magnificent Seven
4.3. Central Compact Objects
4.4. Radio Pulsars with Seemingly Growing Dipolar Magnetic Field
4.5. High-Mass X-ray Binaries
4.6. Millisecond Radio Pulsars
5. Theory versus Observations
5.1. Magnetic Fields of Isolated Radio Pulsars
5.2. Thermal Maps of NSs and Their Relation to Magnetic Fields and Evolution
5.3. Polarisation
5.4. Hall Attractor
5.5. Ages of Radio Pulsars
6. List of Open Problems
- How do NS magnetic fields form? What is the role of coalescence in the generation of magnetar-strength fields?
- What are consequences of field evolution for normal radio pulsars?
- How do magnetic fields of MSPs evolve (both large- and small-scale)?
- Do we observe any object with an increasing dipolar magnetic field?
- What are values of the parameter Q in different NSs at different depths, and how are they related to electric currents responsible for magnetic fields?
- Is the Hall attractor stage reached during a NS evolution?
- Are there any magnetars in binaries, and in HMXBs in particular?
- What is the state of the NS core superconductor? What is the timescale for magnetic field evolution in the core?
- What is the role of ambipolar diffusion in the core? Is it significant for normal radio pulsars? For magnetars? For millisecond radio pulsars?
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NS | Neutron Star |
M7 | Magnificent Seven |
CCO | Central Compact Object |
HMXB | High-mass X-ray Binary |
SNR | Supernova Remnant |
MSP | Millisecond Pulsar |
ULXs | Ultra-luminous X-ray sources |
1 | https://www.atnf.csiro.au/research/pulsar/psrcat/ (accessed on 19 August 2021). |
2 | Recently it was suggested that the decay of the magnetic field in magnetars may trigger electron captures in their crust and this might explain the persistent thermal luminosity [106]. |
3 | Definition of the primary and secondary star in these evolved systems is ambiguous because the initial primary (more massive) star loses a significant part of its mass due to the mass transfer and becomes a NS which is apparently less massive than the original secondary star. We follow the convention generally accepted in the binary stellar evolution community, and call the originally more massive star the primary star. |
4 | Assuming that pulsars are born predominantly in the youngest part of the thin Galactic disk. |
References
- Harding, A.K. The neutron star zoo. Front. Phys. 2013, 8, 679–692. [Google Scholar] [CrossRef]
- Perna, R.; Pons, J.A.; Viganò, D.; Rea, N. The many lives of magnetized neutron stars. Astron. Nachrichten 2014, 335, 715. [Google Scholar] [CrossRef]
- Hewish, A.; Bell, S.J.; Pilkington, J.D.H.; Scott, P.F.; Collins, R.A. Observation of a rapidly pulsating radio source. Nature 1968, 217, 709–713. [Google Scholar] [CrossRef]
- Ostriker, J.P.; Gunn, J.E. On the nature of pulsars. I. Theory. Astrophys. J. 1969, 157, 1395. [Google Scholar] [CrossRef]
- Goldreich, P.; Julian, W.H. Pulsar electrodynamics. Astrophys. J. 1969, 157, 869. [Google Scholar] [CrossRef]
- Pétri, J. Electrodynamics and radiation from rotating neutron star magnetospheres. Universe 2020, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Ruderman, M.A.; Sutherland, P.G. Theory of pulsars: Polar gaps, sparks, and coherent microwave radiation. Astrophys. J. 1975, 196, 51–72. [Google Scholar] [CrossRef]
- Philippov, A.; Tchekhovskoy, A.; Li, J.G. Time evolution of pulsar obliquity angle from 3D simulations of magnetospheres. Mon. Not. R. Astron. Soc. 2014, 441, 1879–1887. [Google Scholar] [CrossRef] [Green Version]
- Tauris, T.M.; Manchester, R.N. On the evolution of pulsar beams. Mon. Not. R. Astron. Soc. 1998, 298, 625–636. [Google Scholar] [CrossRef] [Green Version]
- Lorimer, D.R.; Kramer, M. Handbook of Pulsar Astronomy; Cambridge Observing Handbooks for Research Astronomers; Cambridge University Press: Cambridge, UK, 2004; Volume 4. [Google Scholar]
- Krolik, J.H. Multipolar magnetic fields in neutron stars. Astrophys. J. 1991, 373, L69–L72. [Google Scholar] [CrossRef]
- Tiengo, A.; Esposito, P.; Mereghetti, S.; Turolla, R.; Nobili, L.; Gastaldello, F.; Götz, D.; Israel, G.L.; Rea, N.; Stella, L.; et al. A variable absorption feature in the X-ray spectrum of a magnetar. Nature 2013, 500, 312–314. [Google Scholar] [CrossRef] [Green Version]
- Perna, R.; Viganò, D.; Pons, J.A.; Rea, N. The imprint of the crustal magnetic field on the thermal spectra and pulse profiles of isolated neutron stars. Mon. Not. R. Astron. Soc. 2013, 434, 2362–2372. [Google Scholar] [CrossRef] [Green Version]
- Igoshev, A.P.; Hollerbach, R.; Wood, T.; Gourgouliatos, K.N. Strong toroidal magnetic fields required by quiescent X-ray emission of magnetars. Nat. Astron. 2021, 5, 145–149. [Google Scholar] [CrossRef]
- Lyutikov, M.; Gavriil, F.P. Resonant cyclotron scattering and Comptonization in neutron star magnetospheres. Mon. Not. R. Astron. Soc. 2006, 368, 690–706. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, D.N.; Pons, J.A.; Miralles, J.A. 2D Cooling of magnetized neutron stars. Astron. Astrophys. 2008, 486, 255–271. [Google Scholar] [CrossRef] [Green Version]
- Urpin, V.A.; Yakovlev, D.G. Thermogalvanomagnetic effects in white dwarfs and neutron stars. Sov. Astron. 1980, 24, 425. [Google Scholar]
- Blandford, R.D.; Applegate, J.H.; Hernquist, L. Thermal origin of neutron star magnetic fields. Mon. Not. R. Astron. Soc. 1983, 204, 1025–1048. [Google Scholar] [CrossRef] [Green Version]
- Ginzburg, V.L. The magnetic fields of collapsing masses and the nature of superstars. Sov. Phys. Dokl. 1964, 9, 329. [Google Scholar]
- Igoshev, A.P.; Kholtygin, A.F. Statistics of magnetic fields and fluxes of massive OB stars and the origin of neutron star magnetic fields. Astron. Nachrichten 2011, 332, 1012. [Google Scholar] [CrossRef]
- Makarenko, E.I.; Igoshev, A.P.; Kholtygin, A.F. Testing the fossil field hypothesis: Could strongly magnetized OB stars produce all known magnetars? Mon. Not. R. Astron. Soc. 2021, 504, 5813–5828. [Google Scholar] [CrossRef]
- Schneider, F.R.N.; Ohlmann, S.T.; Podsiadlowski, P.; Röpke, F.K.; Balbus, S.A.; Pakmor, R.; Springel, V. Stellar mergers as the origin of magnetic massive stars. Nature 2019, 574, 211–214. [Google Scholar] [CrossRef]
- Spruit, H.C. Origin of neutron star magnetic fields. In 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More; Bassa, C., Wang, Z., Cumming, A., Kaspi, V.M., Eds.; American Institute of Physics Conference Series; American Institute of Physics: College Park, MD, USA, 2008; Volume 983, pp. 391–398. [Google Scholar] [CrossRef] [Green Version]
- Duncan, R.C.; Thompson, C. Formation of very strongly magnetized neutron stars: Implications for gamma-ray bursts. Astrophys. J. 1992, 392, L9. [Google Scholar] [CrossRef]
- Thompson, C.; Duncan, R.C. Neutron star dynamos and the origins of pulsar magnetism. Astrophys. J. 1993, 408, 194. [Google Scholar] [CrossRef]
- Miralles, J.A.; Pons, J.A.; Urpin, V.A. Convective instability in proto-neutron stars. Astrophys. J. 2000, 543, 1001–1006. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.; Murray, N. Transport of magnetic fields in convective, accreting supernova cores. Astrophys. J. 2001, 560, 339–357. [Google Scholar] [CrossRef] [Green Version]
- Miralles, J.A.; Pons, J.A.; Urpin, V.A. Hydromagnetic instabilities in proto-neutron stars. Astrophys. J. 2002, 574, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Nagakura, H.; Burrows, A.; Radice, D.; Vartanyan, D. A systematic study of proto-neutron star convection in three-dimensional core-collapse supernova simulations. Mon. Not. R. Astron. Soc. 2020, 492, 5764–5779. [Google Scholar] [CrossRef] [Green Version]
- Raynaud, R.; Guilet, J.; Janka, H.T.; Gastine, T. Magnetar formation through a convective dynamo in protoneutron stars. Sci. Adv. 2020, 6, eaay2732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vink, J.; Kuiper, L. Supernova remnant energetics and magnetars: No evidence in favour of millisecond proto-neutron stars. Mon. Not. R. Astron. Soc. 2006, 370, L14–L18. [Google Scholar] [CrossRef] [Green Version]
- Kasen, D.; Bildsten, L. Supernova light curves powered by young magnetars. Astrophys. J. 2010, 717, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Stratta, G.; Dainotti, M.G.; Dall’Osso, S.; Hernandez, X.; De Cesare, G. On the magnetar origin of the GRBs presenting X-ray afterglow plateaus. Astrophys. J. 2018, 869, 155. [Google Scholar] [CrossRef] [Green Version]
- Dall’Osso, S.; Stella, L. Millisecond magnetars. arXiv 2021, arXiv:2103.10878. [Google Scholar]
- Chevalier, R.A. Neutron star accretion in a supernova. Astrophys. J. 1989, 346, 847. [Google Scholar] [CrossRef]
- Pons, J.A.; Reddy, S.; Prakash, M.; Lattimer, J.M.; Miralles, J.A. Evolution of proto-neutron stars. Astrophys. J. 1999, 513, 780–804. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.C.G. Evolution of a buried magnetic field in the central compact object neutron stars. Mon. Not. R. Astron. Soc. 2011, 414, 2567–2575. [Google Scholar] [CrossRef]
- Viganò, D.; Pons, J.A. Central compact objects and the hidden magnetic field scenario. Mon. Not. R. Astron. Soc. 2012, 425, 2487–2492. [Google Scholar] [CrossRef] [Green Version]
- Bernal, C.G.; Page, D.; Lee, W.H. Hypercritical accretion onto a newborn neutron star and magnetic field submergence. Astrophys. J. 2013, 770, 106. [Google Scholar] [CrossRef] [Green Version]
- Igoshev, A.P.; Elfritz, J.G.; Popov, S.B. Post-fall-back evolution of multipolar magnetic fields and radio pulsar activation. Mon. Not. R. Astron. Soc. 2016, 462, 3689–3702. [Google Scholar] [CrossRef] [Green Version]
- Geppert, U.; Page, D.; Zannias, T. Submergence and re-diffusion of the neutron star magnetic field after the supernova. Astron. Astrophys. 1999, 345, 847–854. [Google Scholar]
- Kaspi, V.M. Grand unification of neutron stars. Proc. Natl. Acad. Sci. USA 2010, 107, 7147–7152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igoshev, A.P.; Popov, S.B.; Turolla, R. Unifying neutron stars getting to GUNS. Astron. Nachrichten 2014, 335, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Baym, G.; Pethick, C.; Pines, D. Superfluidity in neutron stars. Nature 1969, 224, 673–674. [Google Scholar] [CrossRef]
- Gourgouliatos, K.N.; Wood, T.S.; Hollerbach, R. Magnetic field evolution in magnetar crusts through three-dimensional simulations. Proc. Natl. Acad. Sci. USA 2016, 113, 3944–3949. [Google Scholar] [CrossRef] [Green Version]
- Gourgouliatos, K.N.; Hollerbach, R. Magnetic axis drift and magnetic spot formation in neutron stars with toroidal fields. Astrophys. J. 2018, 852, 21. [Google Scholar] [CrossRef] [Green Version]
- Wood, T.S.; Graber, V.; Newton, W.G. Superconducting phases in a two-component microscale model of neutron star cores. arXiv 2020, arXiv:2011.02873. [Google Scholar]
- Goldreich, P.; Reisenegger, A. Magnetic field decay in isolated neutron stars. Astrophys. J. 1992, 395, 250. [Google Scholar] [CrossRef] [Green Version]
- Cumming, A.; Arras, P.; Zweibel, E. Magnetic field evolution in neutron star crusts due to the Hall effect and Ohmic decay. Astrophys. J. 2004, 609, 999–1017. [Google Scholar] [CrossRef] [Green Version]
- Igoshev, A.P. Ages of radio pulsar: Long-term magnetic field evolution. Mon. Not. R. Astron. Soc. 2019, 482, 3415–3425. [Google Scholar] [CrossRef]
- Pons, J.A.; Viganò, D.; Rea, N. A highly resistive layer within the crust of X-ray pulsars limits their spin periods. Nat. Phys. 2013, 9, 431–434. [Google Scholar] [CrossRef]
- Gullón, M.; Pons, J.A.; Miralles, J.A.; Viganò, D.; Rea, N.; Perna, R. Population synthesis of isolated neutron stars with magneto-rotational evolution—II. From radio-pulsars to magnetars. Mon. Not. R. Astron. Soc. 2015, 454, 615–625. [Google Scholar] [CrossRef] [Green Version]
- Karageorgopoulos, V.; Gourgouliatos, K.N.; Contopoulos, I. Current closure through the neutron star crust. Mon. Not. R. Astron. Soc. 2019, 487, 3333–3341. [Google Scholar] [CrossRef]
- Igoshev, A.P.; Popov, S.B. Modified pulsar current analysis: Probing magnetic field evolution. Mon. Not. R. Astron. Soc. 2014, 444, 1066–1076. [Google Scholar] [CrossRef] [Green Version]
- Shalybkov, D.A.; Urpin, V.A. The Hall effect and the decay of magnetic fields. Astron. Astrophys. 1997, 321, 685–690. [Google Scholar]
- Hollerbach, R.; Rüdiger, G. The influence of Hall drift on the magnetic fields of neutron stars. Mon. Not. R. Astron. Soc. 2002, 337, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Hollerbach, R.; Rüdiger, G. Hall drift in the stratified crusts of neutron stars. Mon. Not. R. Astron. Soc. 2004, 347, 1273–1278. [Google Scholar] [CrossRef]
- Cho, J.; Lazarian, A. Simulations of electron magnetohydrodynamic turbulence. Astrophys. J. 2009, 701, 236–252. [Google Scholar] [CrossRef]
- Wareing, C.J.; Hollerbach, R. Forward and inverse cascades in decaying two-dimensional electron magnetohydrodynamic turbulence. Phys. Plasmas 2009, 16, 042307. [Google Scholar] [CrossRef] [Green Version]
- Wareing, C.J.; Hollerbach, R. Cascades in decaying three-dimensional electron magnetohydrodynamic turbulence. J. Plasma Phys. 2010, 76, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Kojima, Y.; Kisaka, S. Magnetic field decay with Hall drift in neutron star crusts. Mon. Not. R. Astron. Soc. 2012, 421, 2722–2730. [Google Scholar] [CrossRef] [Green Version]
- Gourgouliatos, K.N.; Cumming, A. Hall effect in neutron star crusts: Evolution, endpoint and dependence on initial conditions. Mon. Not. R. Astron. Soc. 2014, 438, 1618–1629. [Google Scholar] [CrossRef] [Green Version]
- Gourgouliatos, K.N.; Cumming, A. Hall attractor in axially symmetric magnetic fields in neutron star crusts. Phys. Rev. Lett. 2014, 112, 171101. [Google Scholar] [CrossRef] [Green Version]
- Geppert, U.; Viganò, D. Creation of magnetic spots at the neutron star surface. Mon. Not. R. Astron. Soc. 2014, 444, 3198–3208. [Google Scholar] [CrossRef] [Green Version]
- Marchant, P.; Reisenegger, A.; Valdivia, J.A.; Hoyos, J.H. Stability of Hall equilibria in neutron star crusts. Astrophys. J. 2014, 796, 94. [Google Scholar] [CrossRef] [Green Version]
- Bransgrove, A.; Levin, Y.; Beloborodov, A. Magnetic field evolution of neutron stars—I. Basic formalism, numerical techniques and first results. Mon. Not. R. Astron. Soc. 2018, 473, 2771–2790. [Google Scholar] [CrossRef]
- Brandenburg, A. Hall cascade with fractional magnetic helicity in neutron star crusts. Astrophys. J. 2020, 901, 18. [Google Scholar] [CrossRef]
- Gourgouliatos, K.N.; Hollerbach, R.; Igoshev, A.P. Powering central compact objects with a tangled crustal magnetic field. Mon. Not. R. Astron. Soc. 2020, 495, 1692–1699. [Google Scholar] [CrossRef]
- Igoshev, A.P.; Gourgouliatos, K.N.; Hollerbach, R.; Wood, T.S. 3D magnetothermal simulations of tangled crustal magnetic field in central compact objects. Astrophys. J. 2021, 909, 101. [Google Scholar] [CrossRef]
- Gourgouliatos, K.N.; Hollerbach, R.; Archibald, R.F. Modelling neutron star magnetic fields. Astron. Geophys. 2018, 59, 5.37–5.42. [Google Scholar] [CrossRef] [Green Version]
- Reisenegger, A.; Benguria, R.; Prieto, J.P.; Araya, P.A.; Lai, D. Hall drift of axisymmetric magnetic fields in solid neutron-star matter. Astron. Astrophys. 2007, 472, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Gourgouliatos, K.N.; Cumming, A.; Reisenegger, A.; Armaza, C.; Lyutikov, M.; Valdivia, J.A. Hall equilibria with toroidal and poloidal fields: Application to neutron stars. Mon. Not. R. Astron. Soc. 2013, 434, 2480–2490. [Google Scholar] [CrossRef] [Green Version]
- Kitchatinov, L. Stability of a force-free Hall equilibrium and release of magnetic energy. Astron. Nachrichten 2019, 340, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Wood, T.S.; Hollerbach, R. Three dimensional simulation of the magnetic stress in a neutron star crust. Phys. Rev. Lett. 2015, 114, 191101. [Google Scholar] [CrossRef] [Green Version]
- Rheinhardt, M.; Geppert, U. Hall-drift induced magnetic field instability in neutron stars. Phys. Rev. Lett. 2002, 88, 101103. [Google Scholar] [CrossRef] [PubMed]
- Rheinhardt, M.; Konenkov, D.; Geppert, U. The occurrence of the Hall instability in crusts of isolated neutron stars. Astron. Astrophys. 2004, 420, 631–645. [Google Scholar] [CrossRef] [Green Version]
- Wareing, C.J.; Hollerbach, R. Hall cascades versus instabilities in neutron star magnetic fields. Astron. Astrophys. 2009, 508, L39–L42. [Google Scholar] [CrossRef]
- Pons, J.A.; Geppert, U. Confirmation of the occurrence of the Hall instability in the non-linear regime. Astron. Astrophys. 2010, 513, L12. [Google Scholar] [CrossRef]
- Gourgouliatos, K.N.; Pons, J.A. Nonaxisymmetric Hall instability: A key to understanding magnetars. Phys. Rev. Res. 2019, 1, 032049. [Google Scholar] [CrossRef] [Green Version]
- Wood, T.S.; Hollerbach, R.; Lyutikov, M. Density-shear instability in electron magneto-hydrodynamics. Phys. Plasmas 2014, 21, 052110. [Google Scholar] [CrossRef] [Green Version]
- Gourgouliatos, K.N.; Kondić, T.; Lyutikov, M.; Hollerbach, R. Magnetar activity via the density-shear instability in Hall-MHD. Mon. Not. R. Astron. Soc. 2015, 453, L93–L97. [Google Scholar] [CrossRef] [Green Version]
- Gourgouliatos, K.N.; Hollerbach, R. Resistive tearing instability in electron MHD: Application to neutron star crusts. Mon. Not. R. Astron. Soc. 2016, 463, 3381–3389. [Google Scholar] [CrossRef] [Green Version]
- Kitchatinov, L.L. Double Hall instability: A catalyzer of magnetic energy release. Astron. Lett. 2017, 43, 624–633. [Google Scholar] [CrossRef] [Green Version]
- Kitchatinov, L. Hall instability: Origin, properties and asymptotic theory for its tearing mode. J. Plasma Phys. 2021, 87, 905870404. [Google Scholar] [CrossRef]
- Gusakov, M.E.; Kantor, E.M.; Ofengeim, D.D. Magnetic field evolution time-scales in superconducting neutron stars. Mon. Not. R. Astron. Soc. 2020, 499, 4561–4569. [Google Scholar] [CrossRef]
- Viganò, D.; Garcia-Garcia, A.; Pons, J.A.; Dehman, C.; Graber, V. Magneto-thermal evolution of neutron stars with coupled Ohmic, Hall and ambipolar effects via accurate finite-volume simulations. Comput. Phys. Commun. 2021, 265, 108001. [Google Scholar] [CrossRef]
- Glampedakis, K.; Andersson, N.; Samuelsson, L. Magnetohydrodynamics of superfluid and superconducting neutron star cores. Mon. Not. R. Astron. Soc. 2011, 410, 805–829. [Google Scholar] [CrossRef] [Green Version]
- Passamonti, A.; Akgün, T.; Pons, J.A.; Miralles, J.A. The relevance of ambipolar diffusion for neutron star evolution. Mon. Not. R. Astron. Soc. 2017, 465, 3416–3428. [Google Scholar] [CrossRef] [Green Version]
- Ruderman, M. Causes and consequences of magnetic field changes in neutron stars. New Astron. 2010, 54, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Passamonti, A.; Akgün, T.; Pons, J.A.; Miralles, J.A. On the magnetic field evolution time-scale in superconducting neutron star cores. Mon. Not. R. Astron. Soc. 2017, 469, 4979–4984. [Google Scholar] [CrossRef] [Green Version]
- Pons, J.A.; Viganò, D. Magnetic, thermal and rotational evolution of isolated neutron stars. Living Rev. Comput. Astrophys. 2019, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, D.N.; Pons, J.A.; Miralles, J.A. The impact of magnetic field on the thermal evolution of neutron stars. Astrophys. J. 2008, 673, L167. [Google Scholar] [CrossRef] [Green Version]
- Pons, J.A.; Miralles, J.A.; Geppert, U. Magneto-thermal evolution of neutron stars. Astron. Astrophys. 2009, 496, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Viganò, D.; Rea, N.; Pons, J.A.; Perna, R.; Aguilera, D.N.; Miralles, J.A. Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models. Mon. Not. R. Astron. Soc. 2013, 434, 123–141. [Google Scholar] [CrossRef]
- Viganò, D.; Martínez-Gómez, D.; Pons, J.A.; Palenzuela, C.; Carrasco, F.; Miñano, B.; Arbona, A.; Bona, C.; Massó, J. A Simflowny-based high-performance 3D code for the generalized induction equation. Comput. Phys. Commun. 2019, 237, 168–183. [Google Scholar] [CrossRef] [Green Version]
- De Grandis, D.; Turolla, R.; Wood, T.S.; Zane, S.; Taverna, R.; Gourgouliatos, K.N. Three-dimensional modeling of the magnetothermal evolution of neutron stars: Method and test cases. Astrophys. J. 2020, 903, 40. [Google Scholar] [CrossRef]
- De Grandis, D.; Taverna, R.; Turolla, R.; Gnarini, A.; Popov, S.B.; Zane, S.; Wood, T.S. X-ray emission from isolated neutron stars revisited: 3D magnetothermal simulations. Astrophys. J. 2021, 914, 118. [Google Scholar] [CrossRef]
- Dormy, E.; Cardin, P.; Jault, D. MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field. Earth Planet. Sci. Lett. 1998, 160, 15–30. [Google Scholar] [CrossRef]
- Aubert, J.; Aurnou, J.; Wicht, J. The magnetic structure of convection-driven numerical dynamos. Geophys. J. Int. 2008, 172, 945–956. [Google Scholar] [CrossRef] [Green Version]
- Glatzmaier, G.A. Geodynamo simulations – how realistic are they? Annu. Rev. Earth Planet. Sci. 2002, 30, 237–257. [Google Scholar] [CrossRef] [Green Version]
- Pons, J.A.; Geppert, U. Magnetic field dissipation in neutron star crusts: From magnetars to isolated neutron stars. Astron. Astrophys. 2007, 470, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Turolla, R.; Zane, S.; Watts, A.L. Magnetars: The physics behind observations. A review. Rep. Prog. Phys. 2015, 78, 116901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaspi, V.M.; Beloborodov, A.M. Magnetars. ARAA 2017, 55, 261–301. [Google Scholar] [CrossRef] [Green Version]
- Woods, P.M.; Thompson, C. Soft gamma repeaters and anomalous X-ray pulsars: Magnetar candidates. In Compact Stellar X-ray Sources; Cambridge Astrophysics Series; Cambridge University Press: Cambridge, UK, 2006; Volume 39, pp. 547–586. [Google Scholar]
- Coti Zelati, F.; Rea, N.; Pons, J.A.; Campana, S.; Esposito, P. Systematic study of magnetar outbursts. Mon. Not. R. Astron. Soc. 2018, 474, 961–1017. [Google Scholar] [CrossRef]
- Chamel, N.; Fantina, A.F.; Suleiman, L.; Zdunik, J.L.; Haensel, P. Heating in magnetar crusts from electron captures. Universe 2021, 7, 193. [Google Scholar] [CrossRef]
- Turolla, R.; Esposito, P. Low-magnetic magnetars. Int. J. Mod. Phys. D 2013, 22, 1330024-163. [Google Scholar] [CrossRef]
- Safi-Harb, S. Neutron stars: Observational diversity and evolution. J. Phys. Conf. Ser. 2017, 932, 012005. [Google Scholar] [CrossRef] [Green Version]
- Popov, S.B.; Turolla, R. Initial parameters of neutron stars. In Electromagnetic Radiation from Pulsars and Magnetars; Lewandowski, W., Maron, O., Kijak, J., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific Conference: San Francisco, CA, USA, 2012; Volume 466, p. 191. [Google Scholar]
- Rogers, A.; Safi-Harb, S. On the diversity of compact objects within supernova remnants-I. A parametric model for magnetic field evolution. Mon. Not. R. Astron. Soc. 2016, 457, 1180–1189. [Google Scholar] [CrossRef] [Green Version]
- Pires, A.M.; Haberl, F.; Zavlin, V.E.; Motch, C.; Zane, S.; Hohle, M.M. XMM-Newton reveals a candidate period for the spin of the “Magnificent Seven” neutron star RX J1605.3+3249. Astron. Astrophys. 2014, 563, A50. [Google Scholar] [CrossRef] [Green Version]
- Archibald, R.F.; Scholz, P.; Kaspi, V.M.; Tendulkar, S.P.; Beardmore, A.P. Two new outbursts and transient hard X-rays from 1E 1048.1-5937. Astrophys. J. 2020, 889, 160. [Google Scholar] [CrossRef] [Green Version]
- Pintore, F.; Bernardini, F.; Mereghetti, S.; Esposito, P.; Turolla, R.; Rea, N.; Coti Zelati, F.; Israel, G.L.; Tiengo, A.; Zane, S. The variable spin-down rate of the transient magnetar XTE J1810-197. Mon. Not. R. Astron. Soc. 2016, 458, 2088–2093. [Google Scholar] [CrossRef] [Green Version]
- Akgün, T.; Cerdá-Durán, P.; Miralles, J.A.; Pons, J.A. Crust-magnetosphere coupling during magnetar evolution and implications for the surface temperature. Mon. Not. R. Astron. Soc. 2018, 481, 5331–5338. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, F.; Viganò, D.; Palenzuela, C.; Pons, J.A. Triggering magnetar outbursts in 3D force-free simulations. Mon. Not. R. Astron. Soc. 2019, 484, L124–L129. [Google Scholar] [CrossRef] [Green Version]
- Perna, R.; Pons, J.A. A unified model of the magnetar and radio pulsar bursting phenomenology. Astrophys. J. 2011, 727, L51. [Google Scholar] [CrossRef] [Green Version]
- Turolla, R. Isolated neutron stars: The challenge of simplicity. In Neutron Stars and Pulsars; Astrophysics and Space Science Library; Becker, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 357, p. 141. [Google Scholar] [CrossRef]
- Popov, S.B.; Pons, J.A.; Miralles, J.A.; Boldin, P.A.; Posselt, B. Population synthesis studies of isolated neutron stars with magnetic field decay. Mon. Not. R. Astron. Soc. 2010, 401, 2675–2686. [Google Scholar] [CrossRef]
- Beniamini, P.; Hotokezaka, K.; van der Horst, A.; Kouveliotou, C. Formation rates and evolution histories of magnetars. Mon. Not. R. Astron. Soc. 2019, 487, 1426–1438. [Google Scholar] [CrossRef]
- Potekhin, A.Y.; Pons, J.A.; Page, D. Neutron stars—Cooling and transport. Space Sci. Rev. 2015, 191, 239–291. [Google Scholar] [CrossRef] [Green Version]
- Potekhin, A.Y.; Zyuzin, D.A.; Yakovlev, D.G.; Beznogov, M.V.; Shibanov, Y.A. Thermal luminosities of cooling neutron stars. Mon. Not. R. Astron. Soc. 2020, 496, 5052–5071. [Google Scholar] [CrossRef]
- Pons, J.A.; Link, B.; Miralles, J.A.; Geppert, U. Evidence for heating of neutron stars by magnetic-field decay. Phys. Rev. Lett. 2007, 98, 071101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urpin, V.; Konenkov, D. Joule heating in high magnetic field pulsars. Astron. Astrophys. 2008, 483, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Mayer, M.G.F.; Becker, W. A kinematic study of central compact objects and their host supernova remnants. Astron. Astrophys. 2021, 651, A40. [Google Scholar] [CrossRef]
- Yakovlev, D.G.; Pethick, C.J. Neutron star cooling. ARAA 2004, 42, 169–210. [Google Scholar] [CrossRef]
- Shabaltas, N.; Lai, D. The hidden magnetic field of the young neutron star in Kesteven 79. Astrophys. J. 2012, 748, 148. [Google Scholar] [CrossRef] [Green Version]
- Muslimov, A.; Page, D. Delayed switch-on of pulsars. Astrophys. J. 1995, 440, L77. [Google Scholar] [CrossRef]
- Tuohy, I.; Garmire, G. Discovery of a compact X-ray source at the center of the SNR RCW 103. Astrophys. J. 1980, 239, L107–L110. [Google Scholar] [CrossRef]
- De Luca, A.; Caraveo, P.A.; Mereghetti, S.; Tiengo, A.; Bignami, G.F. A long-period, violently variable X-ray source in a young supernova remnant. Science 2006, 313, 814–817. [Google Scholar] [CrossRef] [PubMed]
- Popov, S.B.; Kaurov, A.A.; Kaminker, A.D. Central compact objects in Kes 79 and RCW 103 as ‘hidden’ magnetars with crustal activity. PASA 2015, 32, e018. [Google Scholar] [CrossRef] [Green Version]
- Esposito, P.; De Luca, A.; Turolla, R.; Coti Zelati, F.; Hummel, W.; Tiengo, A.; Israel, G.L.; Rea, N.; Mignani, R.P.; Borghese, A. Long X-ray flares from the central source in RCW 103. XMM-Newton and VLT observations in the aftermath of the 2016 outburst. Astron. Astrophys. 2019, 626, A19. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Li, Q.C.; Yang, Y.P.; Li, X.D.; Dai, Z.G.; Liu, J. Do the periodic activities of repeating fast radio bursts represent the spins of neutron stars? Astrophys. J. 2021, 917, 2. [Google Scholar] [CrossRef]
- Espinoza, C.M.; Lyne, A.G.; Kramer, M.; Manchester, R.N.; Kaspi, V.M. The braking index of PSR J1734-3333 and the magnetar population. Astrophys. J. 2011, 741, L13. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.C.G. Magnetic field growth in young glitching pulsars with a braking index. Mon. Not. R. Astron. Soc. 2015, 452, 845–851. [Google Scholar] [CrossRef]
- Manchester, R.N.; Hobbs, G.B.; Teoh, A.; Hobbs, M. The Australia Telescope National Facility pulsar catalogue. AJ 2005, 129, 1993–2006. [Google Scholar] [CrossRef]
- Espinoza, C.M. The spin evolution of young pulsars. In Neutron Stars and Pulsars: Challenges and Opportunities after 80 Years; Van Leeuwen, J., Ed.; Cambridge University Press: Cambridge, UK, 2013; Volume 291, pp. 195–198. [Google Scholar] [CrossRef] [Green Version]
- Andersson, N.; Antonopoulou, D.; Espinoza, C.M.; Haskell, B.; Ho, W.C.G. The enigmatic spin evolution of PSR J0537-6910: R-modes, gravitational waves, and the case for continued timing. Astrophys. J. 2018, 864, 137. [Google Scholar] [CrossRef]
- Espinoza, C.M.; Lyne, A.G.; Stappers, B.W. New long-term braking index measurements for glitching pulsars using a glitch-template method. Mon. Not. R. Astron. Soc. 2017, 466, 147–162. [Google Scholar] [CrossRef] [Green Version]
- Ferdman, R.D.; Archibald, R.F.; Kaspi, V.M. Long-term timing and emission behavior of the young Crab-like pulsar PSR B0540-69. Astrophys. J. 2015, 812, 95. [Google Scholar] [CrossRef] [Green Version]
- Ge, M.Y.; Lu, F.J.; Yan, L.L.; Weng, S.S.; Zhang, S.N.; Wang, Q.D.; Wang, L.J.; Li, Z.J.; Zhang, W. The brightening of the pulsar wind nebula of PSR B0540-69 after its spin-down-rate transition. Nat. Astron. 2019, 3, 1122–1127. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Ge, M.Y.; Wang, J.S.; Weng, S.S.; Tong, H.; Yan, L.L.; Zhang, S.N.; Dai, Z.G.; Song, L.M. The braking index of PSR B0540-69 and the associated pulsar wind nebula emission after spin-down rate transition. Mon. Not. R. Astron. Soc. 2020, 494, 1865–1870. [Google Scholar] [CrossRef] [Green Version]
- Ekşi, K.Y. On the new braking index of PSR B0540-69: Further support for magnetic field growth of neutron stars following submergence by fallback accretion. Mon. Not. R. Astron. Soc. 2017, 469, 1974–1978. [Google Scholar] [CrossRef] [Green Version]
- Reig, P. Be/X-ray binaries. Astroph. Space Sci. 2011, 332, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Portegies Zwart, S.F. The formation of Be stars in close binary systems. The importance of kicks and angular-momentum loss. Astron. Astrophys. 1995, 296, 691. [Google Scholar]
- Shao, Y.; Li, X.D. On the formation of Be stars through binary interaction. Astrophys. J. 2014, 796, 37. [Google Scholar] [CrossRef]
- Vinciguerra, S.; Neijssel, C.J.; Vigna-Gómez, A.; Mandel, I.; Podsiadlowski, P.; Maccarone, T.J.; Nicholl, M.; Kingdon, S.; Perry, A.; Salemi, F. Be X-ray binaries in the SMC as indicators of mass-transfer efficiency. Mon. Not. R. Astron. Soc. 2020, 498, 4705–4720. [Google Scholar] [CrossRef]
- Ye, C.Q.; Wang, D.H.; Zhang, C.M.; Diao, Z.Q. Evolution implications of neutron star magnetic fields: Inferred from pulsars and cyclotron lines of HMXBs. Astroph. Space Sci. 2019, 364, 198. [Google Scholar] [CrossRef] [Green Version]
- Davidson, K.; Ostriker, J.P. Neutron-star accretion in a stellar wind: Model for a pulsed X-ray source. Astrophys. J. 1973, 179, 585–598. [Google Scholar] [CrossRef]
- Chashkina, A.; Popov, S.B. Magnetic field estimates for accreting neutron stars in massive binary systems and models of magnetic field decay. New Astron. 2012, 17, 594–602. [Google Scholar] [CrossRef] [Green Version]
- Tsygankov, S.S.; Lutovinov, A.A.; Churazov, E.M.; Sunyaev, R.A. V0332+53 in the outburst of 2004-2005: Luminosity dependence of the cyclotron line and pulse profile. Mon. Not. R. Astron. Soc. 2006, 371, 19–28. [Google Scholar] [CrossRef]
- Tsygankov, S.S.; Doroshenko, V.; Mushtukov, A.A.; Suleimanov, V.F.; Lutovinov, A.A.; Poutanen, J. Cyclotron emission, absorption, and the two faces of X-ray pulsar A 0535+262. Mon. Not. R. Astron. Soc. 2019, 487, L30–L34. [Google Scholar] [CrossRef] [Green Version]
- Corbet, R.H.D. The three types of high-mass X-ray pulsator. Mon. Not. R. Astron. Soc. 1986, 220, 1047–1056. [Google Scholar] [CrossRef] [Green Version]
- Raguzova, N.V.; Popov, S.B. Be X-ray binaries and candidates. Astron. Astrophys. Trans. 2005, 24, 151–185. [Google Scholar] [CrossRef]
- Igoshev, A.P.; Popov, S.B. How to make a mature accreting magnetar. Mon. Not. R. Astron. Soc. 2018, 473, 3204–3210. [Google Scholar] [CrossRef]
- Popov, S.B.; Prokhorov, M.E. Progenitors with enhanced rotation and the origin of magnetars. Mon. Not. R. Astron. Soc. 2006, 367, 732–736. [Google Scholar] [CrossRef] [Green Version]
- Popov, S.B. Origins of magnetars in binary systems. Astron. Astrophys. Trans. 2016, 29, 183–192. [Google Scholar]
- Eksi, K.Y.; Andac, I.C.; Cikintoglu, S.; Gencali, A.A.; Gungor, C.; Oztekin, F. The ultraluminous X-ray source NuSTAR J095551+6940.8: A magnetar in a high-mass X-ray binary. Mon. Not. R. Astron. Soc. 2015, 448, L40–L42. [Google Scholar] [CrossRef] [Green Version]
- Mushtukov, A.A.; Suleimanov, V.F.; Tsygankov, S.S.; Poutanen, J. On the maximum accretion luminosity of magnetized neutron stars: Connecting X-ray pulsars and ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 2015, 454, 2539–2548. [Google Scholar] [CrossRef] [Green Version]
- Fabrika, S.N.; Atapin, K.E.; Vinokurov, A.S.; Sholukhova, O.N. Ultraluminous X-ray sources. Astrophys. Bull. 2021, 76, 6–38. [Google Scholar] [CrossRef]
- King, A.; Lasota, J.P. No magnetars in ULXs. Mon. Not. R. Astron. Soc. 2019, 485, 3588–3594. [Google Scholar] [CrossRef]
- Makishima, K.; Mihara, T.; Nagase, F.; Tanaka, Y. Cyclotron resonance effects in two binary X-ray pulsars and the evolution of neutron star magnetic fields. Astrophys. J. 1999, 525, 978–994. [Google Scholar] [CrossRef]
- Bhattacharya, D.; van den Heuvel, E.P.J. Formation and evolution of binary and millisecond radio pulsars. Phys. Rep. 1991, 203, 1–124. [Google Scholar] [CrossRef]
- Bhattacharyya, B.; Roy, J. Radio millisecond pulsars. arXiv 2021, arXiv:2104.02294. [Google Scholar]
- Van den Heuvel, E.P.J. Formation and evolution of pulsars. In Planets around Pulsars; Astronomical Society of the Pacific Conference Series; Phillips, J.A., Thorsett, S.E., Kulkarni, S.R., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 1993; Volume 36, pp. 123–147. [Google Scholar]
- Antoniadis, J. Gaia pulsars and where to find them. Mon. Not. R. Astron. Soc. 2021, 501, 1116–1126. [Google Scholar] [CrossRef]
- Ransom, S.M. Pulsars in globular clusters. In Dynamical Evolution of Dense Stellar Systems; Vesperini, E., Giersz, M., Sills, A., Eds.; IAU Symposium; Cambridge University Press: Cambridge, UK, 2008; Volume 246, pp. 291–300. [Google Scholar] [CrossRef] [Green Version]
- Alpar, M.A.; Cheng, A.F.; Ruderman, M.A.; Shaham, J. A new class of radio pulsars. Nature 1982, 300, 728–730. [Google Scholar] [CrossRef]
- Taam, R.E.; van den Heuvel, E.P.J. Magnetic field decay and the origin of neutron star binaries. Astrophys. J. 1986, 305, 235. [Google Scholar] [CrossRef]
- Shibazaki, N.; Murakami, T.; Shaham, J.; Nomoto, K. Does mass accretion lead to field decay in neutron stars? Nature 1989, 342, 656–658. [Google Scholar] [CrossRef] [Green Version]
- Van den Heuvel, E.P.J.; Bitzaraki, O. The magnetic field strength versus orbital period relation for binary radio pulsars with low-mass companions: Evidence for neutron-star formation by accretion-induced collapse? Astron. Astrophys. 1995, 297, L41. [Google Scholar]
- Van den Heuvel, E.P.J.; Taam, R.E. Two types of binary radio pulsars with different evolutionary histories. Nature 1984, 309, 235–237. [Google Scholar] [CrossRef]
- Tauris, T.M.; Langer, N.; Kramer, M. Formation of millisecond pulsars with CO white dwarf companions—II. Accretion, spin-up, true ages and comparison to MSPs with He white dwarf companions. Mon. Not. R. Astron. Soc. 2012, 425, 1601–1627. [Google Scholar] [CrossRef] [Green Version]
- Wijnands, R.; van der Klis, M. A millisecond pulsar in an X-ray binary system. Nature 1998, 394, 344–346. [Google Scholar] [CrossRef]
- Archibald, A.M.; Bogdanov, S.; Patruno, A.; Hessels, J.W.T.; Deller, A.T.; Bassa, C.; Janssen, G.H.; Kaspi, V.M.; Lyne, A.G.; Stappers, B.W.; et al. Accretion-powered pulsations in an apparently quiescent neutron star binary. Astrophys. J. 2015, 807, 62. [Google Scholar] [CrossRef] [Green Version]
- De Martino, D.; Falanga, M.; Bonnet-Bidaud, J.M.; Belloni, T.; Mouchet, M.; Masetti, N.; Andruchow, I.; Cellone, S.A.; Mukai, K.; Matt, G. The intriguing nature of the high-energy gamma ray source XSS J12270-4859. Astron. Astrophys. 2010, 515, A25. [Google Scholar] [CrossRef]
- Bassa, C.G.; Patruno, A.; Hessels, J.W.T.; Keane, E.F.; Monard, B.; Mahony, E.K.; Bogdanov, S.; Corbel, S.; Edwards, P.G.; Archibald, A.M.; et al. A state change in the low-mass X-ray binary XSS J12270-4859. Mon. Not. R. Astron. Soc. 2014, 441, 1825–1830. [Google Scholar] [CrossRef] [Green Version]
- Bisnovatyi-Kogan, G.S.; Komberg, B.V. Pulsars and close binary systems. Sov. Astron. 1974, 18, 217. [Google Scholar]
- Zhang, C.M.; Kojima, Y. The bottom magnetic field and magnetosphere evolution of neutron star in low-mass X-ray binary. Mon. Not. R. Astron. Soc. 2006, 366, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Geppert, U.; Urpin, V. Accretion-driven magnetic field decay in neutron stars. Mon. Not. R. Astron. Soc. 1994, 271, 490. [Google Scholar] [CrossRef]
- Romani, R.W. A unified model of neutron-star magnetic fields. Nature 1990, 347, 741–743. [Google Scholar] [CrossRef]
- Cruces, M.; Reisenegger, A.; Tauris, T.M. On the weak magnetic field of millisecond pulsars: Does it decay before accretion? Mon. Not. R. Astron. Soc. 2019, 490, 2013–2022. [Google Scholar] [CrossRef] [Green Version]
- Harding, A.K. The emission physics of millisecond pulsars. arXiv 2021, arXiv:2101.05751. [Google Scholar]
- Possenti, A.; Cerutti, R.; Colpi, M.; Mereghetti, S. Re-examining the X-ray versus spin-down luminosity correlation of rotation powered pulsars. Astron. Astrophys. 2002, 387, 993–1002. [Google Scholar]
- Becker, W. X-Ray emission from pulsars and neutron stars. In Neutron Stars and Pulsars; Becker, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 357, pp. 91–140. [Google Scholar] [CrossRef] [Green Version]
- Becker, W.; Trümper, J. The X-ray emission properties of millisecond pulsars. Astron. Astrophys. 1999, 341, 803–817. [Google Scholar]
- Zavlin, V.E. Studying millisecond pulsars in X-rays. Astroph. Space Sci. 2007, 308, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabarty, D.; et al. A NICER view of PSR J0030+0451: Millisecond pulsar parameter estimation. Astrophys. J. 2019, 887, L21. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.; Lattimer, J.M.; et al. PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter. Astrophys. J. 2019, 887, L24. [Google Scholar] [CrossRef] [Green Version]
- Bilous, A.V.; Watts, A.L.; Harding, A.K.; Riley, T.E.; Arzoumanian, Z.; Bogdanov, S.; Gendreau, K.C.; Ray, P.S.; Guillot, S.; Ho, W.C.G.; et al. A NICER view of PSR J0030+0451: Evidence for a global-scale multipolar magnetic field. Astrophys. J. 2019, 887, L23. [Google Scholar] [CrossRef] [Green Version]
- Suvorov, A.G.; Melatos, A. Recycled pulsars with multipolar magnetospheres from accretion-induced magnetic burial. Mon. Not. R. Astron. Soc. 2020, 499, 3243–3254. [Google Scholar] [CrossRef]
- Keane, E.F.; Kramer, M. On the birthrates of Galactic neutron stars. Mon. Not. R. Astron. Soc. 2008, 391, 2009–2016. [Google Scholar] [CrossRef]
- Noutsos, A.; Schnitzeler, D.H.F.M.; Keane, E.F.; Kramer, M.; Johnston, S. Pulsar spin-velocity alignment: Kinematic ages, birth periods and braking indices. Mon. Not. R. Astron. Soc. 2013, 430, 2281–2301. [Google Scholar] [CrossRef]
- Popov, S.B.; Prokhorov, M.E. Reviews of topical problems: Population synthesis in astrophysics. Phys. Uspekhi 2007, 50, 1123–1146. [Google Scholar] [CrossRef] [Green Version]
- Faucher-Giguère, C.A.; Kaspi, V.M. Birth and evolution of isolated radio pulsars. Astrophys. J. 2006, 643, 332–355. [Google Scholar] [CrossRef]
- Cieślar, M.; Bulik, T.; Osłowski, S. Markov chain Monte Carlo population synthesis of single radio pulsars in the Galaxy. Mon. Not. R. Astron. Soc. 2020, 492, 4043–4057. [Google Scholar] [CrossRef]
- Phinney, E.S.; Blandford, R.D. Analysis of the pulsar P-P-prime distribution. Mon. Not. R. Astron. Soc. 1981, 194, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Igoshev, A.P.; Popov, S.B. Magnetic field decay in normal radio pulsars. Astron. Nachrichten 2015, 336, 831. [Google Scholar] [CrossRef]
- Parthasarathy, A.; Shannon, R.M.; Johnston, S.; Lentati, L.; Bailes, M.; Dai, S.; Kerr, M.; Manchester, R.N.; Osłowski, S.; Sobey, C.; et al. Timing of young radio pulsars—I. Timing noise, periodic modulation, and proper motion. Mon. Not. R. Astron. Soc. 2019, 489, 3810–3826. [Google Scholar] [CrossRef] [Green Version]
- Parthasarathy, A.; Johnston, S.; Shannon, R.M.; Lentati, L.; Bailes, M.; Dai, S.; Kerr, M.; Manchester, R.N.; Osłowski, S.; Sobey, C.; et al. Timing of young radio pulsars—II. Braking indices and their interpretation. Mon. Not. R. Astron. Soc. 2020, 494, 2012–2026. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, G.; Lyne, A.G.; Kramer, M.; Martin, C.E.; Jordan, C. Long-term timing observations of 374 pulsars. Mon. Not. R. Astron. Soc. 2004, 353, 1311–1344. [Google Scholar] [CrossRef] [Green Version]
- Biryukov, A.; Beskin, G.; Karpov, S. Monotonic and cyclic components of radio pulsar spin-down. Mon. Not. R. Astron. Soc. 2012, 420, 103–117. [Google Scholar] [CrossRef] [Green Version]
- Geppert, U.; Küker, M.; Page, D. Temperature distribution in magnetized neutron star crusts. Astron. Astrophys. 2004, 426, 267–277. [Google Scholar] [CrossRef]
- Pons, J.A.; Perna, R. Magnetars versus high magnetic field pulsars: A theoretical interpretation of the apparent dichotomy. Astrophys. J. 2011, 741, 123. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.P.; Ng, C.Y.; Ho, W.C.G. A systematic study of soft X-ray pulse profiles of magnetars in quiescence. Mon. Not. R. Astron. Soc. 2019, 485, 4274–4286. [Google Scholar] [CrossRef]
- Philippov, A.A.; Cerutti, B.; Tchekhovskoy, A.; Spitkovsky, A. Ab initio pulsar magnetosphere: The role of general relativity. Astrophys. J. 2015, 815, L19. [Google Scholar] [CrossRef] [Green Version]
- Philippov, A.A.; Spitkovsky, A. Ab-initio pulsar magnetosphere: Particle acceleration in oblique rotators and high-energy emission modeling. Astrophys. J. 2018, 855, 94. [Google Scholar] [CrossRef] [Green Version]
- Beloborodov, A.M. Untwisting magnetospheres of neutron stars. Astrophys. J. 2009, 703, 1044–1060. [Google Scholar] [CrossRef] [Green Version]
- Harding, A.K.; Muslimov, A.G. Pulsar polar cap heating and surface thermal X-ray emission. I. Curvature radiation pair fronts. Astrophys. J. 2001, 556, 987–1001. [Google Scholar] [CrossRef] [Green Version]
- Harding, A.K.; Muslimov, A.G. Pulsar polar cap heating and surface thermal X-ray emission. II. Inverse Compton radiation pair fronts. Astrophys. J. 2002, 568, 862–877. [Google Scholar] [CrossRef] [Green Version]
- Sznajder, M.; Geppert, U. Heating of the real polar cap of radio pulsars. Mon. Not. R. Astron. Soc. 2020, 493, 3770–3777. [Google Scholar] [CrossRef] [Green Version]
- Kalapotharakos, C.; Wadiasingh, Z.; Harding, A.K.; Kazanas, D. The multipolar magnetic field of the millisecond pulsar PSR J0030+0451. Astrophys. J. 2021, 907, 63. [Google Scholar] [CrossRef]
- Zavlin, V.E.; Pavlov, G.G. X-ray emission from the old pulsar B0950+08. Astrophys. J. 2004, 616, 452–462. [Google Scholar] [CrossRef] [Green Version]
- Igoshev, A.P.; Tsygankov, S.S.; Rigoselli, M.; Mereghetti, S.; Popov, S.B.; Elfritz, J.G.; Mushtukov, A.A. Discovery of X-rays from the old and faint pulsar J1154-6250. Astrophys. J. 2018, 865, 116. [Google Scholar] [CrossRef] [Green Version]
- Heyl, J.S.; Shaviv, N.J. Polarization evolution in strong magnetic fields. Mon. Not. R. Astron. Soc. 2000, 311, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Heyl, J.S.; Shaviv, N.J. QED and the high polarization of the thermal radiation from neutron stars. Phys. Rev. D 2002, 66, 023002. [Google Scholar] [CrossRef] [Green Version]
- Caiazzo, I.; Heyl, J.; Turolla, R. Polarimetry of magnetars and isolated neutron stars. In Astronomical Polarisation from the Infrared to Gamma Rays; Mignani, R., Shearer, A., Słowikowska, A., Zane, S., Eds.; Springer International Publishing: New York City, NY, USA, 2019; Volume 460, p. 301. [Google Scholar] [CrossRef]
- Mignani, R. Multi-wavelength polarimetry of isolated neutron stars. Galaxies 2018, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Taverna, R.; Turolla, R.; Gonzalez Caniulef, D.; Zane, S.; Muleri, F.; Soffitta, P. Polarization of neutron star surface emission: A systematic analysis. Mon. Not. R. Astron. Soc. 2015, 454, 3254–3266. [Google Scholar] [CrossRef] [Green Version]
- Soffitta, P.; Bucciantini, N.; Churazov, E.; Costa, E.; Dovciak, M.; Feng, H.; Heyl, J.; Ingram, A.; Jahoda, K.; Kaaret, P.; et al. A polarized view of the hot and violent universe. Exp. Astron. 2021. [Google Scholar] [CrossRef]
- Taverna, R.; Turolla, R.; Suleimanov, V.; Potekhin, A.Y.; Zane, S. X-ray spectra and polarization from magnetar candidates. Mon. Not. R. Astron. Soc. 2020, 492, 5057–5074. [Google Scholar] [CrossRef]
- Mignani, R.P.; Testa, V.; González Caniulef, D.; Taverna, R.; Turolla, R.; Zane, S.; Wu, K. Evidence for vacuum birefringence from the first optical-polarimetry measurement of the isolated neutron star RX J1856.5-3754. Mon. Not. R. Astron. Soc. 2017, 465, 492–500. [Google Scholar] [CrossRef] [Green Version]
- Popov, S.B.; Igoshev, A.P.; Taverna, R.; Turolla, R. Looking for Hall attractor in astrophysical sources. J. Phys. Conf. Ser. 2017, 932, 012048. [Google Scholar] [CrossRef]
- Popov, S.B.; Taverna, R.; Turolla, R. Probing the surface magnetic field structure in RX J1856.5-3754. Mon. Not. R. Astron. Soc. 2017, 464, 4390–4398. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Bamba, A.; Shibata, S. Quantitative age estimation of supernova remnants and associated pulsars. Astrophys. J. 2021, 914, 103. [Google Scholar] [CrossRef]
- Lyne, A.G.; Lorimer, D.R. High birth velocities of radio pulsars. Nature 1994, 369, 127–129. [Google Scholar] [CrossRef]
- Hobbs, G.; Lorimer, D.R.; Lyne, A.G.; Kramer, M. A statistical study of 233 pulsar proper motions. Mon. Not. R. Astron. Soc. 2005, 360, 974–992. [Google Scholar] [CrossRef] [Green Version]
- Verbunt, F.; Igoshev, A.; Cator, E. The observed velocity distribution of young pulsars. Astron. Astrophys. 2017, 608, A57. [Google Scholar] [CrossRef] [Green Version]
- Igoshev, A.P. The observed velocity distribution of young pulsars—II. Analysis of complete PSRπ. Mon. Not. R. Astron. Soc. 2020, 494, 3663–3674. [Google Scholar] [CrossRef]
- Page, D.; Lattimer, J.M.; Prakash, M.; Steiner, A.W. Minimal cooling of neutron stars: A new paradigm. ApJ Suppl. Ser. 2004, 155, 623–650. [Google Scholar] [CrossRef] [Green Version]
- Rigoselli, M.; Mereghetti, S. A new X-ray look into four old pulsars. Astron. Astrophys. 2018, 615, A73. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.Y.; Romani, R.W.; Brisken, W.F.; Chatterjee, S.; Kramer, M. The origin and motion of PSR J0538+2817 in S147. Astrophys. J. 2007, 654, 487–493. [Google Scholar] [CrossRef]
- Zhang, B. The physical mechanisms of fast radio bursts. Nature 2020, 587, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Wang, F.; Dai, Z. The physics of fast radio bursts. Sci. China Phys. Mech. Astron. 2021, 64, 249501. [Google Scholar] [CrossRef]
- Boldin, P.A.; Popov, S.B. The evolution of isolated neutron stars until accretion: The role of the initial magnetic field. Mon. Not. R. Astron. Soc. 2010, 407, 1090–1097. [Google Scholar] [CrossRef] [Green Version]
- McMullin, J.; Diamond, P.; McPherson, A.; Laing, R.; Dewdney, P.; Casson, A.; Stringhetti, L.; Rees, N.; Stevenson, T.; Lilley, M.; et al. The square kilometre array project. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Society of Photo-Optical Instrumentation Engineers (SPIE): Bellingham, WA, USA, 2020; Volume 11445, p. 1144512. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igoshev, A.P.; Popov, S.B.; Hollerbach, R. Evolution of Neutron Star Magnetic Fields. Universe 2021, 7, 351. https://doi.org/10.3390/universe7090351
Igoshev AP, Popov SB, Hollerbach R. Evolution of Neutron Star Magnetic Fields. Universe. 2021; 7(9):351. https://doi.org/10.3390/universe7090351
Chicago/Turabian StyleIgoshev, Andrei P., Sergei B. Popov, and Rainer Hollerbach. 2021. "Evolution of Neutron Star Magnetic Fields" Universe 7, no. 9: 351. https://doi.org/10.3390/universe7090351
APA StyleIgoshev, A. P., Popov, S. B., & Hollerbach, R. (2021). Evolution of Neutron Star Magnetic Fields. Universe, 7(9), 351. https://doi.org/10.3390/universe7090351