Interiors of Terrestrial Planets in Metric-Affine Gravity
Abstract
:1. Introduction
2. Simple Model of Small Rocky Planets in Palatini Gravity
2.1. Planets’ Structure Equations
2.2. Internal Structure of Palatini Planets
3. Numerical Solutions
4. Conclusions
- Density profiles, as already noticed in our previous works, can significantly differ in modified gravity with respect to the Newtonian model. We observe not only lower values of central density and on the core–mantle boundary, but also the cores of the given exoplanets are bigger; that is, the cores are less dense in the case of Palatini gravity. Therefore, the observed transiting planets can have different structure for the same masses and radii than the one predicted in the usual way, and can affect the planet’s polar moment of inertia. The fact that internal structure of planets is affected by modifications of gravitational interaction is to be expected, since Equations (3) and (4), allowing one to compute the density profiles, change. This entails the fact that modifications of gravity introduce additional degeneracy when trying to determine planets’ internal composition by looking at the mass–radius relationship [23]. The values of internal pressure and core radius, giving the same total mass and radius, depend on the parameter . Therefore, this fact alone does not allow us to constrain alternative gravity models. What actually could help in distinguishing between different models would be collecting seismic data from Solar System planets, and investigating their density profiles. For example, Earth’s mass and radius are well known, as well as its internal composition, so, after having developed a more realistic model taking into account modifications of gravity, it will be possible to place a stringent constraint on values of .
- A similar situation happens when we plot the pressure curves obtained in this work: its central values decrease in modified gravity; however, when we approach the planet’s surface, the mantles do not differ much. This result derives from the fact that the additional term in Equation (15) for the pressure in the mantle is small, and smaller than the extra term appearing in the analogous equation for the core (Equation (18)).
- We also compared the numerical solutions for the pressure obtained from Equations (3) and (4) to the ones resulting from the analytical approach (which are approximated solutions). As one can see, the pressure drops roughly, similar to in the core, and then changes in a linear way in the mantle in the case of both numerical and analytical solution (although it is less pronounced for larger values of the parameter ). One notices that in the case of Newtonian gravity (), analytical (approximated) solution tends to provide smaller values than the numerical one. However, in the case of modified gravity, the effect is the reverse—approximated analytical solution provides larger values than the numerical one. This can be explained in the following way: the analytical approximation does not take into account the effect of modification of gravity in the CMF Formula (6), so it stays constant for various values of the parameter (as it depends of the mass and radius of the planet only, and these values do not change). On the other hand, the numerical method suggests that the size of the core and its mass grow in modified gravity, and hence the CMF must change. This combined effect of change in and CMF/CRF results in a bigger drop in internal pressure.
- Moreover, as already mentioned in the previous point, our numerical analysis revealed that the equation for the semiempirical CMF used in that work also depends on modified gravity. This is not a surprise, remembering the fact that for finding that relation, one uses the PREM model, which is based on Newtonian gravity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | The exoplanets of Mercury’s type, having cores with masses ∼0.7 of the total mass [14], are excluded from such an analysis. |
2 | |
3 | However, we will be equipped with the Mars ones, too, thanks to the Seismic Experiment for Interior Structure from NASA’s MARS InSight Mission’s seismometer [67]. |
4 | |
5 | But the results are similar for the other ones, too, with the more significant differences for larger planet’s masses with respect to the Newtonian solutions. |
References
- Wolszczan, A.; Frail, D.A. A planetary system around the millisecond pulsar PSR1257 + 12. Nature 1992, 355, 145–147. [Google Scholar] [CrossRef]
- Available online: http://exoplanet.eu/catalog/ (accessed on 20 December 2021).
- Di Stefano, R.; Berndtsson, J.; Urquhart, R.; Soria, R.; Kashyap, V.L.; Carmichael, T.W.; Imara, N. A possible planet candidate in an external galaxy detected through X-ray transit. Nat. Astron. 2021, 5, 1–11. [Google Scholar] [CrossRef]
- Available online: https://www.nasa.gov/mission_pages/webb/about/index.html (accessed on 20 December 2021).
- Available online: https://www.nasa.gov/feature/goddard/2021/nasa-s-roman-mission-will-probe-galaxy-s-core-for-hot-jupiters-brown-dwarfs (accessed on 20 December 2021).
- Available online: https://heasarc.gsfc.nasa.gov/docs/tess/ (accessed on 20 December 2021).
- Available online: https://www.spitzer.caltech.edu/ (accessed on 20 December 2021).
- Available online: https://exoplanets.nasa.gov/exep/NNExplore/ (accessed on 20 December 2021).
- Dziewonski, A.M.; Anderso, D.L. Preliminary reference Earth model. Phys. Earth Plan. Int. 1981, 25, 297. [Google Scholar] [CrossRef]
- Kustowski, B.; Ekström, G.; Dziewoński, A.M. Anisotropic shear-wave velocity structure of the Earth’s mantle: A global model. J. Geophys. Res. Solid Earth 2008, 113, B6. [Google Scholar] [CrossRef]
- Kennett, B.L.N.; Engdahl, E.R. Traveltimes for global earthquake location and phase identification. Geophys. J. Int. 1991, 105, 429–465. [Google Scholar] [CrossRef] [Green Version]
- Kennett, B.L.N.; Engdahl, E.R.; Buland, R. Article Navigation Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 1995, 122, 108–124. [Google Scholar] [CrossRef]
- Available online: https://ds.iris.edu/ds/products/emc-referencemodels/ (accessed on 20 December 2021).
- Seager, S.; Kuchner, M.; Hier-Majumder, C.A.; Militzer, B. Mass-Radius Relationships for Solid Exoplanets. Astrophys. J. 2007, 669, 1279. [Google Scholar] [CrossRef] [Green Version]
- Putirka, K.D.; Xu, S. Polluted white dwarfs reveal exotic mantle rock types on exoplanets in our solar neighborhood. Nat. Commun. 2021, 12, 6168. [Google Scholar] [CrossRef]
- Butler, R.; Tsuboi, S. Antipodal seismic reflections upon shear wave velocity structures within Earth’s inner core. Phys. Earth Planet. Inter. 2021, 321, 106802. [Google Scholar] [CrossRef]
- Winter, W. Walter, Neutrino Geophysics: Proceedings of Neutrino Sciences 2005; Springer: New York, NY, USA, 2006; pp. 285–307. [Google Scholar]
- Donini, A.; Palomares-Ruiz, S.; Salvado, J. Neutrino tomography of Earth. Nat. Phys. 2019, 15, 37–40. [Google Scholar] [CrossRef]
- Bourret, S.; van Elewyck, V. Earth tomography with neutrinos in KM3NeT-ORCA. EPJ Web Conf. 2019, 207, 04008. [Google Scholar] [CrossRef]
- van Elewyck, V.; Coelho, J.; Kaminski, E.; Maderer, L. Probing the Earth’s interior with neutrinos. Europhys. News 2021, 52, 19–21. [Google Scholar] [CrossRef]
- Merkel, S.; Hok, S.; Bolme, C.; Rittman, D.; Ramos, K.J.; Morrow, B.; Lee, H.J.; Nagler, B.; Galtier, E.; Granados, E.; et al. Femtosecond Visualization of hcp-Iron Strength and Plasticity under Shock Compression. Phys. Rev. Lett. 2021, 127, 205501. [Google Scholar] [CrossRef]
- Kozak, A.; Wojnar, A. Non-homogeneous exoplanets in metric-affine gravity. arXiv 2021, arXiv:2110.15139. [Google Scholar]
- Kozak, A.; Wojnar, A. Metric-affine gravity effects on terrestrial exoplanet profiles. Phys. Rev. D 2021, 104, 084097. [Google Scholar] [CrossRef]
- Wojnar, A. Jupiter and jovian exoplanets in Palatini gravity. Phys. Rev. D 2021, 104, 104058. [Google Scholar] [CrossRef]
- Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. Stellar structure models in modified theories of gravity: Lessons and challenges. Phys. Rep. 2020, 876, 1. [Google Scholar] [CrossRef]
- Wojnar, A. Early evolutionary tracks of low-mass stellar objects in modified gravity. Phys. Rev. D 2020, 102, 124045. [Google Scholar] [CrossRef]
- Sakstein, J. Hydrogen Burning in Low Mass Stars Constrains Scalar-Tensor Theories of Gravity. Phys. Rev. Lett. 2015, 115, 201101. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. Minimum main sequence mass in quadratic Palatini f(R) gravity. Phys. Rev. D 2019, 100, 044020. [Google Scholar] [CrossRef] [Green Version]
- Wojnar, A. Lithium abundance is a gravitational model dependent quantity. Phys. Rev. D 2021, 103, 044037. [Google Scholar] [CrossRef]
- Rosyadi, A.S.; Sulaksono, A.; Kassim, H.A.; Yusof, N. Brown dwarfs in Eddington-inspired Born-Infeld and beyond Horndeski theories. Eur. Phys. J. C 2019, 79, 1030. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Sarkar, T. Modified gravity in the interior of population II stars. J. Cosmol. Astropart. Phys. 2021, 2021, 040. [Google Scholar] [CrossRef]
- Benito, M.; Wojnar, A. Cooling process of brown dwarfs in Palatini f(R) gravity. Phys. Rev. D 2021, 103, 064032. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Introduction to Modified Gravity and Gravitational Alternative for Dark Energy. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 115. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rep. 2017, 692, 7. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Unified Cosmic History in Modified Gravity: From F(R) Theory to Lorentz Non-Invariant Models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Francaviglia, M. Extended Theories of Gravity and their Cosmological and Astrophysical Applications. Gen. Rel. Grav. 2008, 40, 357. [Google Scholar] [CrossRef] [Green Version]
- Carroll, S.M.; De Felice, A.; Duvvuri, V.; Easson, D.A.; Trodden, M.; Turner, M.S. Cosmology of generalized modified gravity models. Phys. Rev. D 2005, 71, 063513. [Google Scholar] [CrossRef] [Green Version]
- Senovilla, J.; Garfinkle, D. The 1965 Penrose singularity theorem. Class. Quantum Gravity 2015, 32, 124008. [Google Scholar] [CrossRef] [Green Version]
- Linares, M.; Shahbaz, T.; Casares, J. Peering into the dark side: Magnesium lines establish a massive neutron star in PSR J2215+ 5135. Astrophys. J. 2018, 859, 54. [Google Scholar] [CrossRef]
- Antoniadis, J.; Freire, P.; Wex, N.; Tauris, T.M.; Lynch, R.S.; van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe, T.; et al. A Massive Pulsar in a Compact Relativistic Binary. Science 2012, 340, 6131. [Google Scholar]
- Crawford, F.; Roberts, M.S.E.; Hessels, J.W.T.; Ransom, S.M.; Livingstone, M.; Tam, C.R.; Kaspi, V.M. A Survey of 56 Mid-latitude EGRET Error Boxes for Radio Pulsars. Astrophys. J. 2006, 652, 1499. [Google Scholar] [CrossRef] [Green Version]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, F.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. 2020, 896, L44. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, F.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙. Phys. Rev. Lett. 2020, 125, 101102. [Google Scholar] [CrossRef]
- Croon, D.; McDermott, S.D.; Straight, M.C.; Baxter, E.J. Beyond the Standard Model Explanations of GW190521. Phys. Rev. Lett. 2020, 125, 261105. [Google Scholar]
- Parker, L.; Toms, D.J. Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Birrel, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Afonso, V.I.; Olmo, G.J.; Rubiera-Garcia, D. Mapping Ricci-based theories of gravity into general relativity. Phys. Rev. D 2018, 97, 021503. [Google Scholar] [CrossRef] [Green Version]
- Ferraris, M.; Francaviglia, M.; Volovich, I. The Universality of Einstein Equations. Class. Quantum Gravity 1994, 11, 1505. [Google Scholar] [CrossRef]
- Borowiec, A.; Ferraris, M.; Francaviglia, M.; Volovich, I. Universality of the Einstein equations for Ricci squared Lagrangians. Class. Quantum Gravity 1998, 15, 43. [Google Scholar] [CrossRef]
- Sotiriou, T.P. f(R) gravity and scalar–tensor theory. Class. Quantum Gravity 2006, 23, 5117. [Google Scholar] [CrossRef] [Green Version]
- Toniato, J.D.; Rodrigues, D.C.; Wojnar, A. Palatini f(R) gravity in the solar system: Post-Newtonian equations of motion and complete PPN parameters. Phys. Rev. D 2020, 101, 064050. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.; Rubiera-Garcia, D.; Wojnar, A. Parameterized nonrelativistic limit of stellar structure equations in Ricci-based gravity theories. Phys. Rev. D 2021, 104, 024045. [Google Scholar] [CrossRef]
- Wojnar, A. On stability of a neutron star system in Palatini gravity. Eur. Phys. J. C 2018, 78, 421. [Google Scholar] [CrossRef]
- Kozak, A.; Wojnar, A. Invariant quantities of scalar–tensor theories for stellar structure. Eur. Phys. J. C 2021, 81, 492. [Google Scholar] [CrossRef]
- Wojnar, A. Polytropic stars in Palatini gravity. Eur. Phys. J. C 2019, 79, 51. [Google Scholar] [CrossRef] [Green Version]
- Mana, A.; Fatibene, L.; Ferraris, M. Extended Cosmology in Palatini f(R)-theories. J. Cosmol. Astropart. Phys. 2015, 2015, 040. [Google Scholar] [CrossRef] [Green Version]
- Birch, F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. 1947, 71, 809. [Google Scholar] [CrossRef]
- Poirier, J.-P. Introduction to the Physics of the Earth’s Interior; Cambridge University Press (Virtual Publishing): Cambridge, UK, 2000. [Google Scholar]
- Thomas, L.H. The calculation of atomic fields. Proc. Cam. Phil. Soc. 1927, 23, 542. [Google Scholar] [CrossRef] [Green Version]
- Fermi, E. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z. Phys. 1928, 48, 73. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Note on Exchange Phenomena in the Thomas Atom. Proc. Cam. Phil. Soc. 1930, 26, 376. [Google Scholar] [CrossRef] [Green Version]
- Feynman, R.P.; Metropolis, S.; Teller, E. Equations of State of Elements Based on the Generalized Fermi-Thomas Theory. Phys. Rev. 1949, 75, 1561. [Google Scholar] [CrossRef]
- Salpeter, E.E.; Zapolsky, H.S. Theoretical High-Pressure Equations of State including Correlation Energy. Phys. Rev. 1967, 158, 876. [Google Scholar] [CrossRef]
- Zeng, L.; Jacobsen, S.B. A Simple Analytical Model for Rocky Planet Interiors. Astrophys. J. 2017, 837, 164. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://exoplanets.nasa.gov/ (accessed on 20 December 2021).
- Available online: https://mars.nasa.gov/insight/spacecraft/instruments/seis/ (accessed on 20 December 2021).
- Zeng, L.; Sasselov, D.D.; Jacobsen, S.B. Mass-Radius Relation for Rocky Planets based on PREM. Astrophys. J. 2016, 819, 127. [Google Scholar] [CrossRef]
- Masó-Ferrando, A.; Sanchis-Gual, N.; Font, J.A.; Olmo, G.J. Boson stars in Palatini gravity. Class. Quan. Grav. 2021, 38, 194003. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D. Born-Infeld inspired modifications of gravity. Phys. Rep. 2018, 727, 1–129. [Google Scholar] [CrossRef] [Green Version]
Material | (kg m) | c (kg m Pa | n |
---|---|---|---|
Fe() | 8300 | 0.00349 | 0.528 |
(Mg, Fe)SiO | 4260 | 0.00127 | 0.549 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozak, A.; Wojnar, A. Interiors of Terrestrial Planets in Metric-Affine Gravity. Universe 2022, 8, 3. https://doi.org/10.3390/universe8010003
Kozak A, Wojnar A. Interiors of Terrestrial Planets in Metric-Affine Gravity. Universe. 2022; 8(1):3. https://doi.org/10.3390/universe8010003
Chicago/Turabian StyleKozak, Aleksander, and Aneta Wojnar. 2022. "Interiors of Terrestrial Planets in Metric-Affine Gravity" Universe 8, no. 1: 3. https://doi.org/10.3390/universe8010003
APA StyleKozak, A., & Wojnar, A. (2022). Interiors of Terrestrial Planets in Metric-Affine Gravity. Universe, 8(1), 3. https://doi.org/10.3390/universe8010003