Underground Measurements of Nuclear Reaction Cross-Sections Relevant to AGB Stars
Abstract
:1. Introduction
2. The Laboratory for Underground Nuclear Astrophysics
3. Hydrogen Burning
3.1. CNO Cycle
3.1.1.
3.1.2.
3.1.3.
3.1.4.
3.1.5. and
3.2. NeNa Cycle
3.3.
3.3.1.
3.3.2.
4. Neutron Sources for the s-Process
4.1.
4.2.
4.3.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Busso, M.; Gallino, R.; Wasserburg, G.J. Nucleosynthesis in Asymptotic Giant Branch Stars: Relevance for Galactic Enrichment and Solar System Formation. Annu. Rev. Astron. Astrophys. 1999, 37, 239–309. [Google Scholar] [CrossRef] [Green Version]
- Greife, U.; Arpesella, C.; Barnes, C.; Bartolucci, F.; Bellotti, E.; Broggini, C.; Corvisiero, P.; Fiorentini, G.; Fubini, A.; Gervino, G.; et al. Laboratory for Underground Nuclear Astrophysics (LUNA). Nucl. Instrum. Methods Phys. Res. A 1994, 350, 327–337. [Google Scholar] [CrossRef]
- Formicola, A.; Imbriani, G.; Junker, M.; Bemmerer, D.; Bonetti, R.; Broggini, C.; Casella, C.; Corvisiero, P.; Costantini, H.; Gervino, G.; et al. The LUNA II 400 kV accelerator. Nucl. Instrum. Methods Phys. Res. A 2003, 507, 609–616. [Google Scholar] [CrossRef]
- Cavanna, F.; Depalo, R.; Menzel, M.L.; Aliotta, M.; Anders, M.; Bemmerer, D.; Broggini, C.; Bruno, C.G.; Caciolli, A.; Corvisiero, P.; et al. A new study of the 22Ne(p, γ)23Na reaction deep underground: Feasibility, setup and first observation of the 186 keV resonance. Eur. Phys. J. A 2014, 50, 179. [Google Scholar] [CrossRef]
- Ferraro, F.; Takács, M.P.; Piatti, D.; Mossa, V.; Aliotta, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Bruno, C.G.; et al. A high-efficiency gas target setup for underground experiments, and redetermination of the branching ratio of the 189.5 keV 22Ne(p, γ)23Na resonance. Eur. Phys. J. A 2018, 54, 44. [Google Scholar] [CrossRef]
- Mossa, V.; Stöckel, K.; Cavanna, F.; Ferraro, F.; Aliotta, M.; Barile, F.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; et al. Setup commissioning for an improved measurement of the D(p, γ)3He cross section at Big Bang Nucleosynthesis energies. Eur. Phys. J. A 2020, 56, 144. [Google Scholar] [CrossRef]
- Boeltzig, A.; Best, A.; Imbriani, G.; Junker, M.; Aliotta, M.; Bemmerer, D.; Broggini, C.; Bruno, C.G.; Buompane, R.; Caciolli, A.; et al. Improved background suppression for radiative capture reactions at LUNA with HPGe and BGO detectors. J. Phys. G 2018, 45, 025203. [Google Scholar] [CrossRef]
- Bruno, C.G.; Scott, D.A.; Formicola, A.; Aliotta, M.; Davinson, T.; Anders, M.; Best, A.; Bemmerer, D.; Broggini, C.; Caciolli, A.; et al. Resonance strengths in the 17,18O(p, α)14,15N reactions and background suppression underground. Commissioning of a new setup for charged-particle detection at LUNA. Eur. Phys. J. A 2015, 51, 94. [Google Scholar] [CrossRef]
- Balibrea-Correa, J.; Ciani, G.; Buompane, R.; Cavanna, F.; Csedreki, L.; Depalo, R.; Ferraro, F.; Best, A. Improved pulse shape discrimination for high pressure 3He counters. Nucl. Instrum. Methods Phys. Res. A 2018, 906, 103. [Google Scholar] [CrossRef]
- Csedreki, L.; Ciani, G.F.; Balibrea-Correa, J.; Best, A.; Aliotta, M.; Barile, F.; Bemmerer, D.; Boeltzig, A.; Broggini, C.; Bruno, C.G.; et al. Characterization of the LUNA neutron detector array for the measurement of the 13C(α, n)16O reaction. Nucl. Instrum. Methods Phys. Res. A 2021, 994, 165081. [Google Scholar] [CrossRef]
- Cavanna, F.; Prati, P. Direct measurement of nuclear cross-section of astrophysical interest: Results and perspectives. Int. J. Mod. Phys. A 2018, 33, 1843010–1843346. [Google Scholar] [CrossRef]
- Broggini, C.; Straniero, O.; Taiuti, M.G.F.; de Angelis, G.; Benzoni, G.; Bruno, G.E.; Bufalino, S.; Cardella, G.; Colonna, N.; Contalbrigo, M.; et al. Experimental nuclear astrophysics in Italy. La Riv. Del Nuovo Cimento 2019, 42, 103. [Google Scholar] [CrossRef]
- Ferraro, F.; Ciani, G.F.; Boeltzig, A.; Cavanna, F.; Zavatarelli, S. The study of key reactions shaping the post main-sequence evolution of massive stars in underground facilities. Front. Astron. Space Sci. 2021, 7, 119. [Google Scholar] [CrossRef]
- Sen, A.; Domínguez-Cañizares, G.; Podaru, N.C.; Mous, D.J.W.; Junker, M.; Imbriani, G.; Rigato, V. A high intensity, high stability 3.5 MV Singletron™ accelerator. Nucl. Instrum. Methods Phys. Res. B 2019, 450, 390–395. [Google Scholar] [CrossRef]
- Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the Elements in Stars. Rev. Mod. Phys. 1957, 29, 547–650. [Google Scholar] [CrossRef] [Green Version]
- Berheide, M.; Rolfs, C.; Schröder, U.; Trautvetter, H.P. Search for the 70 keV resonance in 17O(p, α)14N. Z. Für Phys. A Hadron. Nucl. 1992, 343, 483–487. [Google Scholar] [CrossRef]
- Niemeyer, S. Untersuchungen zur Linienform der Alpha-Teilchen bei der 17O(p, α)14N-Reaktion. Diploma Thesis, Ruhr-Universität Bochum, Bochum, Germany, 1996. [Google Scholar]
- Blackmon, J.C.; Champagne, A.E.; Hofstee, M.A.; Smith, M.S.; Downing, R.G.; Lamaze, G.P. Measurement of the 17O(p, α)14N Cross Section at Stellar Energies. Phys. Rev. Lett. 1995, 74, 2642–2645. [Google Scholar] [CrossRef]
- Hannam, M.D.; Thompson, W.J. Estimating small signals by using maximum likelihood and Poisson statistics. Nucl. Instrum. Methods Phys. Res. A 1999, 431, 239–251. [Google Scholar] [CrossRef]
- Sergi, M.L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R.G.; Rapisarda, G.G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X.D.; Wiescher, M.; et al. Resonance strength measurement at astrophysical energies: The 17O(p, α)14N reaction studied via Trojan Horse Method. In Proceedings of the Nuclear Structure and Dynamics’15, Catania, Italy, 21–26 June 2015; Volume 1681, p. 050005. [Google Scholar] [CrossRef]
- Caciolli, A.; Scott, D.A.; Di Leva, A.; Formicola, A.; Aliotta, M.; Anders, M.; Bellini, A.; Bemmerer, D.; Broggini, C.; Campeggio, M.; et al. Preparation and characterisation of isotopically enriched Ta2O5 targets for nuclear astrophysics studies. Eur. Phys. J. A 2012, 48, 144. [Google Scholar] [CrossRef] [Green Version]
- Bruno, C.G.; Scott, D.A.; Aliotta, M.; Formicola, A.; Best, A.; Boeltzig, A.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Cavanna, F.; et al. Improved Direct Measurement of the 64.5 keV Resonance Strength in the 17O(p, α)14N Reaction at LUNA. Phys. Rev. Lett. 2016, 117, 142502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straniero, O.; Bruno, C.G.; Aliotta, M.; Best, A.; Boeltzig, A.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Cavanna, F.; Ciani, G.F.; et al. The impact of the revised 17O(p, α)14N reaction rate on 17O stellar abundances and yields. Astron. Astrophys. 2017, 598, A128. [Google Scholar] [CrossRef] [Green Version]
- Lugaro, M.; Karakas, A.I.; Bruno, C.G.; Aliotta, M.; Nittler, L.R.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Caciolli, A.; et al. Origin of meteoritic stardust unveiled by a revised proton-capture rate of 17O. Nat. Astron. 2017, 1, 0027. [Google Scholar] [CrossRef] [Green Version]
- Palmerini, S.; Cristallo, S.; Piersanti, L.; Vescovi, D.; Busso, M. Group II Oxide Grains: How Massive Are Their AGB Star Progenitors? Universe 2021, 7, 175. [Google Scholar] [CrossRef]
- Busso, M.; Palmerini, S.; Maiorca, E.; Cristallo, S.; Straniero, O.; Abia, C.; Gallino, R.; La Cognata, M. On the Need for Deep-mixing in Asymptotic Giant Branch Stars of Low Mass. Astrophys. J. Lett. 2010, 717, L47–L51. [Google Scholar] [CrossRef]
- Scott, D.A.; Caciolli, A.; Di Leva, A.; Formicola, A.; Aliotta, M.; Anders, M.; Bemmerer, D.; Broggini, C.; Campeggio, M.; Corvisiero, P.; et al. First Direct Measurement of the 17O(p, γ)18F Reaction Cross Section at Gamow Energies for Classical Novae. Phys. Rev. Lett. 2012, 109, 202501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Leva, A.; Scott, D.A.; Caciolli, A.; Formicola, A.; Strieder, F.; Aliotta, M.; Anders, M.; Bemmerer, D.; Broggini, C.; Corvisiero, P.; et al. Underground study of the 17O(p, γ)18F reaction relevant for explosive hydrogen burning. Phys. Rev. C 2014, 89, 015803. [Google Scholar] [CrossRef]
- Laubenstein, M.; Hult, M.; Gasparro, J.; Arnold, D.; Neumaier, S.; Heusser, G.; Köhler, M.; Povinec, P.; Reyss, J.L.; Schwaiger, M.; et al. Underground measurements of radioactivity. Appl. Radiat. Isot. 2004, 61, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, T. Cool luminous stars: The hybrid nature of their infrared spectra. Astron. Astrophys. 2008, 489, 1271–1289. [Google Scholar] [CrossRef] [Green Version]
- Meyer, B.S.; Nittler, L.R.; Nguyen, A.N.; Messenger, S. Nucleosynthesis and Chemical Evolution of Oxygen. Rev. Mineral. Geochem. 2008, 68, 31–53. [Google Scholar] [CrossRef]
- Mak, H.B.; Ewan, G.T.; Evans, H.C.; MacArthur, J.D.; McLatchie, W.; Azuma, R.E. The alpha widths of the 5603, 5605 and 5668 keV states in 18F. Nucl. Phys. A 1980, 343, 79–90. [Google Scholar] [CrossRef]
- Landre, V.; Aguer, P.; Bogaert, G.; Lefebvre, A.; Thibaud, J.P.; Fortier, S.; Maison, J.M.; Vernotte, J. 17O(3He,d)18F reaction and its implication in the 17O destruction in the CNO cycle in stars. Phys. Rev. C 1989, 40, 1972–1984. [Google Scholar] [CrossRef]
- Fox, C.; Iliadis, C.; Champagne, A.E.; Fitzgerald, R.P.; Longland, R.; Newton, J.; Pollanen, J.; Runkle, R. Thermonuclear reaction rate of 17O(p, γ)18F. Phys. Rev. C 2005, 71, 055801. [Google Scholar] [CrossRef]
- Gilmore, G. Practical γ-ray Spectrometry, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2008. [Google Scholar]
- Cognata, M.L.; Spitaleri, C.; Mukhamedzhanov, A.M. Effect of High-Energy Resonances on the 18O(p, α)15N Reaction Rate at AGB and Post-AGB Relevant Temperatures. Astrophys. J. 2010, 723, 1512–1522. [Google Scholar] [CrossRef]
- Mak, H.B.; Evans, H.C.; Ewan, G.T.; Macarthur, J.D. The 18O(p, α)15N cross section at low energies. Nucl. Phys. A 1978, 304, 210–220. [Google Scholar] [CrossRef]
- Lorenz-Wirzba, H.; Schmalbrock, P.; Trautvetter, H.P.; Wiescher, M.; Rolfs, C.; Rodney, W.S. The 18O(p, α)15N reaction at stellar energies. Nucl. Phys. A 1979, 313, 346–362. [Google Scholar] [CrossRef]
- Bruno, C.; Aliotta, M.; Descouvemont, P.; Best, A.; Davinson, T.; Bemmerer, D.; Boeltzig, A.; Broggini, C.; Caciolli, A.; Cavanna, F.; et al. Improved astrophysical rate for the 18O(p, α)15N reaction by underground measurements. Phys. Lett. B 2019, 790, 237–242. [Google Scholar] [CrossRef]
- Buckner, M.Q.; Iliadis, C.; Cesaratto, J.M.; Howard, C.; Clegg, T.B.; Champagne, A.E.; Daigle, S. Thermonuclear reaction rate of 18O(p, γ)19F. Phys. Rev. C 2012, 86, 065804. [Google Scholar] [CrossRef] [Green Version]
- Fortune, H.T. Resonance-strength parameter for 18O(p, γ) at Ep = 90 keV. Phys. Rev. C 2013, 88, 015801. [Google Scholar] [CrossRef]
- Best, A.; Pantaleo, F.; Boeltzig, A.; Imbriani, G.; Aliotta, M.; Balibrea-Correa, J.; Bemmerer, D.; Broggini, C.; Bruno, C.; Buompane, R.; et al. Cross section of the reaction 18O(p, γ)19F at astrophysical energies: The 90 keV resonance and the direct capture component. Phys. Lett. B 2019, 797, 134900. [Google Scholar] [CrossRef]
- Wiescher, M.; Becker, H.; Görres, J.; Kettner, K.U.; Trautvetter, H.; Kieser, W.; Rolfs, C.; Azuma, R.; Jackson, K.; Hammer, J. Nuclear and astrophysical aspects of 18O(p, γ)19F. Nucl. Phys. A 1980, 349, 165–216. [Google Scholar] [CrossRef]
- Pantaleo, F.R.; Boeltzig, A.; Best, A.; Perrino, R.; Aliotta, M.; Balibrea-Correa, J.; Barile, F.; Bemmerer, D.; Broggini, C.; Bruno, C.G.; et al. Low-energy resonances in the 18O(p, γ)19F reaction. Phys. Rev. C 2021, 104, 025802. [Google Scholar] [CrossRef]
- Savage, C.; Apponi, A.; Ziurys, L.; Wyckoff, A. Galactic 12C/13C Ratios from Millimeter-Wave Observations of Interstellar CN. Astrophys. J. 2008, 578, 211. [Google Scholar] [CrossRef]
- Palmerini, S.; La Cognata, M.; Cristallo, S.; Busso, M. Deep Mixing in Evolved Stars. I. The Effect of Reaction Rate Revisions from C to Al. Astrophys. J. 2011, 729, 3. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Barosch, J.; Nittler, L.R.; Alexander, C.M.; Wang, J.; Cristallo, S.; Busso, M.; Palmerini, S. New Multielement Isotopic Compositions of Presolar SiC Grains: Implications for Their Stellar Origins. Astrophys. J. Lett. 2021, 920, L26. [Google Scholar] [CrossRef]
- Palmerini, S.; Trippella, O.; Busso, M. A deep mixing solution to the aluminum and oxygen isotope puzzles in pre-solar grains. Mon. Not. R. Astron. Soc. 2017, 467, 1193–1201. [Google Scholar] [CrossRef] [Green Version]
- Bailey, C.L.; Stratton, W.R. Cross Section of the C12(p, γ)N13 Reaction at Low Energies. Phys. Rev. 1950, 77, 194–196. [Google Scholar] [CrossRef]
- Lamb, W.A.S.; Hester, R.E. Radiative Capture of Protons in Carbon from 80 to 126 kev. Phys. Rev. 1957, 107, 550–553. [Google Scholar] [CrossRef]
- Rolfs, C.; Azuma, R. Interference effects in 12C(p, γ)13N and direct capture to unbound states. Nucl. Phys. A 1974, 227, 291–308. [Google Scholar] [CrossRef]
- Burtebaev, N.; Igamov, S.B.; Peterson, R.J.; Yarmukhamedov, R.; Zazulin, D.M. New measurements of the astrophysical S-factor for 12C(p, γ)13N reaction at low energies and the asymptotic normalization coefficient (nuclear vertex constant) for the p + 12C → 13N reaction. Phys. Rev. C 2008, 78, 035802. [Google Scholar] [CrossRef]
- Vogl, J.L. Radiative Capture of Protons by 12C and 13C below 700 keV. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1963. [Google Scholar] [CrossRef]
- King, J.D.; Azuma, R.E.; Vise, J.B.; Görres, J.; Rolfs, C.; Trautvetter, H.P.; Vlieks, A.E. Cross section and astrophysical S-factor for the 13C(p, γ)14N reaction. Nucl. Phys. A 1994, 567, 354–376. [Google Scholar] [CrossRef]
- Seagrave, J.D. Radiative Capture of Protons by C13. Phys. Rev. 1952, 85, 197–203. [Google Scholar] [CrossRef]
- Woodbury, E.J.; Fowler, W.A. The Cross Section for the Radiative Capture of Protons by C13 at 129 kev. Phys. Rev. 1952, 85, 51–57. [Google Scholar] [CrossRef]
- Hester, R.E.; Lamb, W.A. Radiative Capture of Protons in C13. Phys. Rev. 1961, 121, 584–586. [Google Scholar] [CrossRef]
- Genard, G.; Descouvemont, P.; Terwagne, G. S-factor measurement of the 13C(p, γ)14N reaction in reverse kinematics. J. Phys. Conf. Ser. 2010, 202, 012015. [Google Scholar] [CrossRef]
- Ciani, G.F.; Csedreki, L.; Balibrea-Correa, J.; Best, A.; Aliotta, M.; Barile, F.; Bemmerer, D.; Boeltzig, A.; Broggini, C.; Bruno, C.G.; et al. A new approach to monitor 13C-targets degradation in situ for 13C(α, n)16O cross-section measurements at LUNA. Eur. Phys. J. A 2020, 56, 75. [Google Scholar] [CrossRef] [Green Version]
- Boothroyd, A.I.; Sackmann, I.J.; Wasserburg, G.J. Hot Bottom Burning in Asymptotic Giant Branch Stars and Its Effect on Oxygen Isotopic Abundances. Astrophys. J. Lett. 1995, 442, L21. [Google Scholar] [CrossRef] [Green Version]
- Herwig, F. Evolution of Asymptotic Giant Branch Stars. Annu. Rev. Astron. Astrophys. 2005, 43, 435–479. [Google Scholar] [CrossRef] [Green Version]
- Buchmann, L.R.; Barnes, C.A. Nuclear reactions in stellar helium burning and later hydrostatic burning stages. Nucl. Phys. A 2006, 777, 254–290. [Google Scholar] [CrossRef]
- Käppeler, F.; Gallino, R.; Bisterzo, S.; Aoki, W. The s process: Nuclear physics, stellar models, and observations. Rev. Mod. Phys. 2011, 83, 157. [Google Scholar] [CrossRef] [Green Version]
- Carretta, E.; Bragaglia, A.; Gratton, R.G.; Lucatello, S.; Catanzaro, G.; Leone, F.; Bellazzini, M.; Claudi, R.; D’Orazi, V.; Momany, Y.; et al. Na-O anticorrelation and HB. VII. The chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra. Astron. Astrophys. 2009, 505, 117–138. [Google Scholar] [CrossRef] [Green Version]
- Gratton, R.G.; Carretta, E.; Bragaglia, A. Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters. Astron. Astrophys. Rev. 2012, 20, 50. [Google Scholar] [CrossRef] [Green Version]
- Ventura, P.; Karakas, A.; Dell’Agli, F.; García-Hernández, D.A.; Guzman-Ramirez, L. Gas and dust from solar metallicity AGB stars. Mon. Not. R. Astron. Soc. 2018, 475, 2282–2305. [Google Scholar] [CrossRef]
- Görres, J.; Rolfs, C.; Schmalbrock, P.; Trautvetter, H.P.; Keinonen, J. Search for low-energy resonances in 21Ne(p, γ)22Na and 22Ne(p, γ)23Na. Nucl. Phys. A 1982, 385, 57–75. [Google Scholar] [CrossRef]
- Angulo, C.; Arnould, M.; Rayet, M.; Descouvemont, P.; Baye, D.; Leclercq-Willain, C.; Coc, A.; Barhoumi, S.; Aguer, P.; Rolfs, C.; et al. A compilation of charged-particle induced thermonuclear reaction rates. Nucl. Phys. A 1999, 656, 3–183. [Google Scholar] [CrossRef]
- Sallaska, A.L.; Iliadis, C.; Champange, A.E.; Goriely, S.; Starrfield, S.; Timmes, F.X. STARLIB: A Next-generation Reaction-rate Library for Nuclear Astrophysics. Astrophys. J. Suppl. Ser. 2013, 207, 18. [Google Scholar] [CrossRef]
- Cavanna, F.; Depalo, R.; Aliotta, M.; Anders, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Bruno, C.G.; Caciolli, A.; et al. Three New Low-Energy Resonances in the 22Ne(p, γ)23Na Reaction. Phys. Rev. Lett. 2015, 115, 252501, Erratum in Phys. Rev. Lett. 2018, 120, 239901. [Google Scholar] [CrossRef]
- Slemer, A.; Marigo, P.; Piatti, D.; Aliotta, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Bressan, A.; Broggini, C.; Bruno, C.G.; et al. 22Ne and 23Na ejecta from intermediate-mass stars: The impact of the new LUNA rate for 22Ne(p, γ)23Na. Mon. Not. R. Astron. Soc. 2016, 465, 4817–4837. [Google Scholar] [CrossRef]
- Iliadis, C.; Longland, R.; Champagne, A.E.; Coc, A. Charged-particle thermonuclear reaction rates: III. Nuclear physics input. Nucl. Phys. A 2010, 841, 251–322. [Google Scholar] [CrossRef] [Green Version]
- Kelly, K.J.; Champagne, A.E.; Downen, L.N.; Dermigny, J.R.; Hunt, S.; Iliadis, C.; Cooper, A.L. New measurements of low-energy resonances in the 22Ne(p, γ)23Na reaction. Phys. Rev. C 2017, 95, 015806. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, F.; Takács, M.P.; Piatti, D.; Cavanna, F.; Depalo, R.; Aliotta, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; et al. Direct Capture Cross Section and the Ep = 71 and 105 keV Resonances in the 22Ne(p, γ)23Na Reaction. Phys. Rev. Lett. 2018, 121, 172701. [Google Scholar] [CrossRef] [Green Version]
- Heil, M.; Detwiler, R.; Azuma, R.E.; Couture, A.; Daly, J.; Görres, J.; Käppeler, F.; Reifarth, R.; Tischhauser, P.; Ugalde, C.; et al. The 13C(α, n) reaction and its role as a neutron source for the s process. Phys. Rev. C 2008, 78, 025803. [Google Scholar] [CrossRef]
- Depalo, R.; Cavanna, F.; Ferraro, F.; Slemer, A.; Al-Abdullah, T.; Akhmadaliev, S.; Anders, M.; Bemmerer, D.; Elekes, Z.; Mattei, G.; et al. Strengths of the resonances at 436, 479, 639, 661, and 1279 keV in the 22Ne(p, γ)23Na reaction. Phys. Rev. C 2015, 92, 045807. [Google Scholar] [CrossRef] [Green Version]
- Depalo, R.; Cavanna, F.; Aliotta, M.; Anders, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Bruno, C.G.; Caciolli, A.; et al. Direct measurement of low-energy 22Ne(p, γ)23Na resonances. Phys. Rev. C 2016, 94, 055804. [Google Scholar] [CrossRef] [Green Version]
- Marion, J.; Fowler, W. Nuclear Reactions with the Neon Isotopes in Stars. Astrophys. J. 1957, 125, 221. [Google Scholar] [CrossRef]
- Gratton, R.; Sneden, C.; Carretta, E. Abundance Variations Within Globular Clusters. Annu. Rev. Astron. Astrophys. 2004, 42, 385–440. [Google Scholar] [CrossRef] [Green Version]
- Renzini, A.; D’Antona, F.; Cassisi, S.; King, I.R.; Milone, A.P.; Ventura, P.; Anderson, J.; Bedin, L.R.; Bellini, A.; Brown, T.M.; et al. TheHubble Space TelescopeUV Legacy Survey of Galactic Globular Clusters—V. Constraints on formation scenarios. Mon. Not. R. Astron. Soc. 2015, 454, 4197–4207. [Google Scholar] [CrossRef] [Green Version]
- Ventura, P.; D’Antona, F. Does the oxygen-sodium anticorrelation in globular clusters require a lowering of the 23Na(p, α)20Ne reaction rate? Astron. Astrophys. 2006, 457, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Rolfs, C.; Rodney, W.S.; Shapiro, M.H.; Winkler, H. Hydrogen burning of 20Ne and 22Ne in stars. Nucl. Phys. A 1975, 241, 460–486. [Google Scholar] [CrossRef]
- Mukhamedzhanov, A.M.; Bém, P.; Burjan, V.; Gagliardi, C.A.; Irgaziev, B.F.; Kroha, V.; Novák, J.; Piskoř, V.; Šimečková, E.; Tribble, R.E.; et al. Asymptotic normalization coefficients from the 20Ne(3He, d)21Na reaction and astrophysical factor for 20Ne(p, γ)21Na. Phys. Rev. C 2006, 73, 035806. [Google Scholar] [CrossRef] [Green Version]
- Lyons, S.; Görres, J.; deBoer, R.J.; Stech, E.; Chen, Y.; Gilardy, G.; Liu, Q.; Long, A.M.; Moran, M.; Robertson, D.; et al. Determination of 20Ne(p, γ)21Na cross sections from Ep = 500–2000 keV. Phys. Rev. C 2018, 97, 065802. [Google Scholar] [CrossRef] [Green Version]
- Bemmerer, D.; Cavanna, F.; Depalo, R.; Aliotta, M.; Anders, M.; Boeltzig, A.; Broggini, C.; Bruno, C.; Caciolli, A.; Chillery, T.; et al. Effect of beam energy straggling on resonant yield in thin gas targets: The cases 22Ne(p, γ)23Na and 14N(p, γ)15O. Europhys. Lett. 2018, 122, 52001. [Google Scholar] [CrossRef]
- Görres, J.; Wiescher, M.; Rolfs, C. Hydrogen burning of 23Na in the NeNa cycle. Astrophys. J. 1989, 343, 365. [Google Scholar] [CrossRef]
- Rowland, C.; Iliadis, C.; Champagne, A.E.; Fox, C.; José, J.; Runkle, R. Does an NeNa Cycle Exist in Explosive Hydrogen Burning? Astrophys. J. 2004, 615, L37–L40. [Google Scholar] [CrossRef] [Green Version]
- Cesaratto, J.M.; Champagne, A.E.; Buckner, M.Q.; Clegg, T.B.; Daigle, S.; Howard, C.; Iliadis, C.; Longland, R.; Newton, J.R.; Oginni, B.M. Measurement of the E = 138 keV resonance in the 23Na(p, γ)24Mg reaction and the abundance of sodium in AGB stars. Phys. Rev. C 2013, 88, 065806. [Google Scholar] [CrossRef]
- Boeltzig, A.; Best, A.; Pantaleo, F.; Imbriani, G.; Junker, M.; Aliotta, M.; Balibrea-Correa, J.; Bemmerer, D.; Broggini, C.; Bruno, C.; et al. Direct measurements of low-energy resonance strengths of the 23Na(p, γ)24Mg reaction for astrophysics. Phys. Lett. B 2019, 795, 122–128. [Google Scholar] [CrossRef]
- Marshall, C.; Setoodehnia, K.; Portillo, F.; Kelley, J.H.; Longland, R. New energy for the 133-keV resonance in the 23Na(p, γ)24Mg reaction and its impact on nucleosynthesis in globular clusters. Phys. Rev. C 2021, 104, L032801. [Google Scholar] [CrossRef]
- Hale, S.; Champagne, A.; Iliadis, C.; Hansper, V.; Powell, D.; Blackmon, J. Investigation of the 23Na(p, γ)24Mg and 23Na(p, α)20Ne reactions via (3He,d) spectroscopy. Phys. Rev. C 2004, 70, 045802. [Google Scholar] [CrossRef]
- Straniero, O.; Gallino, R.; Cristallo, S. s process in low-mass asymptotic giant branch stars. Nucl. Phys. A 2006, 777, 311. [Google Scholar] [CrossRef] [Green Version]
- Pignatari, M.; Gallino, R.; Heil, M.; Wiescher, M.; Käppeler, F.; Herwig, F.; Bisterzo, S. The Weaks-Process in Massive Stars and Its Dependence on the Neutron Capture Cross Sections. Astrophys. J. 2010, 710, 1557–1577. [Google Scholar] [CrossRef]
- Busso, M.; Gallino, R.; Lambert, D.L.; Travaglio, C.; Smith, V.V. Nucleosynthesis and Mixing on the Asymptotic Giant Branch. III. Predicted and Observed s-Process Abundances. Astrophys. J. 2001, 557, 802–821. [Google Scholar] [CrossRef] [Green Version]
- Busso, M.; Vescovi, D.; Palmerini, S.; Cristallo, S.; Antonuccio-Delogu, V. s-processing in AGB Stars Revisited. III. Neutron Captures from MHD Mixing at Different Metallicities and Observational Constraints. Astrophys. J. 2021, 908, 55. [Google Scholar] [CrossRef]
- Gallino, R.; Arlandini, C.; Busso, M.; Lugaro, M.; Travaglio, C.; Straniero, O.; Chieffi, A.; Limongi, M. Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the s-Process. Astrophys. J. 1998, 497, 388–403. [Google Scholar] [CrossRef]
- Brune, C.R.; Licot, I.; Kavanagh, R.W. Low-energy resonances in 13C(α, n). Phys. Rev. C 1993, 48, 3119–3121. [Google Scholar] [CrossRef] [PubMed]
- Drotleff, H.W.; Denker, A.; Knee, H.; Soine, M.; Wolf, G.; Hammer, J.W.; Greife, U.; Rolfs, C.; Trautvetter, H.P. Reaction rates of the s-process neutron sources 22Ne(α, n)25Mg and 13C(α, n)16O. Astrophys. J. 1993, 414, 735. [Google Scholar] [CrossRef]
- Guo, B.; Li, Z.H.; Lugaro, M.; Buntain, J.; Pang, D.Y.; Li, Y.J.; Su, J.; Yan, S.Q.; Bai, X.X.; Chen, Y.S.; et al. New Determination of the 13C(α, n)16O Reaction Rate and its Influence on the s-process Nucleosynthesis in AGB Stars. Astrophys. J. 2012, 756, 193. [Google Scholar] [CrossRef] [Green Version]
- Avila, M.L.; Rogachev, G.V.; Koshchiy, E.; Baby, L.T.; Belarge, J.; Kemper, K.W.; Kuchera, A.N.; Santiago-Gonzalez, D. New measurement of the α asymptotic normalization coefficient of the 1/2+ state in 17O at 6.356 MeV that dominates the 13C(α, n)16O reaction rate at temperatures relevant for the s process. Phys. Rev. C 2015, 91, 048801. [Google Scholar] [CrossRef] [Green Version]
- Trippella, O.; Cognata, M.L. Concurrent Application of ANC and THM to assess the 13C(α, n)16O Absolute Cross Section at Astrophysical Energies and Possible Consequences for Neutron Production in Low-mass AGB Stars. Astrophys. J. 2017, 837, 41. [Google Scholar] [CrossRef] [Green Version]
- Cristallo, S.; Cognata, M.L.; Massimi, C.; Best, A.; Palmerini, S.; Straniero, O.; Trippella, O.; Busso, M.; Ciani, G.F.; Mingrone, F.; et al. The Importance of the 13C(α, n)16O Reaction in Asymptotic Giant Branch Stars. Astrophys. J. 2018, 859, 105. [Google Scholar] [CrossRef] [Green Version]
- DeBoer, R.J.; Brune, C.R.; Febrarro, M.; Görres, J.; Thompson, I.J.; Wiescher, M. Sensitivity of the 13C(α, n)16OS factor to the uncertainty in the level parameters of the near-threshold state. Phys. Rev. C 2020, 101, 045802. [Google Scholar] [CrossRef]
- Ciani, G.F.; Csedreki, L.; Rapagnani, D.; Aliotta, M.; Balibrea-Correa, J.; Barile, F.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; et al. Direct Measurement of the 13C(α, n)16O Cross Section into the s-Process Gamow Peak. Phys. Rev. Lett. 2021, 127, 152701. [Google Scholar] [CrossRef] [PubMed]
- Azuma, R.; Uberseder, E.; Simpson, E.; Brune, C.; Costantini, H.; de Boer, R.; Görres, J.; Heil, M.; LeBlanc, P.; Ugalde, C.; et al. AZURE: An R-matrix code for nuclear astrophysics. Phys. Rev. C 2010, 81, 045805. [Google Scholar] [CrossRef] [Green Version]
- Harissopulos, S.; Becker, H.W.; Hammer, J.W.; Lagoyannis, A.; Rolfs, C.; Strieder, F. Cross section of the 13C(α, n)16O reaction: A background for the measurement of geo-neutrinos. Phys. Rev. C 2005, 72, 062801. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Takahashi, K.; Goriely, S.; Arnould, M.; Ohta, M.; Utsunomiya, H. NACRE II: An update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number A < 16. Nucl. Phys. A 2013, 918, 61–169. [Google Scholar] [CrossRef] [Green Version]
- Thielemann, F.K.; Diehl, R.; Heger, A.; Hirschi, R.; Liebendoerfer, M. Massive Stars and Their Supernovae. In Astrophysics with Radioactive Isotopes; Astrophysics and Space Science Library; Diehl, R., Hartmann, D.H., Prantzos, N., Eds.; Springer: Cham, Switzerland, 2018; Volume 453, pp. 173–286. [Google Scholar] [CrossRef]
- Lugaro, M.; Chieffi, A. Low- and Intermediate-Mass Stars. In Astrophysics with Radioactive Isotopes; Astrophysics and Space Science Library; Diehl, R., Hartmann, D.H., Prantzos, N., Eds.; Springer: Cham, Switzerland, 2018; Volume 453, pp. 91–172. [Google Scholar] [CrossRef]
- Karakas, A.I.; Lugaro, M.A.; Wiescher, M.; Görres, J.; Ugalde, C. The Uncertainties in the 22Ne + α-Capture Reaction Rates and the Production of the Heavy Magnesium Isotopes in Asymptotic Giant Branch Stars of Intermediate Mass. Astrophys. J. 2006, 643, 471–483. [Google Scholar] [CrossRef]
- Adsley, P.; Battino, U.; Best, A.; Caciolli, A.; Guglielmetti, A.; Imbriani, G.; Jayatissa, H.; La Cognata, M.; Lamia, L.; Masha, E.; et al. Reevaluation of the 22Ne(α, γ)26Mg and 22Ne(α, n)25Mg reaction rates. Phys. Rev. C 2021, 103, 015805. [Google Scholar] [CrossRef]
- Jaeger, M.; Kunz, R.; Mayer, A.; Hammer, J.W.; Staudt, G.; Kratz, K.L.; Pfeiffer, B. 22Ne(α, n)25Mg: The Key Neutron Source in Massive Stars. Phys. Rev. Lett. 2001, 87, 202501. [Google Scholar] [CrossRef] [PubMed]
- Giesen, U.; Browne, C.P.; Görres, J.; Graff, S.; Iliadis, C.; Trautvetter, H.P.; Wiescher, M.; Harms, W.; Kratz, K.L.; Pfeiffer, B.; et al. The astrophysical implications of low-energy resonances in 22Ne + α. Nucl. Phys. A 1993, 561, 95–111. [Google Scholar] [CrossRef]
- Ugalde, C.; Champagne, A.E.; Daigle, S.; Iliadis, C.; Longland, R.; Newton, J.R.; Osenbaugh-Stewart, E.; Clark, J.A.; Deibel, C.; Parikh, A.; et al. Experimental evidence for a natural parity state in 26Mg and its impact on the production of neutrons for the s process. Phys. Rev. C 2007, 76, 025802. [Google Scholar] [CrossRef] [Green Version]
- Longland, R.; Iliadis, C.; Rusev, G.; Tonchev, A.P.; Deboer, R.J.; Görres, J.; Wiescher, M. Photoexcitation of astrophysically important states in 26Mg. Phys. Rev. C 2009, 80, 055803. [Google Scholar] [CrossRef]
- Talwar, R.; Adachi, T.; Berg, G.P.A.; Bin, L.; Bisterzo, S.; Couder, M.; deBoer, R.J.; Fang, X.; Fujita, H.; Fujita, Y.; et al. Probing astrophysically important states in the 26Mg nucleus to study neutron sources for the s process. Phys. Rev. C 2016, 93, 055803. [Google Scholar] [CrossRef] [Green Version]
- Lotay, G.; Doherty, D.T.; Seweryniak, D.; Almaraz-Calderon, S.; Carpenter, M.P.; Chiara, C.J.; David, H.M.; Hoffman, C.R.; Janssens, R.V.F.; Kankainen, A.; et al. Identification of γ-decaying resonant states in 26Mg and their importance for the astrophysical s process. Eur. Phys. J. A 2019, 55, 109. [Google Scholar] [CrossRef]
- Jayatissa, H.; Rogachev, G.V.; Goldberg, V.Z.; Koshchiy, E.; Christian, G.; Hooker, J.; Ota, S.; Roeder, B.T.; Saastamoinen, A.; Trippella, O.; et al. Constraining the 22Ne(α, γ)26Mg and 22Ne(α, n)25Mg reaction rates using sub-Coulomb α-transfer reactions. Phys. Lett. B 2020, 802, 135267. [Google Scholar] [CrossRef]
- Ota, S.; Christian, G.; Lotay, G.; Catford, W.; Bennett, E.; Dede, S.; Doherty, D.; Hallam, S.; Hooker, J.; Hunt, C.; et al. Decay properties of 22Ne + α resonances and their impact on s-process nucleosynthesis. Phys. Lett. B 2020, 802, 135256. [Google Scholar] [CrossRef]
- Longland, R.; Iliadis, C.; Karakas, A.I. Reaction rates for the s-process neutron source 22Ne + α. Phys. Rev. C 2012, 85, 065809. [Google Scholar] [CrossRef] [Green Version]
- Piatti, D. The Study of 22Ne(α, γ)26Mg and 6Li(p, γ)7Be Reactions at LUNA. Ph.D. Thesis, Università degli Studi di Padova, Padua, Italy, 2018. [Google Scholar]
- Bemmerer, D.; Confortola, F.; Lemut, A.; Bonetti, R.; Broggini, C.; Corvisiero, P.; Costantini, H.; Cruz, J.; Formicola, A.; Fülöp, Z.; et al. Feasibility of low-energy radiative-capture experiments at the LUNA underground accelerator facility. Eur. Phys. J. A 2005, 24, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Best, A.; Caciolli, A.; Fülüp, Z.; Györky, G.; Laubenstein, M.; Napolitani, E.; Rigato, V.; Roca, V.; Szücs, T. Underground nuclear astrophysics: Why and how. Eur. Phys. J. A 2016, 52, 72. [Google Scholar] [CrossRef]
- Harms, V.; Kratz, K.L.; Wiescher, M. Properties of 22Ne(α, n)25Mg resonances. Phys. Rev. C 1991, 43, 2849. [Google Scholar] [CrossRef] [PubMed]
- Bisterzo, S.; Travaglio, C.; Gallino, R.; Wiescher, M.; Käppeler, F. Galactic Chemical Evolution and Solar s-Process Abundances: Dependence on the 13C-Pocket Structure. Astrophys. J. 2014, 787, 10. [Google Scholar] [CrossRef] [Green Version]
- Massimi, C.; Koehler, P.; Bisterzo, S.; Colonna, N.; Gallino, R.; Gunsing, F.; Käppeler, F.; Lorusso, G.; Mengoni, A.; Pignatari, M.; et al. Resonance neutron-capture cross sections of stable magnesium isotopes and their astrophysical implications. Phys. Rev. C 2012, 85, 044615. [Google Scholar] [CrossRef] [Green Version]
[keV] | [eV] | [eV] | Int. | |
---|---|---|---|---|
89 ± 0.3 | 3/2+ | (797 ± 57) 10 | 121 ± 5 | + |
106 ± 3 | 1/2− | (120 ± 10) 10 | (86 ± 1.6) 10 | + |
142.8 ± 0.3 | 1/2+ | (164 ± 12) 10 | 150 ± 1 | + |
204.7 ± 0.3 | 5/2+ | (791 ± 56) 10 | 12 ± 1 | + |
317.2 ± 0.3 | 5/2+ | (28 ± 2) 10 | (1.9 ± 0.1) 10 | − |
597.6 ± 0.3 | 3/2− | 36 ± 2 | (2.5 ± 0.1) 10 | + |
612.5 ± 1.2 | 1/2+ | (7.7 ± 0.1) 10 | (163 ± 1) 10 | − |
799.8 ± 0.3 | 1/2+ | (24.4 ± 0.3) 10 | (26.1 ± 0.3) 10 | + |
[keV] | Strength [eV] | |||
---|---|---|---|---|
Iliadis et al. [72] | LUNA-HPGe [70] | TUNL [73] | LUNA-BGO [74] | |
37 | (3.1 ± 1.2) × 10 | - | - | - |
71 | - | ≤1.5 × 10 | - | ≤6 × 10 |
105 | - | ≤7.6 × 10 | - | ≤7 × 10 |
156.2 | (9.2 ± 3.0) × 10 | (1.8 ± 0.2) × 10 | (2.0 ± 0.4) × 10 | (2.2 ± 0.2) × 10 |
189.5 | ≤2.6 × 10 | (2.2 ± 0.2) × 10 | (2.3 ± 0.3) × 10 | (2.7 ± 0.2) × 10 |
215 | - | ≤2.8 × 10 | - | - |
259.7 | ≤1.3 × 10 | (8.2 ± 0.7) × 10 | - | (9.7 ± 0.7) × 10 |
Reaction | Burning Network | LUNA Range [keV] | Relevant T [GK] |
---|---|---|---|
ON | CNO | 64.5, 183 | 0.05–0.24 |
OF | CNO | 64.5, 167–370 | 0.05–0.68 |
ON | CNO | 55–340 | 0.04–0.6 |
OF | CNO | 85–150 | 0.07–0.18 |
CN | CNO | 74–370 | 0.08–0.9 |
CN | CNO | 74–370 | 0.08–0.9 |
NeNa | Ne-Na | 68–300 | 0.04–0.39 |
NeNa | Ne-Na | 366 | 0.53 |
NaMg | Ne-Na | 138, 240, 296 | 0.11–0.35 |
C(, n)O | s-process | 230–300 | 0.12–0.18 |
NeMg | s-process | 334 | 0.12 |
NeMg | s-process | >350 | >0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ananna, C.; Barile, F.; Boeltzig, A.; Bruno, C.G.; Cavanna, F.; Ciani, G.F.; Compagnucci, A.; Csedreki, L.; Depalo, R.; Ferraro, F.; et al. Underground Measurements of Nuclear Reaction Cross-Sections Relevant to AGB Stars. Universe 2022, 8, 4. https://doi.org/10.3390/universe8010004
Ananna C, Barile F, Boeltzig A, Bruno CG, Cavanna F, Ciani GF, Compagnucci A, Csedreki L, Depalo R, Ferraro F, et al. Underground Measurements of Nuclear Reaction Cross-Sections Relevant to AGB Stars. Universe. 2022; 8(1):4. https://doi.org/10.3390/universe8010004
Chicago/Turabian StyleAnanna, Chemseddine, Francesco Barile, Axel Boeltzig, Carlo Giulio Bruno, Francesca Cavanna, Giovanni Francesco Ciani, Alessandro Compagnucci, Laszlo Csedreki, Rosanna Depalo, Federico Ferraro, and et al. 2022. "Underground Measurements of Nuclear Reaction Cross-Sections Relevant to AGB Stars" Universe 8, no. 1: 4. https://doi.org/10.3390/universe8010004
APA StyleAnanna, C., Barile, F., Boeltzig, A., Bruno, C. G., Cavanna, F., Ciani, G. F., Compagnucci, A., Csedreki, L., Depalo, R., Ferraro, F., Masha, E., Piatti, D., Rapagnani, D., & Skowronski, J. (2022). Underground Measurements of Nuclear Reaction Cross-Sections Relevant to AGB Stars. Universe, 8(1), 4. https://doi.org/10.3390/universe8010004