Time in Quantum Cosmology
Abstract
:Simple Summary
Abstract
1. Problem of Time
2. Classical and Quantum Geometrodynamics
2.1. Space and Time Decomposition: The 3 + 1 Split
2.2. Superspace and Canonical Quantization
3. The Question of Time
3.1. Classical Time
It is contrary to the scientific mode of understanding to postulate a thing that acts, but which cannot be acted upon.
Time must be defined in such a way that the equations of mechanics are as simple as possible. In other words, there is no way to measure time that is more true than any other; the one that is usually adopted is only more convenient.
3.2. Time and the Quantum
We thus conclude that one must completely go without the introduction of an operator t and that the time t in wave mechanics must necessarily be considered as an ordinary number (“c-number”).
One can arrive at an empirical knowledge of the time variable by no other means than by a real reading of a really existing clock. This clock is a physical system like any other, and the reading of the pointer is a physical measurement like any other. It is not acceptable to put this particular physical system and this particular kind of measurements, as we may say, hors concours, and to apply the principles of quantum mechanics only to all others but not to the determination of time.
3.3. The Problem
3.4. Two Solutions
3.4.1. Intrinsic Time
Everett’s view of the world is a very natural one to adopt the quantum theory of gravity, where one is accustomed to speak without embarassment of the ‘wave function of the universe.’ It is possible that Everett’s view is not only natural but essential.
3.4.2. The Trajectory Approach
3.5. Time from Semiclassical Gravity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | The origin of this discussion can, in fact, be traced back to the pioneering work of Léon Rosenfeld in 1930, see the detailed account by Salisbury in Ref. [7]. |
2 | We use units in which . |
3 | For a recent discussion of boundary terms, see Ref. [11]. |
4 | In the following we shall set . |
5 | The German original reads: “Es widerstrebt dem wissenschaftlichen Verstande, ein Ding zu setzen, das zwar wirkt, aber auf das nicht gewirkt werden kann”. |
6 | The French original reads: “Le temps doit être défini de telle façon que les équations de la mécanique soient aussi simples que possible. En d’autres termes, il n’y a pas une manière de mesurer le temps qui soit plus vraie qu’ une autre; celle qui est généralement adoptée est seulement plus commode”. |
7 | The German original reads: “Wir schließen also, daß auf die Einführung eines Operators t grundsätzlich verzichtet und die Zeit t in der Wellenmechanik notwendig als gewöhnliche Zahl (‘c-Zahl’) betrachtet werden muß”. |
8 | The German original reads: “Zur empirischen Kenntnis der Zeitvariablen kann man auf keine andere Weise als durch wirkliche Ablesung einer wirklich existierenden Uhr gelangen. Diese Uhr ist ein physikalisches System wie jedes andere, die Ablesung ihres Zeigerstandes eine physikalische Messung wie jede andere. Es geht nicht an, dieses eine physikalische System und diese eine Art von Messungen sozusagen hors concours zu stellen und bloß auf alle übrigen die Grundsätze der Quantenmechanik anzuwenden, auf die Zeitbestimmung aber nicht”. |
9 | The name “many worlds” may, strictly speaking, be inappropriate because one deals with one quantum world. In fact, Everett himself used the term “relative states”. |
10 | Non-vacuum GR can be recovered by adding some of the -degrees of freedom to . |
11 |
References
- Kuchař, K. Time and interpretations of quantum gravity. Int. J. Mod. Phys. D 2011, 20, 3–86. [Google Scholar] [CrossRef]
- Isham, C. Canonical quantum gravity and the problem of time. In Integrable Systems, Quantum Groups, and Quantum Field Theories; Springer: Berlin, Germany, 1993; Volume 409, pp. 157–287. [Google Scholar]
- Halliwell, J. The Interpretation of quantum cosmology and the problem of time. In Proceedings of the Workshop on Conference on the Future of Theoretical Physics and Cosmology in Honor of Stephen Hawking’s 60th Birthday, Cambridge, UK, 7–10 January 2002; pp. 675–692. [Google Scholar]
- Kiefer, C. Quantum Gravity, 3rd ed.; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Kiefer, C. Conceptual Problems in Quantum Gravity and Quantum Cosmology. ISRN Math. Phys. 2013, 2013, 509316. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E. The Problem of Time; Springer: Berlin, Germany, 2017; Volume 190. [Google Scholar] [CrossRef]
- Salisbury, D. Leon Rosenfeld and the challenge of the vanishing momentum in quantum electrodynamics. Stud. Hist. Philos. Sci. B 2009, 40, 363–373. [Google Scholar] [CrossRef]
- Arthur, R.T.W. Leibniz’s Theory of Time. In The Natural Philosophy of Leibniz; The University of Western Ontario Series in Philosophy of Science; Springer: Berlin, Germany, 1985; Volume 29, pp. 263–313. [Google Scholar]
- Barbour, J. Absolute or Relative Motion? Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Ehlers, J. Machian Ideas and General Relativity. From Newton’s Bucket to Quantum Gravity; Barbour, J., Pfister, H., Eds.; Birkhäuser: Boston, MA, USA, 1995. [Google Scholar]
- Feng, J.C.; Chakraborty, S. Weiss variation for general boundaries. arXiv 2021, arXiv:2111.06897. [Google Scholar]
- Arnowitt, A.; Deser, S.; Misner, C.W. The dynamics of general relativity. In Gravitation: An Introduction to Current Research; Witten, L., Ed.; Wiley: New York, NY, USA, 1962; pp. 227–265. [Google Scholar]
- Pons, J.M.; Salisbury, D.C.; Sundermeyer, K.A. Observables in classical canonical gravity: Folklore demystified. J. Phys. Conf. Ser. 2010, 222, 012018. [Google Scholar] [CrossRef]
- Pitts, J.B. Equivalent Theories Redefine Hamiltonian Observables to Exhibit Change in General Relativity. Class. Quantum Gravity 2017, 34, 055008. [Google Scholar] [CrossRef] [Green Version]
- Hartle, J.B.; Hawking, S.W. Wave Function of the Universe. Phys. Rev. D 1983, 28, 2960–2975. [Google Scholar] [CrossRef]
- Giulini, D. The Superspace of Geometrodynamics. Gen. Relativ. Gravit. 2009, 41, 785–815. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.C. Volume average regularization for the Wheeler-DeWitt equation. Phys. Rev. D 2018, 98, 026024. [Google Scholar] [CrossRef] [Green Version]
- Barbour, J. The Nature of Time. arXiv 2009, arXiv:0903.3489. [Google Scholar]
- Einstein, A. Grundzüge der Relativitätstheorie; Friedrich Vieweg und Sohn: Braunschweig, Germany, 1922. [Google Scholar]
- Giulini, D.; Kiefer, C. The Canonical approach to quantum gravity: General ideas and geometrodynamics. In Approaches to Fundamental Physics; Springer: Berlin, Germany, 2007; Volume 721, pp. 131–150. [Google Scholar] [CrossRef] [Green Version]
- Poincaré, H. La Valeur de la Science; Flammarion: Paris, France, 1970. [Google Scholar]
- Pauli, W. Die allgemeinen Prinzipien der Wellenmechanik; Springer: Berlin, Germany, 1990. [Google Scholar]
- Schrödinger, E. Spezielle Relativitätstheorie und Quantenmechanik. Sitzungsberichte Preuss. Akad. Wiss. Phys.-Math. Kl. 1931, XII, 238–247. [Google Scholar]
- Unruh, W.G.; Wald, R.M. Time and the Interpretation of Canonical Quantum Gravity. Phys. Rev. D 1989, 40, 2598. [Google Scholar] [CrossRef] [Green Version]
- Małkiewicz, P.; Miroszewski, A. Internal clock formulation of quantum mechanics. Phys. Rev. D 2017, 96, 046003. [Google Scholar] [CrossRef] [Green Version]
- Gambini, R.; Pullin, J. The Montevideo Interpretation: How the inclusion of a Quantum Gravitational Notion of Time Solves the Measurement Problem. Universe 2020, 6, 236. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Małkiewicz, P.; Peter, P.; Vitenti, S.D.P. Quantum empty Bianchi I spacetime with internal time. Phys. Rev. D 2020, 101, 046012. [Google Scholar] [CrossRef] [Green Version]
- Misner, C.W. Minisuperspace. In Magic without Magic: John Archibald Wheeler; Klauder, J.R., Ed.; Freeman: San Francisco, CA, USA, 1972; pp. 441–473. [Google Scholar]
- Zeh, H.D. The Physical Basis of the Direction of Time, 5th ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Kiefer, C.; Zeh, H. Arrow of time in a recollapsing quantum universe. Phys. Rev. D 1995, 51, 4145–4153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiefer, C. On a Quantum Weyl Curvature Hypothesis. arXiv 2021, arXiv:2111.02137. [Google Scholar]
- DeWitt, B.S. Quantum Theory of Gravity. 1. The Canonical Theory. Phys. Rev. 1967, 160, 1113–1148. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, C.; Kwidzinski, N.; Piontek, D. Singularity avoidance in Bianchi I quantum cosmology. Eur. Phys. J. C 2019, 79, 686. [Google Scholar] [CrossRef]
- Chataignier, L. Construction of quantum Dirac observables and the emergence of WKB time. Phys. Rev. D 2020, 101, 086001. [Google Scholar] [CrossRef] [Green Version]
- Valentini, A. Quantum gravity and quantum probability. arXiv 2021, arXiv:2104.07966. [Google Scholar]
- De Broglie, L. La mécanique ondulatoire et la structure atomique de la matière. J. Phys. Radium 1927, 8, 225–241. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested interpretation of the quantum theory in terms of hidden variables. 1. Phys. Rev. 1952, 85, 166–179. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested interpretation of the quantum theory in terms of hidden variables. 2. Phys. Rev. 1952, 85, 180–193. [Google Scholar] [CrossRef]
- Pinto-Neto, N.; Struyve, W. Bohmian quantum gravity and cosmology. arXiv 2018, arXiv:1801.03353. [Google Scholar]
- Mott, N.F. On the theory of excitation by collision with heavy particles. Proc. Camb. Philos. Soc. 1931, 27, 553–560. [Google Scholar] [CrossRef]
- Page, D.N.; Wootters, W.K. Evolution without evolution: Dynamics described by stationary observables. Phys. Rev. D 1983, 27, 2885. [Google Scholar] [CrossRef]
- Kiefer, C.; Singh, T.P. Quantum gravitational corrections to the functional Schrödinger equation. Phys. Rev. D 1991, 44, 1067–1076. [Google Scholar] [CrossRef]
- Giulini, D.; Kiefer, C. Consistency of semiclassical gravity. Class. Quantum Gravity 1995, 12, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Chataignier, L.; Krämer, M. Unitarity of quantum-gravitational corrections to primordial fluctuations in the Born-Oppenheimer approach. Phys. Rev. D 2021, 103, 066005. [Google Scholar] [CrossRef]
- Barbour, J.B. Time and complex numbers in canonical quantum gravity. Phys. Rev. D 1993, 47, 5422–5429. [Google Scholar] [CrossRef]
- Kiefer, C. Topology, decoherence, and semiclassical gravity. Phys. Rev. D 1993, 47, 5414–5421. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, C.; Marto, J.; Vargas Moniz, P. Indefinite oscillators and black-hole evaporation. Ann. Phys. 2009, 18, 722–735. [Google Scholar] [CrossRef] [Green Version]
- Oriti, D. The complex timeless emergence of time in quantum gravity. arXiv 2021, arXiv:2110.08641. [Google Scholar]
- Kiefer, C.; Nikolic, B. Notes on semiclassical Weyl gravity. Fundam. Theor. Phys. 2017, 187, 127–143. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C. Space and Time in Loop Quantum Gravity. In Beyond Spacetime; Huggett, N., Matsubara, K., Wüthrich, C., Eds.; Cambridge University Press: Cambridge, UK, 2020; pp. 117–132. [Google Scholar] [CrossRef]
- Horowitz, G.T. Spacetime in string theory. New J. Phys. 2005, 7, 201. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiefer, C.; Peter, P. Time in Quantum Cosmology. Universe 2022, 8, 36. https://doi.org/10.3390/universe8010036
Kiefer C, Peter P. Time in Quantum Cosmology. Universe. 2022; 8(1):36. https://doi.org/10.3390/universe8010036
Chicago/Turabian StyleKiefer, Claus, and Patrick Peter. 2022. "Time in Quantum Cosmology" Universe 8, no. 1: 36. https://doi.org/10.3390/universe8010036
APA StyleKiefer, C., & Peter, P. (2022). Time in Quantum Cosmology. Universe, 8(1), 36. https://doi.org/10.3390/universe8010036