Digging into Axion Physics with (Baby)IAXO
Abstract
:1. Introduction
2. The Axion
2.1. Properties
2.2. Motivation
3. Axion Phenomenology
3.1. Cosmological Constraints
3.2. Astrophysical Constraints
3.3. Astrophysical Hints
4. Detecting Axions and ALPs
4.1. Pure Laboratory Experiments
4.2. Haloscopes
4.3. Helioscopes
Helioscope Essentials in a Nutshell
5. IAXO: The New Generation Helioscope
- Magnet
- Moving Platform
- X-ray Focusing Devices
- Low-Background Detectors
5.1. BabyIAXO
5.2. Expected Performance
6. From Spain, with Love
7. An Axion Observatory
Funding
Acknowledgments
Conflicts of Interest
References
- Zwicky, F. Republication of: The redshift of extragalactic nebulae. Gen. Relat. Gravit. 2009, 41, 207–224. [Google Scholar] [CrossRef]
- Rubin, V.C.; Ford, W.; Kent, J. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 1970, 159, 379. [Google Scholar] [CrossRef]
- Smoot, G.F.; Bennett, C.L.; Kogut, A.; Wright, E.L.; Aymon, J.; Boggess, N.W.; Cheng, E.S.; de Amici, G.; Gulkis, S.; Hauser, M.G.; et al. Structure in the COBE Differential Microwave Radiometer First-Year Maps. Astrophys. J. Lett. 1992, 396, L1. [Google Scholar] [CrossRef]
- Ellis, R.S. Gravitational lensing: A unique probe of dark matter and dark energy. Philos. Trans. R. Soc. A 2010, 368, 967–987. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.Y. The strong CP problem revisited. Phys. Rep. 1988, 158, 1–89. [Google Scholar] [CrossRef]
- Abel, C.; Afach, S.; Ayres, N.; Baker, C.; Ban, G.; Bison, G.; Bodek, K.; Bondar, V.; Burghoff, M.; Chanel, E.; et al. Measurement of the Permanent Electric Dipole Moment of the Neutron. Phys. Rev. Lett. 2020, 124, 081803. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, T.; Cirigliano, V.; Gupta, R.; Mereghetti, E.; Yoon, B. Contribution of the QCD Θ-term to the nucleon electric dipole moment. Phys. Rev. D 2021, 103, 114507. [Google Scholar] [CrossRef]
- Peccei, R.; Quinn, H.R. CP conservation in the presence of instantons. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef] [Green Version]
- Peccei, R.; Quinn, H.R. Constraints imposed by CP conservation in the presence of instantons. Phys. Rev. 1977, D16, 1791–1797. [Google Scholar] [CrossRef]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279–282. [Google Scholar] [CrossRef]
- Di Luzio, L.; Giannotti, M.; Nardi, E.; Visinelli, L. The landscape of QCD axion models. Phys. Rept. 2020, 870, 1–117. [Google Scholar] [CrossRef]
- Kim, J.E. Weak Interaction Singlet and Strong CP Invariance. Phys. Rev. Lett. 1979, 43, 103. [Google Scholar] [CrossRef]
- Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I. Can Confinement Ensure Natural CP Invariance of Strong Interactions? Nucl. Phys. B 1980, 166, 493. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W.; Srednicki, M. A Simple Solution to the Strong CP Problem with a Harmless Axion. Phys. Lett. B 1981, 104, 199. [Google Scholar] [CrossRef]
- Zhitnitsky, A.R. On Possible Suppression of the Axion Hadron Interactions. (In Russian). Sov. J. Nucl. Phys. 1980, 31, 260. [Google Scholar]
- Irastorza, I.G.; Redondo, J. New experimental approaches in the search for axion-like particles. Prog. Part. Nucl. Phys. 2018, 102, 89–159. [Google Scholar] [CrossRef] [Green Version]
- Graham, P.W.; Irastorza, I.G.; Lamoreaux, S.K.; Lindner, A.; van Bibber, K.A. Experimental Searches for the Axion and Axion-Like Particles. Ann. Rev. Nucl. Part. Sci. 2015, 65, 485–514. [Google Scholar] [CrossRef] [Green Version]
- O’Hare, C.A.J.; Caputo, A.; Millar, A.J.; Vitagliano, E. Axion helioscopes as solar magnetometers. Phys. Rev. D 2020, 102, 043019. [Google Scholar] [CrossRef]
- Zioutas, K.; Semertzidis, Y.; Papaevangelou, T. Overlooked astrophysical signatures of axion(-like) particles. In Proceedings of the 6th International Workshop on the Identification of Dark Matter, Sydney, Australia, 24–28 September 2007; pp. 372–381. [Google Scholar]
- Raza, N.; Van Waerbeke, L.; Zhitnitsky, A. Solar corona heating by axion quark nugget dark matter. Phys. Rev. D 2018, 98, 103527. [Google Scholar] [CrossRef] [Green Version]
- Rusov, V.D.; Sharph, I.V.; Smolyar, V.P.; Eingorn, M.V.; Beglaryan, M.E. Coronal heating problem solution by means of axion origin photons. Phys. Dark Universe 2021, 31, 100746. [Google Scholar] [CrossRef]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 1983, 120, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Abbott, L.; Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 1983, 120, 133–136. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W. The not-so-harmless axion. Phys. Lett. B 1983, 120, 137–141. [Google Scholar] [CrossRef]
- Wantz, O.; Shellard, E.P.S. Axion cosmology revisited. Phys. Rev. D 2010, 82, 123508. [Google Scholar] [CrossRef] [Green Version]
- Gorghetto, M.; Hardy, E.; Villadoro, G. More Axions from Strings. SciPost Phys. 2021, 10, 50. [Google Scholar] [CrossRef]
- Buschmann, M.; Foster, J.W.; Hook, A.; Peterson, A.; Willcox, D.E.; Zhang, W.; Safdi, B.R. Dark Matter from Axion Strings with Adaptive Mesh Refinement. arXiv 2021, arXiv:2108.05368. [Google Scholar]
- Daido, R.; Takahashi, F.; Yin, W. The ALP miracle: Unified inflaton and dark matter. J. Cosmol. Astropart. Phys. 2017, 2017, 44. [Google Scholar] [CrossRef] [Green Version]
- Frieman, J.A.; Hill, C.T.; Stebbins, A.; Waga, I. Cosmology with Ultralight Pseudo Nambu-Goldstone Bosons. Phys. Rev. Lett. 1995, 75, 2077–2080. [Google Scholar] [CrossRef] [Green Version]
- Khoury, J.; Weltman, A. Chameleon cosmology. Phys. Rev. D 2004, 69, 044026. [Google Scholar] [CrossRef]
- Khoury, J.; Weltman, A. Chameleon Fields: Awaiting Surprises for Tests of Gravity in Space. Phys. Rev. Lett. 2004, 93, 171104. [Google Scholar] [CrossRef] [Green Version]
- Anastassopoulos, V.; Arik, M.; Aune, S.; Barth, K.; Belov, A.; Bräuninger, H.; Cantatore, G.; Carmona, J.; Cetin, S.; Christensen, F.; et al. Search for chameleons with CAST. Phys. Lett. B 2015, 749, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Raffelt, G.G. Astrophysical axion bounds. Lect. Notes Phys. 2008, 741, 51–71. [Google Scholar] [CrossRef] [Green Version]
- Giannotti, M.; Irastorza, I.; Redondo, J.; Ringwald, A. Cool WISPs for stellar cooling excesses. J. Cosmol. Astropart. Phys. 2016, 5, 57. [Google Scholar] [CrossRef]
- Giannotti, M.; Irastorza, I.G.; Redondo, J.; Ringwald, A.; Saikawa, K. Stellar Recipes for Axion Hunters. J. Cosmol. Astropart. Phys. 2017, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Di Luzio, L.; Fedele, M.; Giannotti, M.; Mescia, F.; Nardi, E. Stellar Evolution confronts Axion Models. arXiv 2021, arXiv:2109.10368. [Google Scholar]
- Redondo, J. Solar axion flux from the axion-electron coupling. J. Cosmol. Astropart. Phys. 2013, 1312, 8. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, A.; Fröhlich, H.E. A Bayesian estimation of the helioseismic solar age. Astron. Astrophys. 2015, 580, A130. [Google Scholar] [CrossRef] [Green Version]
- Vinyoles, N.; Serenelli, A.; Villante, F.L.; Basu, S.; Redondo, J.; Isern, J. New axion and hidden photon constraints from a solar data global fit. J. Cosmol. Astropart. Phys. 2015, 1510, 15. [Google Scholar] [CrossRef] [Green Version]
- Ayala, A.; Dominguez, I.; Giannotti, M.; Mirizzi, A.; Straniero, O. An improved bound on axion-photon coupling from Globular Clusters. Phys. Rev. Lett. 2014, 113, 191302. [Google Scholar] [CrossRef] [Green Version]
- Hirata, K.; Kajita, T.; Koshiba, M.; Nakahata, M.; Oyama, Y.; Sato, N.; Suzuki, A.; Takita, M.; Totsuka, Y.; Kifune, T.; et al. Observation of a neutrino burst from the supernova SN1987A. Phys. Rev. Lett. 1987, 58, 1490–1493. [Google Scholar] [CrossRef]
- Carenza, P.; Fischer, T.; Giannotti, M.; Guo, G.; Martínez-Pinedo, G.; Mirizzi, A. Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung. J. Cosmol. Astropart. Phys. 2019, 2019, 16. [Google Scholar] [CrossRef] [Green Version]
- Fischer, T.; Carenza, P.; Fore, B.; Giannotti, M.; Mirizzi, A.; Reddy, S. Observable signatures of enhanced axion emission from protoneutron stars. Phys. Rev. D 2021, 104, 103012. [Google Scholar] [CrossRef]
- Straniero, O.; Ayala, A.; Giannotti, M.; Mirizzi, A.; Dominguez, I. Axion-Photon Coupling: Astrophysical Constraints. In Proceedings of the 11th Patras Workshop on Axions, WIMPs and WISPs, Zaragoza, Spain, 22–26 June 2015; pp. 77–81. [Google Scholar] [CrossRef]
- Isern, J.; García-Berro, E.; Torres, S.; Cojocaru, R.; Catalán, S. Axions and the luminosity function of white dwarfs: The thin and thick discs, and the halo. Mon. Not. R. Astron. Soc. 2018, 478, 2569–2575. [Google Scholar] [CrossRef]
- Córsico, A.; Althaus, L.; Romero, A.; Mukadam, A.; García-Berro, E.; Isern, J.; Kepler, S.; Corti, M. An independent limit on the axion mass from the variable white dwarf star R548. J. Cosmol. Astropart. Phys. 2012, 2012, 10. [Google Scholar] [CrossRef] [Green Version]
- Córsico, A.H.; Althaus, L.G.; Miller Bertolami, M.M.; Kepler, S.O. Pulsating white dwarfs: New insights. Astron. Astrophys. Rev. 2019, 27, 7. [Google Scholar] [CrossRef] [Green Version]
- Straniero, O.; Pallanca, C.; Dalessandro, E.; Dominguez, I.; Ferraro, F.R.; Giannotti, M.; Mirizzi, A.; Piersanti, L. The RGB tip of galactic globular clusters and the revision of the axion-electron coupling bound. Astron. Astrophys. 2020, 644, A166. [Google Scholar] [CrossRef]
- Capozzi, F.; Raffelt, G. Axion and neutrino bounds improved with new calibrations of the tip of the red-giant branch using geometric distance determinations. Phys. Rev. D 2020, 102, 083007. [Google Scholar] [CrossRef]
- Mirizzi, A.; Montanino, D. Stochastic conversions of TeV photons into axion-like particles in extragalactic magnetic fields. J. Cosmol. Astropart. Phys. 2017, 2009, 4. [Google Scholar] [CrossRef] [Green Version]
- Kohri, K.; Kodama, H. Axion-like particles and recent observations of the cosmic infrared background radiation. Phys. Rev. D 2017, 96, 051701. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, S.; Arai, T.; Bock, J.J.; Cooray, A.; Korngut, P.M.; Kim, M.G.; Lee, H.M.; Lee, D.H.; Levenson, L.R.; Matsumoto, T.; et al. New Spectral Evidence of an Unaccounted Component of the Near-infrared Extragalactic Background Light from the CIBER. Astrophys. J. 2017, 839, 7. [Google Scholar] [CrossRef] [Green Version]
- Brun, P. Particle Physics and Cosmology with H.E.S.S. Nucl. Part. Phys. Proc. 2017, 291–293, 25–29. [Google Scholar] [CrossRef]
- Cheng, J.G.; He, Y.J.; Liang, Y.F.; Lu, R.J.; Liang, E.W. Revisiting the analysis of axion-like particles with the Fermi-LAT gamma-ray observation of NGC1275. Phys. Lett. B 2021, 821, 136611. [Google Scholar] [CrossRef]
- Anastassopoulos, V.; Aune, S.; Barth, K.; Belov, A.; Brauninger, H.; Cantatore, G.; Carmona, J.M.; Castel, J.; Cetin, S.A.; Christensen, F.; et al. New CAST Limit on the Axion-Photon Interaction. Nat. Phys. 2017, 13, 584–590. [Google Scholar] [CrossRef]
- Asztalos, S.J.; Carosi, G.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hotz, M.; Rosenberg, L.J.; Rybka, G.; Hoskins, J.; Hwang, J.; et al. A SQUID-based microwave cavity search for dark-matter axions. Phys. Rev. Lett. 2010, 104, 041301. [Google Scholar] [CrossRef] [Green Version]
- Gramolin, A.V.; Aybas, D.; Johnson, D.; Adam, J.; Sushkov, A.O. Search for axion-like dark matter with ferromagnets. Nat. Phys. 2021, 17, 79–84. [Google Scholar] [CrossRef]
- Salemi, C.P.; Foster, J.W.; Ouellet, J.L.; Gavin, A.; Pappas, K.M.; Cheng, S.; Richardson, K.A.; Henning, R.; Kahn, Y.; Nguyen, R.; et al. Search for Low-Mass Axion Dark Matter with ABRACADABRA-10 cm. Phys. Rev. Lett. 2021, 127, 081801. [Google Scholar] [CrossRef]
- O’Hare, C. Cajohare/AxionLimits: AxionLimits. 2020. Available online: https://doi.org/10.5281/zenodo.3932430 (accessed on 5 December 2021).
- Bellotti, E.; Fiorini, E.; Zanotti, L. Experimental Limits on Axion Production and Interaction Cross-Sections, and Decay Rate. Phys. Lett. B 1978, 76, 223–225. [Google Scholar] [CrossRef]
- Ellis, J.R.; Gaillard, M.K. No new light boson? Phys. Lett. B 1978, 74, 374–376. [Google Scholar] [CrossRef]
- Bechis, D.J.; Dombeck, T.W.; Ellsworth, R.W.; Sager, E.V.; Steinberg, P.H.; Teig, L.J.; Yoh, J.K.; Weitz, R.L. Search for Axion Production in Low-energy Electron Bremsstrahlung. Phys. Rev. Lett. 1979, 42, 1511, Erratum: Phys. Rev. Lett. 1979, 43, 90. [Google Scholar] [CrossRef]
- Faissner, H.; Frenzel, E.; Heinrigs, W.; Preussger, A.; Samm, D.; Samm, U. Limit on axion decay into an electron pair. Phys. Lett. B 1980, 96, 201–205. [Google Scholar] [CrossRef]
- Carenza, P.; Straniero, O.; Döbrich, B.; Giannotti, M.; Lucente, G.; Mirizzi, A. Constraints on the coupling with photons of heavy axion-like-particles from Globular Clusters. Phys. Lett. B 2020, 809, 135709. [Google Scholar] [CrossRef]
- Sikivie, P. Experimental Tests of the “Invisible” Axion. Phys. Rev. Lett. 1983, 51, 1415–1417. [Google Scholar] [CrossRef]
- Sikivie, P. Invisible axion search methods. Rev. Mod. Phys. 2021, 93, 015004. [Google Scholar] [CrossRef]
- Bähre, R.; Döbrich, B.; Dreyling-Eschweiler, J.; Ghazaryan, S.; Hodajerdi, R.; Horns, D.; Januschek, F.; Knabbe, E.A.; Lindner, A.; Notz, D.; et al. Any light particle search II—Technical Design Report. J. Instrum. 2013, 8, T09001. [Google Scholar] [CrossRef] [Green Version]
- Zavattini, E.; Zavattini, G.; Ruoso, G.; Polacco, E.; Milotti, E.; Karuza, M.; Gastaldi, U.; Di Domenico, G.; Della Valle, F.; Cimino, R.; et al. Experimental observation of optical rotation generated in vacuum by a magnetic field. Phys. Rev. Lett. 2006, 96, 110406, Erratum: Phys. Rev. Lett. 2007, 99, 129901. [Google Scholar] [CrossRef] [Green Version]
- Zavattini, E.; Zavattini, G.; Ruoso, G.; Raiteri, G.; Polacco, E.; Milotti, E.; Lozza, V.; Karuza, M.; Gastaldi, U.; Di Domenico, G.; et al. New PVLAS results and limits on magnetically induced optical rotation and ellipticity in vacuum. Phys. Rev. D 2008, 77, 032006. [Google Scholar] [CrossRef] [Green Version]
- Asztalos, S.; Carosi, G.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hotz, M.; J Rosenberg, L.; Rybka, G.; Wagner, A.; Hoskins, J.; et al. Design and performance of the ADMX SQUID-based microwave receiver. Nucl. Instrum. Methods A 2011, 656, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Bradley, R.; Clarke, J.; Kinion, D.; Rosenberg, L.J.; van Bibber, K.; Matsuki, S.; Mück, M.; Sikivie, P. Microwave cavity searches for dark-matter axions. Rev. Mod. Phys. 2003, 75, 777–817. [Google Scholar] [CrossRef] [Green Version]
- Melcón, A.Á.; Cuendis, S.A.; Cogollos, C.; Díaz-Morcillo, A.; Döbrich, B.; Gallego, J.D.; Gimeno, B.; Irastorza, I.G.; Lozano-Guerrero, A.J.; Malbrunot, C.; et al. Axion searches with microwave filters: The RADES project. J. Cosmol. Astropart. Phys. 2018, 2018, 40. [Google Scholar] [CrossRef] [Green Version]
- Álvarez Melcón, A.; Arguedas Cuendis, S.; Baier, J.; Barth, K.; Bräuninger, H.; Calatroni, S.; Cantatore, G.; Caspers, F.; Castel, J.F.; Cetin, S.A.; et al. First results of the CAST-RADES haloscope search for axions at 34.67 μeV. J. High Energy Phys. 2020, 21, 75. [Google Scholar] [CrossRef]
- Caputo, A.; Millar, A.J.; Vitagliano, E. Revisiting longitudinal plasmon-axion conversion in external magnetic fields. Phys. Rev. D 2020, 101, 123004. [Google Scholar] [CrossRef]
- Guarini, E.; Carenza, P.; Galán, J.; Giannotti, M.; Mirizzi, A. Production of axionlike particles from photon conversions in large-scale solar magnetic fields. Phys. Rev. D 2020, 102, 123024. [Google Scholar] [CrossRef]
- Raffelt, G.G. Astrophysical axion bounds diminished by screening effects. Phys. Rev. D 1986, 33, 897–909. [Google Scholar] [CrossRef]
- Hoof, S.; Jaeckel, J.; Thormaehlen, L.J. Quantifying uncertainties in the solar axion flux and their impact on determining axion model parameters. J. Cosmol. Astropart. Phys. 2021, 2021, 6. [Google Scholar] [CrossRef]
- Paschos, E.A.; Zioutas, K. A Proposal for solar axion detection via Bragg scattering. Phys. Lett. B 1994, 323, 367–372. [Google Scholar] [CrossRef]
- Avignone, F.T., III; Abriola, D.; Brodzinski, R.L.; Collar, J.I.; Creswick, R.J.; DiGregorio, D.E.; Farach, H.A.; Gattone, A.O.; Guérard, C.K.; Hasenbalg, F.; et al. Experimental search for solar axions via coherent Primakoff conversion in a germanium spectrometer. Phys. Rev. Lett. 1998, 81, 5068–5071. [Google Scholar] [CrossRef] [Green Version]
- Morales, A.; Avignone, F., III; Brodzinski, R.; Cebrián, S.; García, E.; González, D.; Irastorza, I.; Miley, H.; Morales, J.; de Solórzano, A.O.; et al. Particle dark matter and solar axion searches with a small germanium detector at the Canfranc Underground Laboratory. Astropart. Phys. 2002, 16, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F.A.; d’Angelo, A.; Incicchitti, A.; Kobychev, V.V.; Laubenstein, M.; Polischuk, O.G.; et al. Search for Li-7 solar axions using resonant absorption in LiF crystal: Final results. Phys. Lett. B 2012, 711, 41–45. [Google Scholar] [CrossRef]
- Armengaud, E.; Arnaud, Q.; Augier, C.; Benoit, A.; Benoit, A.; Bergé, L.; Bergmann, T.; Blümer, J.; Broniatowski, A.; Brudanin, V.; et al. Axion searches with the EDELWEISS-II experiment. J. Cosmol. Astropart. Phys. 2013, 11, 67. [Google Scholar] [CrossRef]
- van Bibber, K.; McIntyre, P.M.; Morris, D.E.; Raffelt, G.G. Design for a practical laboratory detector for solar axions. Phys. Rev. D 1989, 39, 2089–2099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazarus, D.M.; Smith, G.C.; Cameron, R.; Melissinos, A.C.; Ruoso, G.; Semertzidis, Y.K.; Nezrick, F.A. A Search for solar axions. Phys. Rev. Lett. 1992, 69, 2333–2336. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, S.; Minowa, M.; Namba, T.; Inoue, Y.; Takasu, Y.; Yamamoto, A. Direct search for solar axions by using strong magnetic field and X-ray detectors. Phys. Lett. B 1998, 434, 147. [Google Scholar] [CrossRef] [Green Version]
- Inoue, Y.; Namba, T.; Moriyama, S.; Minowa, M.; Takasu, Y.; Horiuchi, T.; Yamamoto, A. Search for sub-electronvolt solar axions using coherent conversion of axions into photons in magnetic field and gas helium. Phys. Lett. B 2002, 536, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Inoue, Y.; Akimoto, Y.; Ohta, R.; Mizumoto, T.; Yamamoto, A.; Minowa, M. Search for solar axions with mass around 1 eV using coherent conversion of axions into photons. Phys. Lett. B 2008, 668, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Zioutas, K.; Andriamonje, S.; Arsov, V.; Aune, S.; Autiero, D.; Avignone, F.T.; Barth, K.; Belov, A.; Beltrán, B.; Bräuninger, H.; et al. First results from the CERN Axion Solar Telescope (CAST). Phys. Rev. Lett. 2005, 94, 121301. [Google Scholar] [CrossRef]
- Andriamonje, S.; Aune, S.; Autiero, D.; Barth, K.; Belov, A.; Beltrán, B.; Bräuninger, H.; Carmona, J.M.; Cebrián, S.; Collar, J.I.; et al. An improved limit on the axion-photon coupling from the CAST experiment. J. Cosmol. Astropart. Phys. 2007, 704, 10. [Google Scholar] [CrossRef]
- Arik, E.; Aune, S.; Autiero, D.; Barth, K.; Belov, A.; Beltrán, B.; Borghi, S.; Bourlis, G.; Boydag, F.; Bräuninger, H.; et al. Probing eV-scale axions with CAST. J. Cosmol. Astropart. Phys. 2009, 2009, 8. [Google Scholar] [CrossRef]
- Arik, M.; Aune, S.; Barth, K.; Belov, A.; Borghi, S.; Bräuninger, H.; Cantatore, G.; Carmona, J.M.; Cetin, S.A.; Collar, J.I.; et al. Search for Sub-eV Mass Solar Axions by the CERN Axion Solar Telescope with 3He Buffer Gas. Phys. Rev. Lett. 2011, 107, 261302. [Google Scholar] [CrossRef] [Green Version]
- Arik, M.; Aune, S.; Barth, K.; Belov, A.; Borghi, S.; Brauninger, H.; Cantatore, G.; Carmona, J.M.; Cetin, S.A.; Collar, J.I.; et al. CAST solar axion search with 3He buffer gas: Closing the hot dark matter gap. Phys. Rev. Lett. 2014, 112, 091302. [Google Scholar] [CrossRef] [Green Version]
- Arik, M.; Aune, S.; Barth, K.; Belov, A.; Bräuninger, H.; Bremer, J.; Burwitz, V.; Cantatore, G.; Carmona, J.M.; Cetin, S.A.; et al. New solar axion search using the CERN Axion Solar Telescope with 4He filling. Phys. Rev. 2015, D92, 021101. [Google Scholar] [CrossRef] [Green Version]
- Tomas, A.; Aune, S.; Dafni, T.; Fanourakis, G.; Ferrer-Ribas, E.; Galán, J.; García, J.; Gardikiotis, A.; Geralis, T.; Giomataris, I.; et al. CAST Microbulk Micromegas in the Canfranc Underground Laboratory. Phys. Procedia 2012, 37, 478–482. [Google Scholar] [CrossRef] [Green Version]
- Barth, K.; Belov, A.; Beltran, B.; Bräuninger, H.; Carmona, J.M.; Collar, J.I.; Dafni, T.; Davenport, M.; Di Lella, L.; Eleftheriadis, C.; et al. CAST constraints on the axion-electron coupling. J. Cosmol. Astropart. Phys. 2013, 1305, 10. [Google Scholar] [CrossRef]
- Andriamonje, S.; Aune, S.; Autiero, D.; Barth, K.; Belov, A.; Beltrán, B.; Bräuninger, H.; Carmona, J.; Cebrián, S.; Collar, J.; et al. Search for 14.4-keV solar axions emitted in the M1-transition of Fe-57 nuclei with CAST. J. Cosmol. Astropart. Phys. 2009, 912, 2. [Google Scholar] [CrossRef]
- Andriamonje, S.; Aune, S.; Autiero, D.; Barth, K.; Belov, A.; Beltrán, B.; Bräuninger, H.; Carmona, J.; Cebrián, S.; Collar, J.; et al. Search for solar axion emission from 7Li and D(p,γ)3He nuclear decays with the CAST γ-ray calorimeter. J. Cosmol. Astropart. Phys. 2010, 3, 32. [Google Scholar] [CrossRef]
- Anastassopoulos, V.; Aune, S.; Barth, K.; Belov, A.; Bräuninger, H.; Cantatore, G.; Carmona, J.; Castel, J.; Cetin, S.; Christensen, F.; et al. Improved Search for Solar Chameleons with a GridPix Detector at CAST. J. Cosmol. Astropart. Phys. 2019, 1901, 32. [Google Scholar] [CrossRef]
- Cuendis, S.A.; Baier, J.; Barth, K.; Baum, S.; Bayirli, A.; Belov, A.; Bräuninger, H.; Cantatore, G.; Carmona, J.M.; Castel, J.F.; et al. First Results on the Search for Chameleons with the KWISP Detector at CAST. Phys. Dark Univ. 2019, 26, 100367. [Google Scholar] [CrossRef]
- Armengaud, E.; Attié, D.; Basso, S.; Brun, P.; Bykovskiy, N.; Carmona, J.; Castel, J.; Cebrián, S.; Cicoli, M.; Civitani, M.; et al. Physics potential of the International Axion Observatory (IAXO). J. Cosmol. Astropart. Phys. 2019, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Irastorza, I.; Avignone, F.; Caspi, S.; Carmona, J.; Dafni, T.; Davenport, M.; Dudarev, A.; Fanourakis, G.; Ferrer-Ribas, E.; Galán, J.; et al. Towards a new generation axion helioscope. J. Cosmol. Astropart. Phys. 2011, 6, 13. [Google Scholar] [CrossRef]
- Harrison, F.A.; Craig, W.W.; Christensen, F.E.; Hailey, C.J.; Zhang, W.W.; Boggs, S.E.; Stern, D.; Cook, W.R.; Forster, K.; Giommi, P.; et al. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-ray Mission. Astrophys. J. 2013, 770, 103. [Google Scholar] [CrossRef] [Green Version]
- Andriamonje, S.; Attie, D.; Berthoumieux, E.; Calviani, M.; Colas, P.; Dafni, T.; Fanourakis, G.; Ferrer-Ribas, E.; Galan, J.; Geralis, T.; et al. Development and performance of Microbulk Micromegas detectors. J. Instrum. 2010, 5, P02001. [Google Scholar] [CrossRef]
- Aznar, F.; Castel, J.; Christensen, F.; Dafni, T.; Decker, T.; Ferrer-Ribas, E.; Garcia, J.; Giomataris, I.; Garza, J.; Hailey, C.; et al. A Micromegas-based low-background X-ray detector coupled to a slumped-glass telescope for axion research. J. Cosmol. Astropart. Phys. 2015, 1512, 8. [Google Scholar] [CrossRef] [Green Version]
- Krieger, C.; Desch, K.; Kaminski, J.; Lupberger, M. Operation of an InGrid based X-ray detector at the CAST experiment. EPJ Web Conf. 2018, 174, 02008. [Google Scholar] [CrossRef]
- Unger, D.; Abeln, A.; Enss, C.; Fleischmann, A.; Hengstler, D.; Kempf, S.; Gastaldo, L. High-resolution for IAXO: MMC-based X-ray detectors. J. Instrum. 2021, 16, P06006. [Google Scholar] [CrossRef]
- Mertens, S.; Lasserre, T.; Groh, S.; Drexlin, G.; Glück, F.; Huber, A.; Poon, A.; Steidl, M.; Steinbrink, N.; Weinheimer, C. Sensitivity of next-generation tritium beta-decay experiments for keV-scale sterile neutrinos. J. Cosmol. Astropart. Phys. 2015, 2015, 20. [Google Scholar] [CrossRef]
- Bykovskiy, N.; Dudarev, A.; Pais Da Silva, H.; de Sousa, P.B.; Mentink, M.; Ten Kate, H.H.J. Superconducting Detector Magnet for BabyIAXO. IEEE Trans. Appl. Supercond. 2021, 31, 4500305. [Google Scholar] [CrossRef]
- Garczarczyk, M.; Schlenstedt, S.; Oakes, L.; Schwanke, U. Status of the Medium-Sized Telescope for the Cherenkov Telescope Array. arXiv 2016, arXiv:1509.01361. [Google Scholar] [CrossRef] [Green Version]
- Abeln, A.; Altenmüller, K.; Cuendis, S.A.; Armengaud, E.; Attié, D.; Aune, S.; Basso, S.; Bergé, L.; Biasuzzi, B.; Sousa, P.T.C.B.D.; et al. Conceptual design of BabyIAXO, the intermediate stage towards the International Axion Observatory. J. High Energy Phys. 2021, 5, 137. [Google Scholar] [CrossRef]
- Galán, J.; Dafni, T.; Ferrer-Ribas, E.; Giomataris, I.; Iguaz, F.; Irastorza, I.; García, J.; Garza, J.; Luzon, G.; Papaevangelou, T.; et al. Exploring 0.1–10 eV axions with a new helioscope concept. J. Cosmol. Astropart. Phys. 2015, 2015, 12. [Google Scholar] [CrossRef] [Green Version]
- Dafni, T.; O’Hare, C.A.J.; Lakić, B.; Galán, J.; Iguaz, F.J.; Irastorza, I.G.; Jakovčic, K.; Luzón, G.; Redondo, J.; Ruiz Chóliz, E. Weighing the solar axion. Phys. Rev. D 2019, 99, 035037. [Google Scholar] [CrossRef] [Green Version]
- Jaeckel, J.; Thormaehlen, L.J. Distinguishing Axion Models with IAXO. J. Cosmol. Astropart. Phys. 2019, 3, 39. [Google Scholar] [CrossRef] [Green Version]
- Irastorza, I.; Aznar, F.; Castel, J.; Cebrián, S.; Dafni, T.; Galán, J.; Garcia, J.; Garza, J.; Gómez, H.; Herrera, D.; et al. Gaseous time projection chambers for rare event detection: Results from the T-REX project. I. Double beta decay. J. Cosmol. Astropart. Phys. 2016, 2016, 33, Erratum in J. Cosmol. Astropart. Phys. 2016, 5, E01. [Google Scholar] [CrossRef] [Green Version]
- Bandac, I.; Borjabad, S.; Ianni, A.; Nuñez-Lagos, R.; Pérez, C.; Rodríguez, S.; Villar, J. Ultra-low background and environmental measurements at Laboratorio Subterráneo de Canfranc (LSC). Appl. Radiat. Isot. 2017, 126, 127–129. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods A 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Brun, R.; Rademakers, F. ROOT—An object oriented data analysis framework. Nucl. Instrum. Methods A 1997, 389, 81–86. [Google Scholar] [CrossRef]
- Antcheva, I.; Ballintijn, M.; Bellenot, B.; Biskup, M.; Brun, R.; Buncic, N.; Canal, P.; Casadei, D.; Couet, O.; Fine, V.; et al. ROOT: A C++ framework for petabyte data storage, statistical analysis and visualization. Comput. Phys. Commun. 2011, 180, 2499–2512. [Google Scholar] [CrossRef] [Green Version]
- Altenmüller, K.; Cebrián, S.; Dafni, T.; Díez-Ibáñez, D.; Galán, J.; Galindo, J.; García, J.A.; Irastorza, I.G.; Luzón, G.; Margalejo, C.; et al. REST-for-Physics, a ROOT-based framework for event oriented data analysis and combined Monte Carlo response. Comput. Phys. Commun. 2022. [Google Scholar] [CrossRef]
- Redondo, J. Atlas of solar hidden photon emission. J. Cosmol. Astropart. Phys. 2015, 2015, 24. [Google Scholar] [CrossRef]
- Raffelt, G.G.; Redondo, J.; Maira, N.V. The meV mass frontier of axion physics. Phys. Rev. D 2011, 84, 103008. [Google Scholar] [CrossRef] [Green Version]
- Visinelli, L.; Redondo, J. Axion miniclusters in modified cosmological histories. Phys. Rev. D 2020, 101, 023008. [Google Scholar] [CrossRef] [Green Version]
- Vaquero, A.; Redondo, J.; Stadler, J. Early seeds of axion miniclusters. J. Cosmol. Astropart. Phys. 2019, 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Eggemeier, B.; Redondo, J.; Dolag, K.; Niemeyer, J.C.; Vaquero, A. First Simulations of Axion Minicluster Halos. Phys. Rev. Lett. 2020, 125, 041301. [Google Scholar] [CrossRef]
- Visinelli, L.; Baum, S.; Redondo, J.; Freese, K.; Wilczek, F. Dilute and dense axion stars. Phys. Lett. B 2018, 777, 64–72. [Google Scholar] [CrossRef]
- Melcón, A.Á.; Cuendis, S.A.; Cogollos, C.; Díaz-Morcillo, A.; Döbrich, B.; Gallego, J.D.; Barceló, J.M.G.; Gimeno, B.; Golm, J.; Irastorza, I.G.; et al. Scalable haloscopes for axion dark matter detection in the 30 μeV range with RADES. J. High Energy Phys. 2020, 2020, 84. [Google Scholar] [CrossRef]
- Díaz-Morcillo, A.; García Barceló, J.M.; Lozano Guerrero, A.J.; Navarro, P.; Gimeno, B.; Arguedas Cuendis, S.; Álvarez Melcón, A.; Cogollos, C.; Calatroni, S.; Döbrich, B.; et al. Design of new resonant haloscopes in the search for the dark matter axion: A review of the first steps in the RADES collaboration. Universe 2022, 8, 5. [Google Scholar] [CrossRef]
- Andrianavalomahefa, A.; Schäfer, C.M.; Veberič, D.; Engel, R.; Schwetz, T.; Mathes, H.J.; Daumiller, K.; Roth, M.; Schmidt, D.; Ulrich, R.; et al. Limits from the FUNK experiment on the mixing strength of hidden-photon dark matter in the visible and near-ultraviolet wavelength range. Phys. Rev. D 2020, 102, 042001. [Google Scholar] [CrossRef]
- MADMAX Collaboration; Brun, P.; Caldwell, A.; Chevalier, L.; Dvali, G.; Freire, P.; Garutti, E.; Heyminck, S.; Jochum, J.; Knirck, S.; et al. A new experimental approach to probe QCD axion dark matter in the mass range above 40 μeV. Eur. Phys. J. C 2019, 79, 186. [Google Scholar] [CrossRef]
- Knirck, S.; Millar, A.J.; O’Hare, C.A.; Redondo, J.; Steffen, F.D. Directional axion detection. J. Cosmol. Astropart. Phys. 2018, 2018, 51. [Google Scholar] [CrossRef] [Green Version]
- Jaeckel, J.; Thormaehlen, L.J. Axions as a probe of solar metals. Phys. Rev. D 2019, 100, 123020. [Google Scholar] [CrossRef] [Green Version]
- Ge, S.F.; Hamaguchi, K.; Ichimura, K.; Ishidoshiro, K.; Kanazawa, Y.; Kishimoto, Y.; Nagata, N.; Zheng, J. Supernova-scope for the direct search of Supernova axions. J. Cosmol. Astropart. Phys. 2020, 2020, 59. [Google Scholar] [CrossRef]
- Moriyama, S. Proposal to Search for a Monochromatic Component of Solar Axions Using 57Fe. Phys. Rev. Lett. 1995, 75, 3222–3225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luzio, L.D.; Galan, J.; Giannotti, M.; Irastorza, I.G.; Jaeckel, J.; Lindner, A.; Ruz, J.; Schneekloth, U.; Sohl, L.; Thormaehlen, L.J.; et al. Probing the axion-nucleon coupling with the next generation of axion helioscopes. arXiv 2021, arXiv:2111.06407. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dafni, T.; Galán, J. Digging into Axion Physics with (Baby)IAXO. Universe 2022, 8, 37. https://doi.org/10.3390/universe8010037
Dafni T, Galán J. Digging into Axion Physics with (Baby)IAXO. Universe. 2022; 8(1):37. https://doi.org/10.3390/universe8010037
Chicago/Turabian StyleDafni, Theopisti, and Javier Galán. 2022. "Digging into Axion Physics with (Baby)IAXO" Universe 8, no. 1: 37. https://doi.org/10.3390/universe8010037
APA StyleDafni, T., & Galán, J. (2022). Digging into Axion Physics with (Baby)IAXO. Universe, 8(1), 37. https://doi.org/10.3390/universe8010037