Dark Matter Searches Using NaI(Tl) at the Canfranc Underground Laboratory: Past, Present and Future
Abstract
:1. Introduction
2. The Old Canfranc Underground Facilities and the New LSC
3. Direct DM Searches at the Canfranc Underground Laboratory Using NaI(Tl)
3.1. Experiment DM32
3.2. ANAIS Prototypes
4. ANAIS-112 Experiment
4.1. ANAIS-112 Experimental Setup
4.2. ANAIS-112 Annual Modulation Results
4.3. ANAIS-112 Sensitivity
5. Model-Independent Testing of DAMA/LIBRA beyond 3 Confidence Level
- The machine learning analysis based on Boosted Decision Trees (BDTs) under development at present, already commented in Section 4.3, could allow increasing ANAIS-112 sensitivity by reducing the contribution of this anomalous events in the [1–2] keV energy. This analysis could be applied to all the accumulated ANAIS-112 data;
- We are planning to modify the coupling of our PMTs to the NaI(Tl) modules, as the PMTs could be producing this anomalous population of events. ANAIS-112 sensitivity will increase if all the events excess above ANAIS-112 background model estimates disappears. If successful, this strategy would imply to start a new experimental phase, with improved background, and possibly threshold, as the main limitation for threshold reduction is the efficiency of the filtering protocols applied to remove this anomalous population;
- In parallel, we are developing R&D activities addressing the replacement of the PMTs by SiPMs in a longer term, beyond the ANAIS-112 experiment timeline (see Section 5.2);
- In parallel, progress towards a global improvement of the background requires an upgrading in depth of the detectors, which goes beyond the ANAIS-112 experiment timeline. However, it is also the goal of complementary R&D activities (see Section 5.3).
5.1. Towards a Precise Knowledge of the Detector’s Response
5.2. R&D Activities to Improve NaI(Tl) Detector Technology: Replacing PMTs by SiPMs
5.3. R&D Activities to Improve NaI(Tl) Detector Technology: Growing NaI(Tl) Crystals Underground
6. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AS | Alpha Spectra Inc. |
ANAIS | Annual modulation with NAIs Scintillators |
CAPA | Centro de AstroPartículas y física de Altas energías |
COSINUS | Cryogenic Observatory for SIgnatures seen in Next-generation |
Underground Searches | |
DAMA/LIBRA | DArk MAtter/Large sodium Iodide Bulk for RAre processes |
DM | Dark Matter |
GIFNA | “Grupo de Investigación en Física Nuclear y Astropartículas” |
(Research Group in Nuclear and Astroparticle Physics) | |
LSC | “Laboratorio Subterráneo de Canfranc” |
(Canfranc Underground Laboratory) | |
PICOLON | Pure Inorganic Crystal Observatory for LOw-energy Neutr(al)ino |
PMT | Photomultiplier Tube |
PSD | Pulse Shape Discrimination |
ROSEBUD | Rare Objects SEarch with Bolometers UndergrounD |
SABRE | Sodium-iodide with Active Background REjection |
1 | Unless otherwise stated, throughout this paper, all the energies shown will correspond to electron equivalent energies. This issue is further commented in Section 5.1. |
2 | These are mainly associated with dark events and Cherenkov emission in the PMT glass being the pulse shape dominated by the Single Electron Response of the PMT. |
3 | https://alphaspectra.com/ (accessed date: 17 January 2022). |
References
- Zyla, P.A. et al. [Particle Data Group] The Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Bertone, G.; Hooper, D. History of dark matter. Rev. Mod. Phys. 2018, 90, 045002. [Google Scholar] [CrossRef] [Green Version]
- Buchmueller, O.; Doglioni, C.; Wang, L.T. Search for dark matter at colliders. Nat. Phys. 2017, 13, 217. [Google Scholar] [CrossRef] [Green Version]
- Conrad, J.; Reiner, O. Indirect dark matter searches in gamma and cosmic rays. Nat. Phys. 2017, 13, 224. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chen, X.; Ji, X. Current status of direct dark matter detection experiments. Nat. Phys. 2017, 13, 212. [Google Scholar] [CrossRef]
- Schumann, M. Direct Detection of WIMP Dark Matter: Concepts and Status. J. Phys. G Nucl. Part. Phys. 2019, 46, 1103003. [Google Scholar] [CrossRef] [Green Version]
- Billard, J.; Boulay, M.; Cebrián, S.; Covi, L.; Fiorillo, G.; Green, A.; Kopp, J.; Majorovits, B.; Palladino, K.; Petricca, F.; et al. Direct Detection of Dark Matter-APPEC Committee Report. arXiv 2021, arXiv:2104.07634. [Google Scholar]
- Aprile, E. et al. [XENON Collaboration] Excess electronic recoil events in XENON1T. Phys. Rev. D 2020, 102, 072004. [Google Scholar] [CrossRef]
- Choi, G.; Suzuki, M.; Yanagida, T.T. XENON1T anomaly and its implication for decaying warm dark matter. Phys. Lett. B 2020, 811, 135976. [Google Scholar] [CrossRef]
- Freese, K.; Frieman, J.; Gould, A. Signal modulation in cold-dark-matter detection. Phys. Rev. D 1988, 37, 3388. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R. et al. [DAMA Collaboration] Performance of the approximately 100kg NaI(Tl) set-up of the DAMA experiment at Gran Sasso. Riv. Nuovo C. 1999, 111, 545. [Google Scholar]
- Bernabei, R. et al. [DAMA Collaboration] Search for WIMP annual modulation signature: Results from DAMA/NaI-3 and DAMA/NaI-4 and the global combined analysis. Phys. Lett. B 2000, 480, 23. [Google Scholar] [CrossRef]
- Bernabei, R. et al. [DAMA Collaboration] First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 2008, 56, 333. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; Bussolotti, A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C.J.; d’Angelo, A.; Di Marco, A.; Ferrari, N.; et al. The DAMA project: Achievements, implications and perspectives. Prog. Part. Nucl. Phys. 2020, 114, 103810. [Google Scholar] [CrossRef]
- Bernabei, R.; Belli, P.; Bussolotti, A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C.J.; d’Angelo, A.; Di Marco, A.; He, H.L.; et al. First model independent results from DAMA/LIBRA-phase2. Nucl. Phys. At. Energy 2018, 19, 307. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; Caracciolo, V.; Cerulli, R.; Merlo, V.; Cappella, F.; d’Angelo, A.; Incichitti, A.; Dai, C.J.; Ma, X.H.; et al. The dark matter: DAMA/LIBRA and its perspectives. arXiv 2021, arXiv:2110.04734. [Google Scholar]
- Cui, X. et al. [PandaX-II Collaboration] Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 2017, 119, 181302. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y. et al. [PandaX-4T Collaboration] Dark Matter Search Results from the PandaX-4T Commissioning Run. Phys. Rev. Lett. 2021, 127, 261802. [Google Scholar] [CrossRef]
- Aprile, E. et al. [XENON Collaboration] Light Dark Matter Search with Ionization Signals in XENON1T. Phys. Rev. Lett. 2019, 123, 251801. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E. et al. [XENON Collaboration] Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar] [CrossRef] [Green Version]
- Akerib, D.S. et al. [LUX Collaboration] Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 2017, 118, 021303. [Google Scholar] [CrossRef] [PubMed]
- Ajaj, R. et al. [DEAP Collaboration] Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB. Phys. Rev. D 2019, 100, 022004. [Google Scholar] [CrossRef] [Green Version]
- Agnes, P. et al. [DarkSide Collaboration] DarkSide-50 532-day Dark Matter Search with Low-Radioactivity Argon. Phys. Rev. D 2018, 98, 102006. [Google Scholar] [CrossRef] [Green Version]
- Agnes, P. et al. [DarkSide Collaboration] Low-Mass Dark Matter Search with the DarkSide-50 Experiment. Phys. Rev. Lett. 2018, 121, 081307. [Google Scholar] [CrossRef] [Green Version]
- Agnese, R. et al. [SuperCDMS Collaboration] Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS. Phys. Rev. Lett. 2014, 112, 241302. [Google Scholar] [CrossRef] [Green Version]
- Agnese, R. et al. [SuperCDMS Collaboration] Search for Low-Mass Dark Matter with CDMSlite Using a Profile Likelihood Fit. Phys. Rev. D 2019, 99, 062001. [Google Scholar] [CrossRef] [Green Version]
- Armengaud, E. et al. [EDELWEISS Collaboration] Searching for low-mass dark matter particles with a massive Ge bolometer operated above-ground. Phys. Rev. D 2019, 99, 082003. [Google Scholar] [CrossRef] [Green Version]
- Abdelhameed, A.H. et al. [CRESST Collaboration] First results from the CRESST-III low-mass dark matter program. Phys. Rev. D 2019, 100, 102002. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, G. et al. [COSINE-100 Collaboration] Strong constraints from COSINE-100 on the DAMA dark matter results using the same sodium iodide target. Sci. Adv. 2021, 7, abk2699. [Google Scholar] [CrossRef]
- Aprile, E. et al. [XENON Collaboration] Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data. Phys. Rev. Lett. 2017, 118, 101101. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M. et al. [XMASS Collaboration] Search for sub-GeV dark matter by annual modulation using XMASS-I detector. Phys. Lett. B 2019, 795, 308. [Google Scholar] [CrossRef]
- Akerib, D.S. et al. [LUX Collaboration] Search for annual and diurnal rate modulations in the LUX experiment. Phys. Rev. D 2018, 98, 062005. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.T. et al. [CDEX Collaboration] Search for Light Weakly-Interacting-Massive-Particle Dark Matter by Annual Modulation Analysis with a Point-Contact Germanium Detector at the China Jinping Underground Laboratory. Phys. Rev. Lett. 2019, 123, 221301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarsa, M.L. Experimento Para la Detección Directa de Materia Oscura Galáctica fría con Detectores de Centelleo Mediante la búsqueda de Señales Distintivas. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, December 1995. [Google Scholar]
- Cebrián, S. Estudio del Fondo Radiactivo en Experimentos Subterráneos de búsqueda de Sucesos Poco Probables: CUORE (Cryogenic Underground Observatory for Rare Events) y ANAIS (Annual Modulation with NaIs). Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, January 2002. [Google Scholar]
- Pobes, C. Optimización de la Respuesta de un Sistema Multidetector de Cristales de Centelleo Para un Experimento de Materia Oscura (ANAIS). Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, May 2006. [Google Scholar]
- Martínez, M. Diseño de un Prototipo para un Experimento de Detección Directa de Materia Oscura Mediante Modulación Anual con Centelleadores de Ioduro de Sodio. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, July 2006. [Google Scholar]
- Cuesta, C. ANAIS-0: Feasibility Study for a 250 kg NaI(Tl) Dark Matter Search Experiment at the Canfranc Underground Laboratory. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, May 2013. [Google Scholar]
- Oliván, M.A. Design, Scale-up and Characterization of the Data Acquisition System for the ANAIS Dark Matter Experiment. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, December 2015. [Google Scholar]
- Villar, P. Background Evaluation of the ANAIS Dark Matter Experiment in Different Configurations: Towards a Final Design. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, December 2016. [Google Scholar]
- Coarasa, I. ANAIS-112. Searching for the Annual Modulation of Dark Matter with a 112.5 kg NaI(Tl) Detector at the Canfranc Underground Laboratory. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, December 2021. [Google Scholar]
- Adhikari, G. et al. [COSINE-100 Collaboration] Search for a Dark Matter-Induced Annual Modulation Signal in NaI(Tl) with COSINE-100 Experiment. Phys. Rev. Lett. 2019, 123, 031302. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, G. et al. [COSINE-100 Collaboration] Three-year annual modulation search with COSINE-100. arXiv 2021, arXiv:2111.08863. [Google Scholar]
- Antonello, M. et al. [SABRE Collaboration] The SABRE project and the SABRE Proof-of-Principle. Eur. Phys. J. C 2019, 79, 36. [Google Scholar]
- Fushimi, K.I. Low Background Measurement by Means of NaI(Tl) Scintillator: Improvement of Sensitivity for Cosmic Dark Matter. Radioisotopes 2018, 67, 101. [Google Scholar] [CrossRef] [Green Version]
- Angloher, G.; Carniti, P.; Cassina, L.; Gironi, L.; Gotti, C.; Gütlein, A.; Hauff, D.; Maino, M.; Nagorny, S.S.; Pagnanini, L.; et al. The COSINUS project - perspectives of a NaI scintillating calorimeter for dark matter search. Eur. Phys. J. C 2016, 76, 441. [Google Scholar] [CrossRef]
- Barbosa de Souza, E. et al. [DM_Ice Collaboration] First search for a dark matter annual modulation signal with NaI(Tl) in the Southern Hemisphere by DM-Ice17. Phys. Rev. D 2017, 95, 032006. [Google Scholar] [CrossRef] [Green Version]
- Morales, A.; Morales, J.; Núñez-Lagos, R.; Puimedón, J.; Villar, J.A.; Larrea, A.; García, E.; Sáenz, C. Results of a search of the neutrinoless decay of 76Ge to the first excited state of 76Se in the Canfranc tunnel. Il Nuovo C. A 1991, 104, 1581. [Google Scholar] [CrossRef]
- Sáenz, C.; Cerezo, E.; García, E.; Morales, A.; Morales, J.; Núñez-Lagos, R.; Ortiz de Solórzano, A.; Puimedón, J.; Salinas, A.; Sarsa, M.L.; et al. Results of a search for double positron decay electron-positron conversion of 78Kr. Phys. Rev. C 1994, 50, 1170. [Google Scholar] [CrossRef] [PubMed]
- Aalseth, C.E. et al. [IGEX Collaboration] Neutrinoless double beta decay of 76Ge: First results from the International Germanium Experiment (IGEX) with isotopically enriched detectors. Phys. Rev. C 1999, 59, 2108. [Google Scholar] [CrossRef]
- Aalseth, C.E. et al. [IGEX Collaboration] The IGEX 76Ge neutrinoless double-beta decay experiment: Prospects for next generation experiments. Phys. Rev. D 2002, 65, 092007. [Google Scholar] [CrossRef] [Green Version]
- Cebrián, S. Double beta decay experiments at Canfranc Underground Laboratory. Prog. Part. Nucl. Phys. 2020, 114, 103807. [Google Scholar] [CrossRef]
- García, E.; Morales, A.; Morales, J.; Sarsa, M.L.; Ortiz de Solórzano, A.; Cerezo, E.; Núñez-Lagos, R.; Puimedón, J.; Sáenz, C.; Salinas, A.; et al. Results of a Dark Matter Search with a Germanium detector in the Canfranc Tunnel. Phys. Rev. D 1995, 51, 1458. [Google Scholar] [CrossRef]
- Sarsa, M.L.; Morales, A.; Morales, J.; García, E.; Ortiz de Solórzano, A.; Puimedón, J.; Sáenz, C.; Salinas, A.; Villar, J.A. Searching for annual modulation of WIMPs with NaI scintillators. Phys. Lett. B 1996, 386, 458. [Google Scholar] [CrossRef]
- Sarsa, M.L.; Morales, A.; Morales, J.; García, E.; Ortiz de Solórzano, A.; Puimedón, J.; Sáenz, C.; Salinas, A.; Villar, J.A. Results of a search for annual modulation of WIMP signals. Phys. Rev. D 1997, 56, 1856. [Google Scholar] [CrossRef]
- Cebrián, S.; Coron, N.; Dambier, G.; García, E.; González, D.; Irastorza, I.G.; Leblanc, J.; de Marcillac, P.; Morales, A.; Morales, J.; et al. Performances and prospects of the ROSEBUD dark matter search experiment. Astrop. Phys. 1999, 10, 361. [Google Scholar] [CrossRef]
- Morales, A. et al. [IGEX Collaboration] New constraints on WIMPs from the Canfranc IGEX Dark Matter Search. Phys. Lett. B 2000, 489, 268. [Google Scholar] [CrossRef] [Green Version]
- Cebrián, S.; Coron, N.; Dambier, G.; García, E.; González, D.; Irastorza, I.G.; Leblanc, J.; de Marcillac, P.; Morales, A.; Morales, J.; et al. First results of the ROSEBUD Dark Matter experiment. Astrop. Phys. 2001, 15, 79. [Google Scholar] [CrossRef] [Green Version]
- Morales, A. et al. [COSME Collaboration] Particle dark matter and solar axion searches with a small germanium detector at the Canfranc Underground Laboratory. Astrop. Phys. 2002, 16, 325. [Google Scholar] [CrossRef] [Green Version]
- Morales, A.; Aalseth, C.E.; Avignone, F.T., III; Brodzinski, R.L.; Cebrián, S.; García, E.; Irastorza, I.G.; Kirpichnikov, I.V.; Klimenko, A.A.; Miley, H.S.; et al. Improved constraints on WIMPs from the International Germanium Experiment IGEX. Phys. Lett. B 2001, 532, 8. [Google Scholar] [CrossRef] [Green Version]
- Cebrián, S.; Amaré, J.; Carmona, J.M.; García, E.; Irastorza, I.G.; Luzón, G.; Morales, A.; Morales, J.; Ortiz de Solórzano, A.; Puimedón, J.; et al. Status and preliminary results of the ANAIS experiment at Canfranc. Nucl. Phys. B (Proc. Suppl.) 2002, 110, 94. [Google Scholar] [CrossRef] [Green Version]
- Cebrián, S.; Coron, N.; Dambier, G.; de Marcillac, P.; García, E.; Irastorza, I.G.; Leblanc, J.; Morales, A.; Morales, J.; Ortiz de Solórzano, A.; et al. First underground light versus heat discrimination for dark matter search. Phys. Lett. B 2003, 563, 48. [Google Scholar] [CrossRef]
- Cebrián, S.; Coron, N.; Dambier, G.; García, E.; Irastorza, I.G.; Leblanc, J.; de Marcillac, P.; Morales, A.; Morales, J.; Ortiz de Solórzano, A.; et al. Bolometric WIMP search at Canfranc with different absorbers. Astrop. Phys. 2004, 21, 23. [Google Scholar] [CrossRef]
- Cebrián, S.; Cuesta, C.; Amaré, J.; Borjabad, S.; Fortuño, D.; García, E.; Ginestra, C.; Gómez, H.; Martínez, M.; Oliván, M.A.; et al. Background model for a NaI(Tl) detector devoted to dark matter searches. Astrop. Phys. 2012, 37, 60. [Google Scholar] [CrossRef]
- Amaré, J.; Cebrián, S.; Cuesta, C.; García, E.; Martínez, M.; Oliván, M.A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Puimedón, J.; Sarsa, M.L.; et al. Assessment of backgrounds of the ANAIS experiment for dark matter direct detection. Eur. Phys. J. C 2016, 76, 429. [Google Scholar] [CrossRef] [Green Version]
- Oliván, M.A.; Amaré, J.; Cebrián, S.; Cuesta, C.; García, E.; Martínez, M.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; Puimedón, J.; et al. Light yield determination in large sodium iodide detectors applied in the search for dark matter. Astrop. Phys. 2017, 93, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Amaré, J.; Cebrián, S.; Coarasa, I.; Cuesta, C.; García, E.; Martínez, M.; Oliván, M.A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Puimedón, J.; et al. Performance of ANAIS-112 experiment after the first year of data taking. Eur. Phys. J. C 2019, 79, 228. [Google Scholar] [CrossRef]
- Amaré, J.; Cebrián, S.; Coarasa, I.; Cuesta, C.; García, E.; Martínez, M.; Oliván, M.A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Puimedón, J.; et al. Analysis of backgrounds for the ANAIS-112 dark matter experiment. Eur. Phys. J. C 2019, 79, 412. [Google Scholar] [CrossRef]
- Coarasa, I.; Cebrián, S.; Coarasa, I.; Cuesta, C.; García, E.; Martínez, M.; Oliván, M.A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Puimedón, J.; et al. ANAIS-112 sensitivity in the search for dark matter annual modulation. Eur. Phys. J. C 2019, 79, 233. [Google Scholar] [CrossRef]
- Amaré, J.; Cebrián, S.; Coarasa, I.; Cuesta, C.; García, E.; Martínez, M.; Oliván, M.A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Puimedón, J.; et al. First results on dark matter annual modulation from ANAIS-112 experiment. Phys. Rev. Lett. 2019, 123, 031301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaré, J.; Cebrián, S.; Cintas, D.; Coarasa, I.; García, E.; Martínez, M.; Oliván, M.A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Puimedón, J.; et al. ANAIS-112 status: Two years results on annual modulation. J. Phys. Conf. Ser. 2020, 1468, 012014. [Google Scholar] [CrossRef]
- Amaré, J.; Cebrián, S.; Cintas, D.; Coarasa, I.; García, E.; Martínez, M.; Oliván, M.A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Puimedón, J.; et al. Annual modulation results from three-year exposure of ANAIS-112. Phys. Rev. D 2021, 103, 102005. [Google Scholar] [CrossRef]
- Cebrián, S.; García, E.; González, D.; Irastorza, I.G.; Morales, A.; Morales, J.; Ortiz de Solórzano, A.; Puimedón, J.; Salinas, A.; Sarsa, M.L.; et al. Prospects of solar axion searches with crystal detectors. Astrop. Phys. 1999, 10, 397. [Google Scholar] [CrossRef] [Green Version]
- Aharonov, Y.; Avignone, F.T.; Brodzinski, R.L.; Collar, J.I.; García, E.; Miley, H.S.; Morales, A.; Morales, J.; Nussinov, S.; Ortiz de Solórzano, A.; et al. New experimental limits for the electron stability. Phys. Lett. B 1995, 353, 168. [Google Scholar] [CrossRef]
- Aharonov, Y.; Avignone, F.T.; Brodzinski, R.L.; Collar, J.I.; García, E.; Miley, H.S.; Morales, A.; Morales, J.; Nussinov, S.; Ortiz de Solórzano, A.; et al. New laboratory bounds on the stability of the electron. Phys. Rev. D 1995, 52, 3785. [Google Scholar] [CrossRef]
- Abriola, D.; Avignone, F.T.; Brodzinski, R.L.; Collar, J.I.; Di Gregorio, D.E.; Farach, H.A.; García, E.; Gattone, A.O.; Hasenbalg, F.; Huck, H.; et al. Searching for Cold Dark Matter in the Southern Hemisphere. The experiment at Sierra Grande. Astrop. Phys. 1996, 6, 63. [Google Scholar] [CrossRef]
- Abriola, D.; Avignone, F.T.; Brodzinski, R.L.; Collar, J.I.; Di Gregorio, D.E.; Farach, H.A.; García, E.; Gattone, A.O.; Guérard, C.K.; Hasenbalg, F.; et al. Search for an annual modulation of dark matter signals with a germanium spectrometer at the Sierra Grande Laboratory. Astrop. Phys. 1999, 10, 133. [Google Scholar] [CrossRef] [Green Version]
- Cebrián, S.; García, E.; González, D.; Irastorza, I.G.; Morales, A.; Morales, J.; Ortiz de Solórzano, A.; Peruzzi, A.; Puimedón, J.; Sarsa, M.L.; et al. Sensitivity plots for WIMP direct detection using the annual modulation signature. Astrop. Phys. 2001, 14, 339. [Google Scholar] [CrossRef] [Green Version]
- Cebrián, S.; Coron, N.; Dambier, G.; de Marcillac, P.; García, E.; Irastorza, I.G.; Leblanc, J.; Morales, A.; Morales, J.; Ortiz de Solórzano, A.; et al. Improved limits for natural α radioactivity of tungsten with a CaWO4 scintillating bolometer. Phys. Lett. B 2003, 556, 14. [Google Scholar] [CrossRef] [Green Version]
- Carmona, J.M.; Cebrián, S.; García, E.; Irastorza, I.G.; Luzón, G.; Morales, A.; Morales, J.; Ortiz de Solórzano, A.; Puimedón, J.; Sarsa, M.L.; et al. Neutron background at the Canfranc Underground Laboratory and its contribution to the IGEX-DM dark matter experiment. Astrop. Phys. 2004, 21, 523. [Google Scholar] [CrossRef] [Green Version]
- Amaré, J.; Beltrán, B.; Cebrián, S.; García, E.; Gómez, H.; Irastorza, I.G.; Luzón, G.; Martínez, M.; Morales, J.; Ortiz de Solórzano, A.; et al. Light yield of undoped sapphire at low temperature under particle excitation. Appl. Phys. Lett. 2005, 87, 264102. [Google Scholar] [CrossRef]
- Coron, N.; García, E.; Gironnet, J.; Leblanc, J.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; Pobes, C.; Puimedón, J.; Redon, T.; et al. Thermal relative efficiency factor for recoiling 206Pb nuclei in a sapphire bolometer. Phys. Lett. B 2008, 659, 113. [Google Scholar] [CrossRef] [Green Version]
- Coron, N.; García, E.; Gironnet, J.; Leblanc, J.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; Puimedón, J.; et al. A BGO scintillating bolometer as dark matter detector prototype. Opt. Mater. 2009, 31, 1393. [Google Scholar] [CrossRef]
- Ortigoza, Y.; Coron, N.; Cuesta, C.; García, E.; Ginestra, C.; Gironnet, J.; de Marcillac, P.; Martínez, M.; Pobes, C.; Puimedón, J.; et al. Energy partition in sapphire and BGO scintillation bolometers. Astrop. Phys. 2011, 34, 603. [Google Scholar] [CrossRef] [Green Version]
- Coron, N.; Cuesta, C.; García, E.; Ginestra, C.; Gironnet, J.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; Pobes, C.; Puimedón, J.; et al. Measurement of the L/K electron-capture ratio of the 207Bi decay to the 1633 keV level of 207Pb with a BGO scintillating bolometer. Eur. Phys. J. A 2012, 48, 89. [Google Scholar] [CrossRef]
- Cerdeño, D.G.; Cuesta, C.; Fornasa, M.; García, E.; Ginestra, C.; Huh, J.H.; Martínez, M.; Ortigoza, Y.; Peiró, M.; Puimedón, J.; et al. Complementarity of dark matter direct detection: The role of bolometric targets. J. Cosmol. Astropart. Phys. 2013, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Cuesta, C.; Oliván, M.A.; Amaré, J.; Cebrián, S.; García, E.; Ginestra, C.; Martínez, M.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; et al. Slow scintillation time constants in NaI(Tl) for different interacting particles. Opt. Mat. 2013, 36, 316. [Google Scholar] [CrossRef] [Green Version]
- Coron, N.; Cuesta, C.; García, E.; Ginestra, C.; Girard, T.A.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; et al. Study of Parylene-coated NaI(Tl) at low temperatures for bolometric applications. Astrop. Phys. 2013, 47, 31. [Google Scholar] [CrossRef]
- Amaré, J.; Borjabad, S.; Cebrián, S.; Cuesta, C.; Fortuño, D.; García, E.; Ginestra, C.; Gómez, H.; Herrera, D.C.; Martínez, M.; et al. Study of scintillation in natural and synthetic quartz and methacrylate. Opt. Mat. 2014, 36, 1408. [Google Scholar] [CrossRef] [Green Version]
- Cuesta, C.; Amaré, J.; Cebrián, S.; García, E.; Ginestra, C.; Martínez, M.; Oliván, M.A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; et al. Analysis of the 40K contamination in NaI(Tl) crystals from different providers in the frame of the ANAIS project. Int. J. Mod. Phys. A 2014, 29, 1443010/01. [Google Scholar] [CrossRef] [Green Version]
- Cuesta, C.; Amaré, J.; Cebrián, S.; García, E.; Ginestra, C.; Martínez, M.; Oliván, M.A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; et al. Bulk NaI(Tl) scintillation low energy events selection with the ANAIS-0 module. Eur. Phys. J. C 2014, 74, 3150. [Google Scholar] [CrossRef] [Green Version]
- Amaré, J.; Cebrián, S.; Cuesta, C.; García, E.; Ginestra, C.; Martínez, M.; Oliván, M.A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; et al. Cosmogenic radionuclide production in NaI(Tl) crystals. J. Cosmol. Astropart. Phys. 2015, 2, 46. [Google Scholar] [CrossRef]
- Amaré, J.; Castel, J.; Cebrián, S.; Coarasa, I.; Cuesta, C.; Dafni, T.; Galán, J.; García, E.; Garza, J.G.; Iguaz, F.J.; et al. Cosmogenic production of tritium in dark matter detectors. Astrop. Phys. 2018, 97, 96. [Google Scholar] [CrossRef] [Green Version]
- Villar, P.; Amaré, J.; Cebrián, S.; Coarasa, I.; García, E.; Martínez, M.; Oliván, M.A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Puimedón, J.; et al. Study of the cosmogenic activation in NaI(Tl) crystal within the ANAIS experiment. Int. J. Mod. Phys. A 2018, 33, 1843006. [Google Scholar] [CrossRef] [Green Version]
- Ianni, A. The Canfranc Underground Laboratory: A multidisciplinary underground facility. J. Phys. Conf. Ser. 2016, 675, 012002. [Google Scholar] [CrossRef]
- Bandac, I.; Borjabad, S.; Ianni, A.; Núñez-Lagos, R.; Pérez, C.; Rodríguez, S.; Villar, J.A. Ultra-low background and environmental measurements at Laboratorio Subterráneo de Canfranc (LSC). Appl. Radiat. Isot. 2017, 126, 127. [Google Scholar] [CrossRef]
- Bandac, I. et al. [CROSS Collaboration] The 0ν2β-decay CROSS experiment: Preliminary results and prospects. J. High Energy Phys. 2020, 01, 018. [Google Scholar]
- Adams, C. et al. [NEXT Collaboration] Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches. J. High Energy Phys. 2021, 8, 164. [Google Scholar]
- Castel, J.; Cebrián, S.; Coarasa, I.; Dafni, T.; Galán, J.; Iguaz, F.J.; Irastorza, I.G.; Luzón, G.; Mirallas, H.; Ortiz de Solórzano, A.; et al. Background assessment for the TREX dark matter experiment. Eur. Phys. J. C 2019, 79, 782. [Google Scholar] [CrossRef] [Green Version]
- Aalseth, C.E. et al. [DarkSide-20k Collaboration] Design and construction of a new detector to measure ultra-low radioactive-isotope contamination of argon. J. Instrum. 2020, 15, P02024. [Google Scholar] [CrossRef] [Green Version]
- Morales, A.; Morales, J.; Núñez-Lagos, R.; Puimedón, J.; Villar, J.A.; Larrea, A. Results of a search on the neutrinoless double beta decay of 76Ge to the excited states of 76Se. Nuovo C. A 1988, 100, 525. [Google Scholar] [CrossRef]
- Busto, J.; Dassie, D.; Helene, O.; Hubert, P.; Larrieu, P.; Leccia, F.; Mennrath, P.; Aleonard, M.M.; Chevallier, J. The 0+->2+ neutrinoless double beta decay of 76Ge: Results of the Fréjus experiment. Nucl. Phys. A 1990, 513, 291. [Google Scholar] [CrossRef]
- Sáenz, C. Investigación experimental sobre la conversión electrón-positrón y la doble desintegración beta en 78Kr. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, July 1994. [Google Scholar]
- Coarasa, I.; Apilluelo, J.; Amaré, J.; Cebrián, S.; Cintas, D.; García, E.; Martínez, M.; Oliván, M.A.; Ortigoza, Y.; Ortiz de Solórzano, A.; et al. Machine-learning techniques applied to three-year exposure of ANAIS-112. arXiv 2021, arXiv:2110.10649. [Google Scholar]
- Spooner, N.; Davies, G.J.; Davies, J.D.; Pyle, G.J.; Bucknell, T.D.; Squier, G.T.A.; Lewin, J.D.; Smith, P.F. The scintillation efficiency of sodium and iodine recoils in a NaI(Tl) detector for dark matter searches. Phys. Lett. 1994, 321, 156. [Google Scholar] [CrossRef]
- Chagani, H.; Majewski, P.; Daw, E.J.; Kudryavtsev, V.A.; Spooner, N.J.C. Measurement of the quenching factors of Na recoils in NaI(Tl). J. Instrum. 2008, 3, 06003. [Google Scholar] [CrossRef] [Green Version]
- Collar, J.I. Quenching and channeling of nuclear recoils in NaI(Tl): Implications for dark-matter searches. Phys. Rev. C 2013, 88, 035806. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Shields, E.; Calaprice, F.; Westerdale, S.; Froborg, F.; Suerfu, B.; Alexander, T.; Aprahamian, A.; Back, H.O.; Casarella, C.; et al. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold. Phys. Rev. C 2015, 92, 015807. [Google Scholar] [CrossRef] [Green Version]
- Joo, H.W.; Park, H.S.; Kim, J.H.; Lee, J.H.; Kim, S.K.; Kim, Y.D.; Lee, H.S.; Kim, S.H. Quenching factor measurement for NaI(Tl) scintillation crystal. Astrop. Phys. 2019, 108, 50. [Google Scholar] [CrossRef] [Green Version]
- Bignell, L.J.; Mahmood, I.; Nuti, F.; Lane, G.J.; Akber, A.; Barberio, E.; Baroncelli, T.; Coombes, B.J.; Dix, W.; Dowie, J.T.H.; et al. Quenching factor measurements of sodium nuclear recoils in NaI:Tl determined by spectrum fitting. J. Instrum. 2021, 16, 07034. [Google Scholar] [CrossRef]
- Cintas, D.; An, P.; Awe, C.; Barbeau, P.S.; Barbosa de Souza, E.; Hedges, S.; Jo, J.H.; Martínez, M.; Maruyama, R.; Li, L.; et al. Quenching factor consistency across several NaI(Tl) crystals. arXiv 2021, arXiv:2111.09590. [Google Scholar]
- Suerfu, B.; Wada, M.; Peloso, W.; Souza, M.; Calaprice, F.; Tower, J.; Ciampi, G. Growth of ultra-high purity NaI(Tl) crystals for dark matter searches. Phys. Rev. Res. 2020, 2, 013223. [Google Scholar] [CrossRef] [Green Version]
- Fushimi, K.; Kanemitsu, Y.; Hirata, S.; Chernyak, D.; Hazama, R.; Ikeda, H.; Imagawa, K.; Ishiura, H.; Ito, H.; Kisimoto, T.; et al. Development of highly radiopure NaI(Tl) scintillator for PICOLON dark matter search project. Prog. Theor. Exp. Phys. 2021, 2021, 043F01. [Google Scholar] [CrossRef]
- Park, B.J. et al. [COSINE Collaboration] Development of ultra-pure NaI(Tl) detector for COSINE-200 experiment. Eur. Phys. J. C 2020, 80, 814. [Google Scholar] [CrossRef]
- Calvo, J. et al. [ArDM Collaboration] Commissioning of the ArDM experiment at the Canfranc Underground Laboratory: First steps towards a tonne-scale liquid argon time projection chamber for Dark Matter Searches. J. Cosmol. Astropart. Phys. 2017, 3, 003. [Google Scholar]
- Suerfu, B.; Calaprice, F.; Souza, M. Zone Refining of Ultrahigh-Purity Sodium Iodide for Low-Background Detectors. Phys. Rev. Appl. 2021, 16, 014060. [Google Scholar] [CrossRef]
Energy Region | Approach | /NDF | (cpd/kg/keV) | p-Value Mod | p-Value Null |
---|---|---|---|---|---|
[1–6] keV | (1) | 132/107 | −0.0045 ± 0.0044 | 0.051 | 0.051 |
[1–6] keV | (2) | 143.1/108 | −0.0036 ± 0.0044 | 0.012 | 0.013 |
[1–6] keV | (3) | 1076/972 | −0.0034 ± 0.0042 | 0.011 | 0.011 |
[2–6] keV | (1) | 115.7/107 | −0.0008 ± 0.0039 | 0.25 | 0.27 |
[2–6] keV | (2) | 120.8/108 | 0.0004 ± 0.0039 | 0.17 | 0.19 |
[2–6] keV | (3) | 1018/972 | 0.0003 ± 0.0037 | 0.14 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaré, J.; Cebrián, S.; Cintas, D.; Coarasa, I.; Cuesta, C.; García, E.; Martínez, M.; Morales, Á.; Morales, J.; Oliván, M.Á.; et al. Dark Matter Searches Using NaI(Tl) at the Canfranc Underground Laboratory: Past, Present and Future. Universe 2022, 8, 75. https://doi.org/10.3390/universe8020075
Amaré J, Cebrián S, Cintas D, Coarasa I, Cuesta C, García E, Martínez M, Morales Á, Morales J, Oliván MÁ, et al. Dark Matter Searches Using NaI(Tl) at the Canfranc Underground Laboratory: Past, Present and Future. Universe. 2022; 8(2):75. https://doi.org/10.3390/universe8020075
Chicago/Turabian StyleAmaré, Julio, Susana Cebrián, David Cintas, Iván Coarasa, Clara Cuesta, Eduardo García, María Martínez, Ángel Morales, Julio Morales, Miguel Ángel Oliván, and et al. 2022. "Dark Matter Searches Using NaI(Tl) at the Canfranc Underground Laboratory: Past, Present and Future" Universe 8, no. 2: 75. https://doi.org/10.3390/universe8020075
APA StyleAmaré, J., Cebrián, S., Cintas, D., Coarasa, I., Cuesta, C., García, E., Martínez, M., Morales, Á., Morales, J., Oliván, M. Á., Ortigoza, Y., de Solórzano, A. O., Pardo, T., Pobes, C., Puimedón, J., Salinas, A., Sarsa, M. L., Villar, J. Á., & Villar, P. (2022). Dark Matter Searches Using NaI(Tl) at the Canfranc Underground Laboratory: Past, Present and Future. Universe, 8(2), 75. https://doi.org/10.3390/universe8020075