Quantum Gravity Phenomenology from the Thermodynamics of Spacetime
Abstract
:1. Introduction
2. Einstein Equations of Motion from Thermodynamics
2.1. Geodesic Local Causal Diamonds
2.2. Classical Derivation of Einstein Equations
3. Modified Equations of Motion
3.1. Modified Entropy of the Horizon
3.2. Modified Equations of Motion
3.2.1. Derivation from MVEH
3.2.2. Derivation from the Clausius Entropy Flux
4. Interpretation of the Modified Dynamics
Application to a Simple Cosmological Model
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
1 | |
2 | |
3 | More precisely, the behavior of the thermodynamics of local causal horizons under Weyl transformations actually suggests that the derived gravitational values correspond to Weyl Transverse Gravity [41,42]. This is a theory of gravity invariant under both metric determinant preserving diffeomorphisms and Weyl transformations (in fact, Unimodular Gravity can then be understood as a gauge fixed form of Weyl Transverse Gravity). While it has been argued that Unimodular Gravity is not physically distinguishable from General Relativity [43], these arguments do not apply to Weyl Transverse Gravity [44]. Therefore, Weyl Transverse Gravity represents a distinct alternative to General Relativity, which offers a new perspective on some of the problems associated with the value of the cosmological constant [44]. We plan to address the possibility of the emergence of Weyl Transverse Gravity from thermodynamics in a future study. |
4 | Note that, by following these requirements, we could also have used light cones [14], and we expect that the result would be equivalent. |
5 | For a detailed derivation of this argument, see the discussion in [49]. |
6 | |
7 | Some studies have already pointed out some mechanisms for the emergence of a fundamental concept of entropy in the quantum regime, e.g., [58]. |
8 | Note that, as we will see in the simple example of a cosmological model, in some particular cases there exists a solution to the previous condition. In that case, we will see that the cosmological constant would appear as an arbitrary integration constant, as it is characteristic in Unimodular Gravity. |
9 | For a complete discussion on the possible features and consistency checks of these equations, see the discussion in [49]. |
10 | It is also worth noting that our results are also in agreement with particular GUP-induced modifications of FLRW universes [5]. |
References
- Kempf, A. Uncertainty Relation in Quantum Mechanics with Quantum Group Symmetry. J. Math. Phys. A 1994, 35, 4483–4496. [Google Scholar] [CrossRef] [Green Version]
- Garay, L.J. Quantum gravity and minimum length. Int. J. Mod. Phys. A 1995, 10, 145–165. [Google Scholar] [CrossRef] [Green Version]
- Smolin, L. Four principles for quantum gravity. Fundam. Theor. Phys. 2017, 187, 427–450. [Google Scholar]
- Adler, R.J.; Chen, P.; Santiago, D.I. The Generalized Uncertainty Principle and Black Hole Remnants. Gen. Rel. Grav. 2001, 33, 2101–2108. [Google Scholar] [CrossRef]
- Awad, A.; Ali, A.F. Minimal Length, Friedmann Equations and Maximum Density. JHEP 2014, 06, 093. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Serrano, A.; Dabrowski, M.P.; Gohar, H. Generalized uncertainty principle impact onto the black holes information flux and the sparsity of Hawking radiation. Phys. Rev. D 2018, 97, 044029. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T. Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T. Entanglement Equilibrium and the Einstein Equation. Phys. Rev. Lett. 2016, 116, 201101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso-Serrano, A.; Liska, M. New Perspective on thermodynamics of spacetime: The emergence of unimodular gravity and the equivalence of entropies. Phys. Rev. D 2020, 102, 104056. [Google Scholar] [CrossRef]
- Eling, C.; Guedens, R.; Jacobson, T. Non-equilibrium Thermodynamics of Spacetime. Phys. Rev. Lett. 2006, 96, 121301. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Thermodynamical Aspects of Gravity: New insights. Rep. Prog. Phys. 2010, 73, 046901. [Google Scholar] [CrossRef] [Green Version]
- Chirco, G.; Liberati, S. Non-equilibrium Thermodynamics of Spacetime: The Role of Gravitational Dissipation. Phys. Rev. D 2010, 81, 024016. [Google Scholar] [CrossRef] [Green Version]
- Guedens, R.; Jacobson, T.; Sarkar, S. Horizon entropy and higher curvature equations of state. Phys. Rev. D 2012, 85, 064017. [Google Scholar] [CrossRef] [Green Version]
- Parikh, M.; Svesko, A. Einstein’s Equations from the Stretched Future Light Cone. Phys. Rev. D 2018, 98, 026018. [Google Scholar] [CrossRef] [Green Version]
- Bueno, P.; Min, V.S.; Speranza, A.J.; Visser, M.R. Entanglement equilibrium for higher order gravity. Phys. Rev. D 2017, 95, 046003. [Google Scholar] [CrossRef] [Green Version]
- Svesko, A. Equilibrium to Einstein: Entanglement, Thermodynamics, and Gravity. Phys. Rev. D 2019, 99, 086006. [Google Scholar] [CrossRef] [Green Version]
- Kaul, R.K.; Majumdar, P. Logarithmic Correction to the Bekenstein-Hawking Entropy. Phys. Rev. Lett. 2000, 84, 5255. [Google Scholar] [CrossRef] [Green Version]
- Meissner, K.A. Black hole entropy in Loop Quantum Gravity. Class. Quant. Grav. 2004, 21, 5245. [Google Scholar] [CrossRef] [Green Version]
- Sen, A. Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole Entropy in Different Dimensions. JHEP 2013, 4, 156. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Gupta, R.K.; Mandal, I.; Sen, A. Logarithmic Corrections to N=4 and N=8 Black Hole Entropy: A One Loop Test of Quantum Gravity. JHEP 2011, 11, 143. [Google Scholar] [CrossRef] [Green Version]
- Carlip, S. Logarithmic Corrections to Black Hole Entropy from the Cardy Formula. Class. Quant. Grav. 2000, 17, 4175. [Google Scholar] [CrossRef]
- Fareghbal, R.; Karimi, P. Logarithmic Correction to BMSFT Entanglement Entropy. Eur. Phys. J. C 2018, 78, 267. [Google Scholar] [CrossRef] [Green Version]
- Solodukhin, S. Entanglement entropy of black holes. Living Rev. Rel. 2011, 14, 8. [Google Scholar] [CrossRef] [Green Version]
- Mann, R.B.; Solodukhin, S. Universality of Quantum Entropy for Extreme Black Holes. Nucl. Phys. B 1998, 523, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Solodukhin, S. Logarithmic terms in entropy of Schwarzschild black holes in higher loops. Phys. Lett. B 2020, 802, 135235. [Google Scholar] [CrossRef]
- Bombelli, L.; Koul, R.K.; Lee, J.; Sorkin, R.D. Quantum source of entropy for black holes. Phys. Rev. D 1986, 34, 373. [Google Scholar] [CrossRef] [PubMed]
- Srednicki, M. Entropy and area. Phys. Rev. Lett. 1993, 71, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baccetti, V.; Visser, M. Clausius entropy for arbitrary bifurcate null surfaces. Class. Quant. Grav. 2014, 31, 035009. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T.; Senovilla, J.M.M.; Speranza, A.J. Area deficits and the Bel-Robinson tensor. Class. Quant. Grav. 2018, 35, 085005. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Geometry of small causal diamonds. Phys. Rev. D 2019, 100, 064020. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, G.W.; Solodukhin, S. The Geometry of Small Causal Diamonds. Phys. Lett. B 2007, 649, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Brewin, L. Riemann Normal Coordinate expansions using Cadabra. Class. Quant. Grav. 2009, 26, 175017. [Google Scholar] [CrossRef]
- Das, S.; Shankaranarayanan, S.; Sur, S. Black hole entropy from entanglement: A review. arXiv 2008, arXiv:0806.0402. [Google Scholar]
- Jacobson, T.; Visser, M.R. Gravitational Thermodynamics of Causal Diamonds in (A)dS. SciPost Phys. 2019, 7, 79. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333. [Google Scholar] [CrossRef]
- Bardeen, J.D.; Carter, B.; Hawking, S.W. The Four Laws of Black Hole Mechanics. Commun. Math. Phys. 1973, 31, 161–170. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199. [Google Scholar] [CrossRef]
- Wald, R.M. The Thermodynamics of Black Holes. Living Rev. Rel. 2001, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T. Black Hole Entropy and Induced Gravity. arXiv 1994, arXiv:gr-qc/9404039. [Google Scholar]
- di Casola, E.; Liberati, S.; Sonego, S. Nonequivalence of equivalence principles. Am. J. Phys. 2015, 83, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Hammad, F.; Dijamco, D. More on spacetime thermodynamics in the light of Weyl transformations. Phys. Rev. D 2019, 99, 84016. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Serrano, A.; Liška, M. Thermodynamics of spacetime and unimodular gravity. arXiv 2021, arXiv:2112.06301. [Google Scholar]
- Padilla, A.; Saltas, I.D. A note on classical and quantum unimodular gravity. Eur. Phys. J. C 2015, 75, 561. [Google Scholar] [CrossRef] [Green Version]
- Carballo-Rubio, R. Longitudinal diffeomorphisms obstruct the protection of vacuum energy. Phys. Rev. D 2015, 91, 124071. [Google Scholar] [CrossRef] [Green Version]
- Solodukhin, S. The Conical singularity and quantum corrections to entropy of black hole. Phys. Rev. D 1995, 51, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Majumdar, P.; Bhaduri, R.K. General Logarithmic Corrections to Black Hole Entropy. Class. Quant. Grav. 2002, 19, 2355. [Google Scholar] [CrossRef]
- Medved, A.J.M. A follow-up to ’Does Nature abhor a logarithm?’ (and apparently she doesn’t). Class. Quant. Grav. 2005, 22, 5195. [Google Scholar] [CrossRef] [Green Version]
- Medved, A.J.M.; Vagenas, E.C. When conceptual worlds collide: The GUP and the BH entropy. Phys. Rev. D 2004, 70, 124021. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Serrano, A.; Liška, M. Quantum phenomenological gravitational dynamics: A general view from thermodynamics of spacetime. JHEP 2020, 12, 196. [Google Scholar] [CrossRef]
- Ghosh, S. Quantum Gravity Effects in Geodesic Motion and Predictions of Equivalence Principle Violation. Class. Quant. Grav. 2014, 31, 025025. [Google Scholar] [CrossRef] [Green Version]
- Tkachuk, V.M. Effect of the generalized uncertainty principle on Galilean and Lorentz transformations. Found. Phys. 2016, 46, 1666. [Google Scholar] [CrossRef]
- Pramanik, S. Implication of Geodesic Equation in Generalized Uncertainty Principle framework. Phys. Rev. D 2014, 90, 024023. [Google Scholar] [CrossRef] [Green Version]
- Casadio, R.; Scardigli, F. Generalized Uncertainty Principle, Classical Mechanics, and General Relativity. Phys. Lett. B 2020, 598, 135558. [Google Scholar] [CrossRef]
- Scardigli, F.; Blasone, M.; Luciano, G.; Casadio, R. Modified Unruh effect from Generalized Uncertainty Principle. Eur. Phys. J. C 2018, 78, 728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luciano, G.G.; Petruzziello, L. GUP parameter from Maximal Acceleration. Eur. Phys. J. C 2019, 79, 283. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Essential and inessential features of Hawking radiation. Int. J. Mod. Phys. D 2003, 12, 649–661. [Google Scholar] [CrossRef] [Green Version]
- Caianiello, E.R. Maximal acceleration as a consequence of Heisenberg’s uncertainty relations. Lett. Nuovo Cimento 1984, 41, 370–372. [Google Scholar] [CrossRef]
- Carroll, S.M.; Remmen, G.N. What is the Entropy in Entropic Gravity? Phys. Rev. D 2016, 93, 124052. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Gupt, B. Generalized effective description of loop quantum cosmology. Phys. Rev. D 2015, 92, 084060. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Serrano, A.; Liška, M. Quantum Gravity Phenomenology from the Thermodynamics of Spacetime. Universe 2022, 8, 50. https://doi.org/10.3390/universe8010050
Alonso-Serrano A, Liška M. Quantum Gravity Phenomenology from the Thermodynamics of Spacetime. Universe. 2022; 8(1):50. https://doi.org/10.3390/universe8010050
Chicago/Turabian StyleAlonso-Serrano, Ana, and Marek Liška. 2022. "Quantum Gravity Phenomenology from the Thermodynamics of Spacetime" Universe 8, no. 1: 50. https://doi.org/10.3390/universe8010050
APA StyleAlonso-Serrano, A., & Liška, M. (2022). Quantum Gravity Phenomenology from the Thermodynamics of Spacetime. Universe, 8(1), 50. https://doi.org/10.3390/universe8010050