A Note on Singularity Avoidance in Fourth-Order Gravity
Abstract
:1. Introduction
2. Fourth-Order Differential Torsion-Gravity
High Energy and Averaged Spins
3. Isotropic Spaces
3.1. Black Holes
3.2. Big Bang
4. General Consideration
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, Y.F.; Duplessis, F.; Saridakis, E.N. F(R) nonlinear massive theories of gravity and their cosmological implications. Phys. Rev. D 2014, 90, 064051. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G.G.L.; Saridakis, E.N. New rotating black holes in nonlinear Maxwell f(R) gravity. Phys. Rev. D 2020, 102, 124072. [Google Scholar] [CrossRef]
- Capozziello, S.; Vignolo, S. The Cauchy problem for f(R)-gravity: An Overview. Int. J. Geom. Meth. Mod. Phys. 2012, 9, 1250006. [Google Scholar] [CrossRef] [Green Version]
- Vignolo, S.; Cianci, R.; Carloni, S. On the junction conditions in f(R)-gravity with torsion. Class. Quant. Grav. 2018, 35, 095014. [Google Scholar] [CrossRef] [Green Version]
- Vignolo, S. Some Mathematical Aspects of f(R)-Gravity with Torsion: Cauchy Problem and Junction Conditions. Universe 2019, 5, 224. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.F.; Easson, D.A.; Brandenberger, R. Towards a Nonsingular Bouncing Cosmology. JCAP 2012, 8, 20. [Google Scholar] [CrossRef]
- Mannheim, P.D. Solution to the ghost problem in fourth order derivative theories. Found. Phys. 2007, 37, 532. [Google Scholar] [CrossRef] [Green Version]
- Mannheim, P.D. Comprehensive Solution to the Cosmological Constant, Zero-Point Energy, and Quantum Gravity Problems. Gen. Relativ. Gravit. 2011, 43, 703. [Google Scholar] [CrossRef] [Green Version]
- Mannheim, P.D. Making the Case for Conformal Gravity. Found. Phys. 2012, 42, 388. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, L. Metric solutions in torsionless gauge for vacuum conformal gravity. J. Math. Phys. 2013, 54, 062501. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, L.; Mannheim, P.D. Continuity of the torsionless limit as a selection rule for gravity theories with torsion. Phys. Rev. D 2014, 90, 024042. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, L. A discussion on the most general torsion-gravity with electrodynamics for Dirac spinor matter fields. Int. J. Geom. Meth. Mod. Phys. 2015, 12, 1550099. [Google Scholar] [CrossRef] [Green Version]
- Stelle, K.S. Classical Gravity with Higher Derivatives. Gen. Relativ. Gravit. 1978, 9, 353. [Google Scholar] [CrossRef]
- Stelle, K.S. Renormalization of Higher Derivative Quantum Gravity. Phys. Rev. D 1977, 16, 953. [Google Scholar] [CrossRef]
- Fabbri, L. Singularity-free spinors in gravity with propagating torsion. Mod. Phys. Lett. A 2017, 32, 1750221. [Google Scholar] [CrossRef]
- Fabbri, L. Black Hole singularity avoidance by the Higgs scalar field. Eur. Phys. J. C 2018, 78, 1028. [Google Scholar] [CrossRef]
- Fabbri, L. A simple assessment on inflation. Int. J. Theor. Phys. 2017, 56, 2635. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, L. Spinors in Polar Form. Eur. Phys. J. Plus 2021, 136, 354. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabbri, L. A Note on Singularity Avoidance in Fourth-Order Gravity. Universe 2022, 8, 51. https://doi.org/10.3390/universe8010051
Fabbri L. A Note on Singularity Avoidance in Fourth-Order Gravity. Universe. 2022; 8(1):51. https://doi.org/10.3390/universe8010051
Chicago/Turabian StyleFabbri, Luca. 2022. "A Note on Singularity Avoidance in Fourth-Order Gravity" Universe 8, no. 1: 51. https://doi.org/10.3390/universe8010051
APA StyleFabbri, L. (2022). A Note on Singularity Avoidance in Fourth-Order Gravity. Universe, 8(1), 51. https://doi.org/10.3390/universe8010051