Quiescent Optical Solitons with Kudryashov’s Generalized Quintuple-Power and Nonlocal Nonlinearity Having Nonlinear Chromatic Dispersion
Abstract
:1. Introduction
2. Enhanced Kudryashov’s Algorithm
3. Application to the Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kudryashov, N.A. Solitary waves of model with triple arbitrary power and non-local nonlinearity. Optik 2022, 262, 169334. [Google Scholar] [CrossRef]
- Arnous, A.H. Optical solitons with Biswas–Milovic equation in magneto-optic waveguide having Kudryashov’s law of refractive index. Optik 2021, 247, 167987. [Google Scholar] [CrossRef]
- Arnous, A.H.; Zhou, Q.; Biswas, A.; Guggilla, P.; Khan, S.; Yıldırım, Y.; Alshomrani, A.S.; Alshehri, H.M. Optical solitons in fiber Bragg gratings with cubic–quartic dispersive reflectivity by enhanced Kudryashov’s approach. Phys. Lett. A 2022, 422, 127797. [Google Scholar] [CrossRef]
- Arnous, A.H.; Mirzazadeh, M.; Akinyemi, L.; Akbulut, A. New solitary waves and exact solutions for the fifth-order nonlinear wave equation using two integration techniques. J. Ocean Eng. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Arnous, A.H.; Biswas, A.; Yıldırım, Y.; Zhou, Q.; Liu, W.; Alshomrani, A.S.; Alshehri, H.M. Cubic–quartic optical soliton perturbation with complex Ginzburg–Landau equation by the enhanced Kudryashov’s method. Chaos Solitons Fractals 2022, 155, 111748. [Google Scholar] [CrossRef]
- Arnous, A.H.; Ullah, M.Z.; Moshokoa, S.P.; Zhou, Q.; Triki, H.; Mirzazadeh, M.; Biswas, A. Optical solitons in nonlinear directional couplers with trial function scheme. Nonlinear Dyn. 2017, 88, 1891–1915. [Google Scholar] [CrossRef]
- Arnous, A.H.; Biswas, A.; Ekici, M.; Alzahrani, A.K.; Belic, M.R. Optical solitons and conservation laws of Kudryashov’s equation with improved modified extended tanh–function. Optik 2021, 225, 165406. [Google Scholar] [CrossRef]
- Mirzazadeh, M.; Eslami, M.; Arnous, A.H. Dark optical solitons of Biswas–Milovic equation with dual-power law nonlinearity. Eur. Phys. J. Plus 2015, 130, 4. [Google Scholar] [CrossRef]
- Arnous, A.H. Optical solitons to the cubic quartic Bragg gratings with anti-cubic nonlinearity using new approach. Optik 2022, 251, 168356. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Alngar, M.E.M.; Shohib, R.M.A.; Biswas, A.; Yildirim, Y.; Khan, S.; Moraru, L.; Moldovanu, S.; Iticescu, C. Highly Dispersive Optical Solitons in Fiber Bragg Gratings with Kerr Law of Nonlinear Refractive Index. Mathematics 2022, 10, 2968. [Google Scholar] [CrossRef]
- Arnous, A.H.; Mirzazadeh, M.; Zhou, Q.; Moshokoa, S.P.; Biswas, A.; Belic, M. Soliton solutions to resonant nonlinear schrodinger’s equation with time-dependent coefficients by modified simple equation method. Optik 2016, 127, 11450–11459. [Google Scholar] [CrossRef]
- Mirzazadeh, M.; Arnous, A.H.; Mahmood, M.F.; Zerrad, E.; Biswas, A. Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 2015, 81, 277–282. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Stationary solitons of the model with nonlinear chromatic dispersion and arbitrary refractive index. Optik 2022, 259, 168888. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Model of propagation pulses in an optical fiber with a new law of refractive indices. Optik 2021, 248, 168160. [Google Scholar] [CrossRef]
- Biswas, A.; Ekici, M.; Sonmezoglu, A. Stationary optical solitons with Kudryashov’s quintuple power–law of refractive index having nonlinear chromatic dispersion. Phys. Lett. A 2022, 426, 127885. [Google Scholar] [CrossRef]
- Ekici, M. Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion and Kudryashov’s refractive index structures. Phys. Lett. A 2022, 440, 128146. [Google Scholar] [CrossRef]
- Ekici, M. Stationary optical solitons with Kudryashov’s quintuple power law nonlinearity by extended Jacobi’s elliptic function expansion. J. Nonlinear Opt. Phys. Mater. 2022. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refractive index. Appl. Math. Lett. 2022, 128, 107888. [Google Scholar] [CrossRef]
- Sonmezoglu, A. Stationary optical solitons having Kudryashov’s quintuple power law nonlinearity by extended –expansion. Optik 2022, 253, 168521. [Google Scholar] [CrossRef]
- Yalçı, A.M.; Ekici, M. Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion. Opt. Quantum Electron. 2022, 54, 167. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Exact solutions of the generalized Kuramoto-Shivasinsky equation. Phys. Lett. A 1990, 147, 287–291. [Google Scholar] [CrossRef]
- Kudryashov, N.A. On types of nonlinear integrable equations with exact solutions. Phys. Lett. A 1991, 155, 269–275. [Google Scholar] [CrossRef]
- Campos, J.G.F.; Mohammadi, A. Interaction between kinks and antikinks with double-range long tails. Phys. Lett. B 2021, 818, 136361. [Google Scholar] [CrossRef]
- Blinov, P.A.; Gani, T.V.; Gani, V.A. Deformations of kink tails. Ann. Phys. 2022, 437, 168739. [Google Scholar] [CrossRef]
- Manton, N.; Sutcliffe, P. Topological Solitons; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Campos, J.G.F.; Mohammadi, A. Kink-antikink collision in the supersymmetry ϕ4 model. J. High Energy Phys. 2022, 2022, 180. [Google Scholar] [CrossRef]
- Gani, V.A.; Marjaneh, A.M.; Blinov, P.A. Explicit kinks in higher order field theories. Phys. Rev. D 2020, 101, 125017. [Google Scholar] [CrossRef]
- Hasegawa, A.; Kodama, Y. Solitons in Optical Communications; Clarendon Press: Oxford, UK, 1995. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnous, A.H.; Nofal, T.A.; Biswas, A.; Khan, S.; Moraru, L. Quiescent Optical Solitons with Kudryashov’s Generalized Quintuple-Power and Nonlocal Nonlinearity Having Nonlinear Chromatic Dispersion. Universe 2022, 8, 501. https://doi.org/10.3390/universe8100501
Arnous AH, Nofal TA, Biswas A, Khan S, Moraru L. Quiescent Optical Solitons with Kudryashov’s Generalized Quintuple-Power and Nonlocal Nonlinearity Having Nonlinear Chromatic Dispersion. Universe. 2022; 8(10):501. https://doi.org/10.3390/universe8100501
Chicago/Turabian StyleArnous, Ahmed H., Taher A. Nofal, Anjan Biswas, Salam Khan, and Luminita Moraru. 2022. "Quiescent Optical Solitons with Kudryashov’s Generalized Quintuple-Power and Nonlocal Nonlinearity Having Nonlinear Chromatic Dispersion" Universe 8, no. 10: 501. https://doi.org/10.3390/universe8100501
APA StyleArnous, A. H., Nofal, T. A., Biswas, A., Khan, S., & Moraru, L. (2022). Quiescent Optical Solitons with Kudryashov’s Generalized Quintuple-Power and Nonlocal Nonlinearity Having Nonlinear Chromatic Dispersion. Universe, 8(10), 501. https://doi.org/10.3390/universe8100501