Testing the Wave-Particle Duality of Gravitational Wave Using the Spin-Orbital-Hall Effect of Structured Light
Abstract
:1. Introduction
2. Optical Dirac Equation of Paraxial Light in Gravitational Fields
3. Dipole and Quadrupole Interaction of Photons and Gravitational Waves
4. Perturbation Analysis and Numerical Experiments
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Tests of General Relativity with GW150914. Phys. Rev. Lett. 2016, 116, 221101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinberg, S. Photons and Gravitons in Perturbation Theory: Derivation of Maxwell’s and Einstein’s Equations. Phys. Rev. 1965, 138, B988–B1002. [Google Scholar] [CrossRef] [Green Version]
- Parikh, M.; Wilczek, F.; Zahariade, G. Signatures of the quantization of gravity at gravitational wave detectors. Phys. Rev. D 2021, 104, 046021. [Google Scholar] [CrossRef]
- Boughn, S.; Rothman, T. Aspects of graviton detection: Graviton emission and absorption by atomic hydrogen. Class. Quantum Gravity 2006, 23, 5839. [Google Scholar] [CrossRef]
- Rothman, T.; Boughn, S. Can Gravitons be Detected? Found. Phys. 2006, 36, 1801–1825. [Google Scholar] [CrossRef] [Green Version]
- Pitelli, J.P.M.; Perche, T.R. Angular momentum based graviton detector. Phys. Rev. D 2021, 104, 065016. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Phys. Rev. X 2016, 6, 041015. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101. [Google Scholar] [CrossRef]
- Chelkowski, S.; Hild, S.; Freise, A. Prospects of higher-order Laguerre-Gauss modes in future gravitational wave detectors. Phys. Rev. D 2009, 79, 122002. [Google Scholar] [CrossRef] [Green Version]
- Granata, M.; Buy, C.; Ward, R.; Barsuglia, M. Higher-Order Laguerre-Gauss Mode Generation and Interferometry for Gravitational Wave Detectors. Phys. Rev. Lett. 2010, 105, 231102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, L.; Bogan, C.; Fulda, P.; Freise, A.; Willke, B. Generation of High-Purity Higher-Order Laguerre-Gauss Beams at High Laser Power. Phys. Rev. Lett. 2013, 110, 251101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bliokh, K.Y.; Rodríguez-Fortuño, F.J.; Nori, F.; Zayats, A.V. Spin–orbit interactions of light. Nat. Photonics 2015, 9, 796–808. [Google Scholar] [CrossRef] [Green Version]
- Bliokh, K.Y.; Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 2015, 592, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Aiello, A.; Banzer, P.; Neugebauer, M.; Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photonics 2015, 9, 789–795. [Google Scholar] [CrossRef]
- Bliokh, K.Y. Spatiotemporal Vortex Pulses: Angular Momenta and Spin-Orbit Interaction. Phys. Rev. Lett. 2021, 126, 243601. [Google Scholar] [CrossRef]
- Onoda, M.; Murakami, S.; Nagaosa, N. Hall Effect of Light. Phys. Rev. Lett. 2004, 93, 083901. [Google Scholar] [CrossRef] [Green Version]
- Bliokh, K.Y.; Frolov, D.Y.; Kravtsov, Y.A. Non-Abelian evolution of electromagnetic waves in a weakly anisotropic inhomogeneous medium. Phys. Rev. A 2007, 75, 053821. [Google Scholar] [CrossRef] [Green Version]
- Liberman, V.S.; Zel’dovich, B.Y. Spin-orbit interaction of a photon in an inhomogeneous medium. Phys. Rev. A 1992, 46, 5199–5207. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Niv, A.; Kleiner, V.; Hasman, E. Geometrodynamics of spinning light. Nat. Photonics 2008, 2, 748–753. [Google Scholar] [CrossRef] [Green Version]
- Bliokh, K.Y. Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium. J. Opt. A Pure Appl. Opt. 2009, 11, 094009. [Google Scholar] [CrossRef] [Green Version]
- Bliokh, K.; Bliokh, Y. Topological spin transport of photons: The optical Magnus effect and Berry phase. Phys. Lett. A 2004, 333, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Duval, C.; Horváth, Z.; Horváthy, P.A. Fermat principle for spinning light. Phys. Rev. D 2006, 74, 021701. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, D.E.; Dodin, I.Y. First-principles variational formulation of polarization effects in geometrical optics. Phys. Rev. A 2015, 92, 043805. [Google Scholar] [CrossRef] [Green Version]
- Carini, P.; Feng, L.L.; Li, M.; Ruffini, R. Phase evolution of the photon in Kerr spacetime. Phys. Rev. D 1990, 46, 5407–5413. [Google Scholar] [CrossRef]
- Feng, L.L.; Lee, W. Gravitomagnetism and the Berry Phase of Photon in a Rotating Gravitational Field. Int. J. Mod. Phys. D 2001, 10, 961–969. [Google Scholar] [CrossRef]
- Mashhoon, B. On the gravitational analogue of Larmor’s theorem. Phys. Lett. A 1993, 173, 347–354. [Google Scholar] [CrossRef]
- Hauck, J.; Mashhoon, B. Electromagnetic waves in a rotating frame of reference. Ann. Phys. 2003, 515, 275–288. [Google Scholar] [CrossRef]
- Oancea, M.A.; Joudioux, J.; Dodin, I.Y.; Ruiz, D.E.; Paganini, C.F.; Andersson, L. Gravitational spin Hall effect of light. Phys. Rev. D 2020, 102, 024075. [Google Scholar] [CrossRef]
- Tamburini, F.; Thidé, B.; Molina-Terriza, G.; Anzolin, G. Twisting of light around rotating black holes. Nat. Phys. 2011, 7, 195–197. [Google Scholar] [CrossRef] [Green Version]
- Shoom, A.A. Gravitational Faraday and spin-Hall effects of light. Phys. Rev. D 2021, 104, 084007. [Google Scholar] [CrossRef]
- Tamburini, F.; Feleppa, F.; Licata, I.; Thidé, B. Kerr-spacetime geometric optics for vortex beams. Phys. Rev. A 2021, 104, 013718. [Google Scholar] [CrossRef]
- Feng, L.; Wu, Q. Four-Vector Optical Dirac Equation and Spin-Orbit Interaction of Structured Light. arXiv 2022, arXiv:2203.14664. [Google Scholar]
- Hanni, R.S. Wave fronts near a black hole. Phys. Rev. D 1977, 16, 933–936. [Google Scholar] [CrossRef]
- Khanikaev, A.B.; Mousavi, S.H.; Tse, W.K.; Kargarian, M.; MacDonald, A.H.; Shvets, G. Photonic topological insulators. Nat. Mater. 2013, 12, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 2007, 70, 947. [Google Scholar] [CrossRef] [Green Version]
- Ashida, Y.; Gong, Z.; Ueda, M. Non-Hermitian physics. Adv. Phys. 2021, 69, 249–435. [Google Scholar] [CrossRef]
- El-Ganainy, R.; Makris, K.G.; Khajavikhan, M.; Musslimani, Z.H.; Rotter, S.; Christodoulides, D.N. Non-Hermitian physics and PT symmetry. Nat. Phys. 2018, 14, 11–19. [Google Scholar] [CrossRef]
- Shen, S.Q. Topological Insulators, Dirac Equation in Condensed Matters; Springer Series in Solid-State Sciences; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef] [Green Version]
- Horsley, S.A.R. Indifferent electromagnetic modes: Bound states and topology. Phys. Rev. A 2019, 100, 053819. [Google Scholar] [CrossRef]
- Makris, K.G.; El-Ganainy, R.; Christodoulides, D.N.; Musslimani, Z.H. Beam Dynamics in PT Symmetric Optical Lattices. Phys. Rev. Lett. 2008, 100, 103904. [Google Scholar] [CrossRef] [PubMed]
- Longhi, S. Quantum-optical analogies using photonic structures. Laser Photonics Rev. 2009, 3, 243–261. [Google Scholar] [CrossRef]
- Eardley, D.M.; Lee, D.L.; Lightman, A.P.; Wagoner, R.V.; Will, C.M. Gravitational-Wave Observations as a Tool for Testing Relativistic Gravity. Phys. Rev. Lett. 1973, 30, 884–886. [Google Scholar] [CrossRef] [Green Version]
- Will, C. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Berry, M.V. Optical currents. J. Opt. A Pure Appl. Opt. 2009, 11, 094001. [Google Scholar] [CrossRef]
- Andrews, D.L. Quantum formulation for nanoscale optical and material chirality: Symmetry issues, space and time parity, and observables. J. Opt. 2018, 20, 033003. [Google Scholar] [CrossRef]
- Stalder, M.; Schadt, M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Opt. Lett. 1996, 21, 1948–1950. [Google Scholar] [CrossRef]
- Bomzon, Z.; Biener, G.; Kleiner, V.; Hasman, E. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt. Lett. 2002, 27, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Brans, C.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Capozziello, S.; Francaviglia, M. Extended theories of gravity and their cosmological and astrophysical applications. Gen. Relativ. Gravit. 2008, 40, 357–420. [Google Scholar] [CrossRef] [Green Version]
- Rosen, N. A theory of gravitation. Ann. Phys. 1974, 84, 455–473. [Google Scholar] [CrossRef]
- Lightman, A.P.; Lee, D.L. New Two-Metric Theory of Gravity with Prior Geometry. Phys. Rev. D 1973, 8, 3293–3302. [Google Scholar] [CrossRef] [Green Version]
- de Rham, C. Massive Gravity. Living Rev. Relativ. 2014, 17, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harte, A.I. Optics in a nonlinear gravitational plane wave. Class. Quantum Gravity 2015, 32, 175017. [Google Scholar] [CrossRef] [Green Version]
- Bond, C.; Brown, D.; Freise, A.; Strain, K.A. Interferometer techniques for gravitational-wave detection. Living Rev. Relativ. 2017, 19, 3. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Zhu, W.; Feng, L. Testing the Wave-Particle Duality of Gravitational Wave Using the Spin-Orbital-Hall Effect of Structured Light. Universe 2022, 8, 535. https://doi.org/10.3390/universe8100535
Wu Q, Zhu W, Feng L. Testing the Wave-Particle Duality of Gravitational Wave Using the Spin-Orbital-Hall Effect of Structured Light. Universe. 2022; 8(10):535. https://doi.org/10.3390/universe8100535
Chicago/Turabian StyleWu, Qianfan, Weishan Zhu, and Longlong Feng. 2022. "Testing the Wave-Particle Duality of Gravitational Wave Using the Spin-Orbital-Hall Effect of Structured Light" Universe 8, no. 10: 535. https://doi.org/10.3390/universe8100535
APA StyleWu, Q., Zhu, W., & Feng, L. (2022). Testing the Wave-Particle Duality of Gravitational Wave Using the Spin-Orbital-Hall Effect of Structured Light. Universe, 8(10), 535. https://doi.org/10.3390/universe8100535