A PeVatron Candidate: Modeling the Boomerang Nebula in X-ray Band
Abstract
:1. Introduction
2. Method
2.1. Two Electron Components
2.2. MCMC Modeling
3. Result
3.1. Fitting Result of the Radial Profiles
3.2. Spectral Energy Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. The Jüttner Function
References
- Cao, Z.; Aharonian, F.; An, Q.; Bai, L.; Bai, Y.; Bao, Y.; Bastieri, D.; Bi, X.; Bi, Y.; Cai, H.; et al. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 2021, 594, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Joncas, G.; Higgs, L. The DRAO galactic-plane survey. II-Field at L = 105 deg. Astron. Astrophys. Suppl. Ser. 1990, 82, 113–144. [Google Scholar]
- Pineault, S.; Joncas, G. G106. 3+ 2.7: A supernova remnant in a late stage of evolution. Astron. J. 2000, 120, 3218. [Google Scholar] [CrossRef]
- Kothes, R.; Uyaniker, B.; Pineault, S. The supernova remnant G106. 3+ 2.7 and its pulsar-wind nebula: Relics of triggered star formation in a complex environment. Astrophys. J. 2001, 560, 236. [Google Scholar] [CrossRef]
- Halpern, J.P.; Gotthelf, E.; Leighly, K.; Helfand, D. A possible X-ray and radio counterpart of the high-energy gamma-ray source 3EG J2227+ 6122. Astrophys. J. 2001, 547, 323. [Google Scholar] [CrossRef]
- Halpern, J.; Camilo, F.; Gotthelf, E.; Helfand, D.; Kramer, M.; Lyne, A.; Leighly, K.; Eracleous, M. PSR J2229+ 6114: Discovery of an energetic young pulsar in the error box of the EGRET source 3EG J2227+ 6122. Astrophys. J. 2001, 552, L125. [Google Scholar] [CrossRef]
- Liu, Q.C.; Zhou, P.; Chen, Y. IRAM 30 m CO-line Observation toward the PeVatron Candidate G106. 3+ 2.7: Direct Interaction between the Shock and the Molecular Cloud Remains Uncertain. Astrophys. J. 2022, 926, 124. [Google Scholar] [CrossRef]
- Ge, C.; Liu, R.Y.; Niu, S.; Chen, Y.; Wang, X.Y. Revealing a peculiar supernova remnant G106. 3+ 2.7 as a petaelectronvolt proton accelerator with X-ray observations. Innovation 2021, 2, 100118. [Google Scholar]
- Bao, Y.; Chen, Y. On the Hard Gamma-Ray Spectrum of the Potential PeVatron Supernova Remnant G106. 3+ 2.7. Astrophys. J. 2021, 919, 32. [Google Scholar] [CrossRef]
- Kothes, R.; Reich, W.; Uyanıker, B. The Boomerang PWN G106. 6+ 2.9 and the magnetic field structure in pulsar wind nebulae. Astrophys. J. 2006, 638, 225. [Google Scholar] [CrossRef] [Green Version]
- Xin, Y.; Zeng, H.; Liu, S.; Fan, Y.; Wei, D. VER J2227+ 608: A hadronic pevatron pulsar wind nebula? Astrophys. J. 2019, 885, 162. [Google Scholar] [CrossRef]
- Fang, K.; Kerr, M.; Blandford, R.; Fleischhack, H.; Charles, E. Evidence for PeV Proton Acceleration from Fermi-LAT Observations of SNR G 106.3+ 2.7. Phys. Rev. Lett. 2022, 129, 071101. [Google Scholar] [CrossRef] [PubMed]
- Abdo, A.A.; Allen, B.; Berley, D.; Casanova, S.; Chen, C.; Coyne, D.; Dingus, B.; Ellsworth, R.; Fleysher, L.; Fleysher, R.; et al. TeV gamma-ray sources from a survey of the galactic plane with Milagro. Astrophys. J. 2007, 664, L91. [Google Scholar] [CrossRef]
- Abdo, A.; Allen, B.; Aune, T.; Berley, D.; Chen, C.; Christopher, G.; DeYoung, T.; Dingus, B.; Ellsworth, R.; Gonzalez, M.; et al. Milagro observations of multi-TeV emission from Galactic sources in the Fermi bright source list. Astrophys. J. 2009, 700, L127. [Google Scholar] [CrossRef] [Green Version]
- Acciari, V.; Aliu, E.; Arlen, T.; Aune, T.; Bautista, M.; Beilicke, M.; Benbow, W.; Boltuch, D.; Bradbury, S.; Buckley, J.; et al. Detection of extended VHE gamma ray emission from G106. 3+ 2.7 with veritas. Astrophys. J. 2009, 703, L6. [Google Scholar] [CrossRef]
- Albert, A.; Alfaro, R.; Alvarez, C.; Camacho, J.A.; Arteaga-Velázquez, J.; Arunbabu, K.; Rojas, D.A.; Solares, H.A.; Baghmanyan, V.; Belmont-Moreno, E.; et al. HAWC J2227+ 610 and its association with G106. 3+ 2.7, a new potential galactic PeVatron. Astrophys. J. Lett. 2020, 896, L29. [Google Scholar] [CrossRef]
- Amenomori, M.; Bao, Y.; Bi, X.; Chen, D.; Chen, T.; Chen, W.; Chen, X.; Chen, Y.; Cirennima, C.; Danzengluobu, D.; et al. Potential PeVatron supernova remnant G106. 3+ 2.7 seen in the highest-energy gamma rays. Nat. Astron. 2021, 5, 460–464. [Google Scholar]
- Liu, S.; Zeng, H.; Xin, Y.; Zhu, H. Hadronic versus leptonic models for γ-ray emission from VER J2227+ 608. Astrophys. J. Lett. 2020, 897, L34. [Google Scholar] [CrossRef]
- Yu, H.; Wu, K.; Wen, L.; Fang, J. A leptonic model for the γ-rays coincident with the tail region of the supernova remnant G106. 3+ 2.7. New Astron. 2022, 90, 101669. [Google Scholar] [CrossRef]
- Yang, C.; Zeng, H.; Bao, B.; Zhang, L. Possible hadronic origin of TeV photon emission from SNR G106. 3+ 2.7. Astron. Astrophys. 2022, 658, A60. [Google Scholar] [CrossRef]
- Breuhaus, M.; Reville, B.; Hinton, J. Pulsar wind nebula origin of the LHAASO-detected ultra-high energy γ-ray sources. Astron. Astrophys. 2022, 660, A8. [Google Scholar] [CrossRef]
- The MAGIC Collaboration; Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Artero, M.; Asano, K.; Baack, D.; Babic, A.; Baquero, A.; et al. Resolving the origin of very-high-energy gamma-ray emission from the PeVatron candidate SNR G106.3+2.7 using MAGIC telescopes. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 796. [Google Scholar]
- Fujita, Y.; Bamba, A.; Nobukawa, K.K.; Matsumoto, H. X-ray Emission from the PeVatron-candidate Supernova Remnant G106. 3+ 2.7. Astrophys. J. 2021, 912, 133. [Google Scholar] [CrossRef]
- Aloisio, R.; Berezinsky, V.; Gazizov, A. The problem of superluminal diffusion of relativistic particles and its phenomenological solution. Astrophys. J. 2009, 693, 1275. [Google Scholar] [CrossRef]
- Recchia, S.; Di Mauro, M.; Aharonian, F.A.; Orusa, L.; Donato, F.; Gabici, S.; Manconi, S. Do the Geminga, Monogem and PSR J0622+ 3749 γ-ray halos imply slow diffusion around pulsars? Phys. Rev. D 2021, 104, 123017. [Google Scholar] [CrossRef]
- Cao, Z.; Aharonian, F.; An, Q.; Axikegu; Bai, L.; Bai, Y.; Bao, Y.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; et al. Peta–electron volt gamma-ray emission from the Crab Nebula. Science 2021, 373, 425–430. [Google Scholar] [PubMed]
- Fouka, M.; Ouichaoui, S. Analytical fits to the synchrotron functions. Res. Astron. Astrophys. 2013, 13, 680. [Google Scholar] [CrossRef] [Green Version]
- Prosekin, A.Y.; Kelner, S.R.; Aharonian, F.A. Transition of propagation of relativistic particles from the ballistic to the diffusion regime. Phys. Rev. D 2015, 92, 083003. [Google Scholar] [CrossRef] [Green Version]
- Schellenberger, G.; Reiprich, T.H.; Lovisari, L.; Nevalainen, J.; David, L. XMM-Newton and Chandra cross-calibration using HIFLUGCS galaxy clusters. Systematic temperature differences and cosmological impact. Astron. Astrophys. 2015, 575, A30. [Google Scholar] [CrossRef] [Green Version]
- Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC hammer. Publ. Astron. Soc. Pac. 2013, 125, 306. [Google Scholar] [CrossRef] [Green Version]
- Atoyan, A.M.; Aharonian, F.A. On the mechanisms of gamma radiation in the Crab Nebula. Mon. Not. R. Astron. Soc. Lett. 1996, 278, 525–541. [Google Scholar] [CrossRef] [Green Version]
- Amato, E.; Guetta, D.; Blasi, P. Signatures of high energy protons in pulsar winds. Astron. Astrophys. 2003, 402, 827–836. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yang, X.C. TeV Gamma-Ray Emission from Vela X: Leptonic or Hadronic? Astrophys. J. 2009, 699, L153–L156. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Zhang, L. Lepto-hadronic origin of γ-rays from the G54.1+0.3 pulsar wind nebula. Mon. Not. R. Astron. Soc. Lett. 2010, 408, L80–L84. [Google Scholar] [CrossRef]
- Di Palma, I.; Guetta, D.; Amato, E. Revised Predictions of Neutrino Fluxes from Pulsar Wind Nebulae. Astrophys. J. 2017, 836, 159. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.Y.; Wang, X.Y. PeV Emission of the Crab Nebula: Constraints on the Proton Content in Pulsar Wind and Implications. Astrophys. J. 2021, 922, 221. [Google Scholar] [CrossRef]
- Aharonian, F.A.; Atoyan, A.M. Nonthermal Radiation of the Crab Nebula. In Proceedings of the Neutron Stars and Pulsars: Thirty Years after the Discovery, Tokyo, Japan, 17–20 November 1997; Shibazaki, N., Ed.; Universal Academy Press: Tokyo, Japan, 1998; p. 439. [Google Scholar]
- Mori, K.; An, H.; Burgess, D.; Capasso, M.; Dingus, B.; Gelfand, J.; Hailey, C.; Humensky, B.; Malone, K.; Mukherjee, R.; et al. NuSTAR broad-band X-ray observational campaign of energetic pulsar wind nebulae in synergy with VERITAS, HAWC and Fermi gamma-ray telescopes. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germay, 12–23 July 2021; p. 963. [Google Scholar]
- Kafexhiu, E.; Aharonian, F.; Taylor, A.M.; Vila, G.S. Parametrization of gamma-ray production cross sections for p p interactions in a broad proton energy range from the kinematic threshold to PeV energies. Phys. Rev. D 2014, 90, 123014. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Chevalier, R.A. Particle Transport in Young Pulsar Wind Nebulae. Astrophys. J. 2012, 752, 83. [Google Scholar] [CrossRef]
- Porth, O.; Vorster, M.J.; Lyutikov, M.; Engelbrecht, N.E. Diffusion in pulsar wind nebulae: An investigation using magnetohydrodynamic and particle transport models. Mon. Not. R. Astron. Soc. Lett. 2016, 460, 4135–4149. [Google Scholar] [CrossRef]
- Bao, Y.; Liu, S.; Chen, Y. On the Gamma-Ray Nebula of Vela Pulsar. I. Very Slow Diffusion of Energetic Electrons within the TeV Nebula. Astrophys. J. 2019, 877, 54. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.Y.; Yan, H. On the unusually large spatial extent of the TeV nebula HESS J1825-137: Implication from the energy-dependent morphology. Mon. Not. R. Astron. Soc. Lett. 2020, 494, 2618–2627. [Google Scholar] [CrossRef]
- Hu, C.P.; Ishizaki, W.; Ng, C.Y.; Tanaka, S.J.; Mong, Y.L. A Comprehensive Study of the Spectral Variation and the Brightness Profile of Young Pulsar Wind Nebulae. Astrophys. J. 2022, 927, 87. [Google Scholar] [CrossRef]
- Kennel, C.F.; Coroniti, F.V. Magnetohydrodynamic model of Crab nebula radiation. Astrophys. J. 1984, 283, 710–730. [Google Scholar] [CrossRef]
- Van Etten, A.; Romani, R.W. Multi-zone Modeling of the Pulsar Wind Nebula HESS J1825-137. Astrophys. J. 2011, 742, 62. [Google Scholar] [CrossRef]
- Ishizaki, W.; Asano, K.; Kawaguchi, K. Outflow and Emission Model of Pulsar Wind Nebulae with the Back Reaction of Particle Diffusion. Astrophys. J. 2018, 867, 141. [Google Scholar] [CrossRef] [Green Version]
- Hillas, A.M. The Origin of Ultra-High-Energy Cosmic Rays. Annu. Rev. Astron. Astrophys. 1984, 22, 425–444. [Google Scholar] [CrossRef]
- Gaensler, B.M.; Slane, P.O. The evolution and structure of pulsar wind nebulae. Annu. Rev. Astron. Astrophys. 2006, 44, 17–47. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, A.; Tatischeff, V.; Tavani, M.; Oberlack, U.; Grenier, I.; Hanlon, L.; Walter, R.; Argan, A.; von Ballmoos, P.; Bulgarelli, A.; et al. The e-ASTROGAM mission. Exploring the extreme Universe with gamma rays in the MeV–GeV range. Exp. Astron. 2017, 44, 25–82. [Google Scholar] [CrossRef]
- Moiseev, A.; Amego Team. All-Sky Medium Energy Gamma-ray Observatory (AMEGO). In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Korea, 12–20 July 2017; Volume 301, p. 798. [Google Scholar]
Photon Field | ||
---|---|---|
CMB | 0.26 | 2.73 |
FIR | 0.4 | 30 |
NIR | 0.2 | 500 |
OPT | 0.4 | 5000 |
Parameter | p | |||||
---|---|---|---|---|---|---|
range | [1, 3] | [1, ] | [, ] | [0, 1] | [, 1] | [10, ] |
value () |
2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.-H.; Li, C.-M.; Wu, Q.-Z.; Pan, J.-S.; Liu, R.-Y. A PeVatron Candidate: Modeling the Boomerang Nebula in X-ray Band. Universe 2022, 8, 547. https://doi.org/10.3390/universe8100547
Liang X-H, Li C-M, Wu Q-Z, Pan J-S, Liu R-Y. A PeVatron Candidate: Modeling the Boomerang Nebula in X-ray Band. Universe. 2022; 8(10):547. https://doi.org/10.3390/universe8100547
Chicago/Turabian StyleLiang, Xuan-Han, Chao-Ming Li, Qi-Zuo Wu, Jia-Shu Pan, and Ruo-Yu Liu. 2022. "A PeVatron Candidate: Modeling the Boomerang Nebula in X-ray Band" Universe 8, no. 10: 547. https://doi.org/10.3390/universe8100547
APA StyleLiang, X. -H., Li, C. -M., Wu, Q. -Z., Pan, J. -S., & Liu, R. -Y. (2022). A PeVatron Candidate: Modeling the Boomerang Nebula in X-ray Band. Universe, 8(10), 547. https://doi.org/10.3390/universe8100547