Revisiting Dudas-Mourad Compactifications
Abstract
:1. Introduction
2. A Review of Dudas–Mourad Vacua
2.1. Orientifold Case
2.2. Heterotic Case
3. Generalizing the EFT Parameters
- If , then is linear and
- If , then
3.1. Critical Case
3.2. Supercritical Orientifold and Heterotic
4. Compactifications with Gauge Fluxes
Indications of (In)Stability
5. Moduli and Kaluza–Klein Masses
5.1. Perturbative Stability
5.2. Decompactification Limit
5.3. Absence of Moduli
5.4. On Cobordisms to Nothing
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Specifically, the presence of warping and singularities needs to be treated with care. See [88] for recent efforts in this direction, albeit in a different context. |
2 | Fluctuations with are marginally stable, since the eigenvalue exactly matches the B-F bound. |
3 | This has been discussed in [25] for ten-dimensional heterotic vacua with R-R fluxes. |
4 | We recall that the extent of the z direction is finite. |
5 | We thank Arun Debray for pointing this out to us. |
6 | See [74] for a possible connection to the Whitehead tower. |
7 | There are however some hints that these theories could survive in a stringy regime living at infinite distance [37]. Hence, there could be a weakly coupled dual frame describing the physics. |
References
- DeWolfe, O.; Giryavets, A.; Kachru, S.; Taylor, W. Type IIA moduli stabilization. J. High Energy Phys. 2005, 7, 66. [Google Scholar] [CrossRef]
- Tsimpis, D. Supersymmetric AdS vacua and separation of scales. J. High Energy Phys. 2012, 8, 142. [Google Scholar] [CrossRef] [Green Version]
- Gautason, F.F.; Schillo, M.; Van Riet, T.; Williams, M. Remarks on scale separation in flux vacua. J. High Energy Phys. 2016, 3, 61. [Google Scholar] [CrossRef] [Green Version]
- Lüst, D.; Palti, E.; Vafa, C. AdS and the Swampland. Phys. Lett. B 2019, 797, 134867. [Google Scholar] [CrossRef]
- Buratti, G.; Calderon, J.; Mininno, A.; Uranga, A.M. Discrete Symmetries, Weak Coupling Conjecture and Scale Separation in AdS Vacua. J. High Energy Phys. 2020, 6, 83. [Google Scholar] [CrossRef]
- Lüst, D.; Tsimpis, D. AdS2 type-IIA solutions and scale separation. J. High Energy Phys. 2020, 7, 60. [Google Scholar] [CrossRef]
- Junghans, D. O-Plane Backreaction and Scale Separation in Type IIA Flux Vacua. Fortschr. Phys. 2020, 68, 2000040. [Google Scholar] [CrossRef]
- Marchesano, F.; Palti, E.; Quirant, J.; Tomasiello, A. On supersymmetric AdS4 orientifold vacua. J. High Energy Phys. 2020, 8, 87. [Google Scholar] [CrossRef]
- Marchesano, F.; Prieto, D.; Quirant, J.; Shukla, P. Systematics of Type IIA moduli stabilisation. J. High Energy Phys. 2020, 11, 113. [Google Scholar] [CrossRef]
- De Luca, G.B.; Tomasiello, A. Leaps and bounds towards scale separation. J. High Energy Phys. 2021, 12, 86. [Google Scholar] [CrossRef]
- De Luca, G.B.; De Ponti, N.; Mondino, A.; Tomasiello, A. Cheeger bounds on spin-two fields. J. High Energy Phys. 2021, 12, 217. [Google Scholar] [CrossRef]
- Cribiori, N.; Junghans, D.; Van Hemelryck, V.; Van Riet, T.; Wrase, T. Scale-separated AdS4 vacua of IIA orientifolds and M-theory. Phys. Rev. D 2021, 104, 126014. [Google Scholar] [CrossRef]
- Emelin, M.; Farakos, F.; Tringas, G. O6-plane backreaction on scale-separated Type IIA AdS3 vacua. arXiv 2022, arXiv:2202.13431. [Google Scholar] [CrossRef]
- Andriot, D.; Horer, L.; Marconnet, P. Exploring the landscape of (anti-) de Sitter and Minkowski solutions: Group manifolds, stability and scale separation. arXiv 2022, arXiv:2204.05327. [Google Scholar]
- Cribiori, N.; Dall’Agata, G. Weak gravity versus scale separation. J. High Energy Phys. 2022, 2022, 6. [Google Scholar] [CrossRef]
- Apers, F.; Montero, M.; Van Riet, T.; Wrase, T. Comments on classical AdS flux vacua with scale separation. J. High Energy Phys. 2022, 2022, 167. [Google Scholar] [CrossRef]
- Tsimpis, D. Relative scale separation in orbifolds of S2 and S5. J. High Energy Phys. 2022, 3, 169. [Google Scholar] [CrossRef]
- Van Hemelryck, V. Scale-separated AdS3 vacua from G2-orientifolds using pure spinors. Fortschr. Phys. 2022, 2200128. [Google Scholar] [CrossRef]
- Vafa, C. The String landscape and the swampland. arXiv 2005, arXiv:hep-th/0509212. [Google Scholar]
- Palti, E. The Swampland: Introduction and Review. Fortschr. Phys. 2019, 67, 1900037. [Google Scholar] [CrossRef] [Green Version]
- van Beest, M.; Calderón-Infante, J.; Mirfendereski, D.; Valenzuela, I. Lectures on the Swampland Program in String Compactifications. Phys. Rep. 2021, 989, 1–50. [Google Scholar] [CrossRef]
- Graña, M.; Herráez, A. The Swampland Conjectures: A Bridge from Quantum Gravity to Particle Physics. Universe 2021, 7, 273. [Google Scholar] [CrossRef]
- Ooguri, H.; Vafa, C. Non-supersymmetric AdS and the Swampland. Adv. Theor. Math. Phys. 2017, 21, 1787–1801. [Google Scholar] [CrossRef] [Green Version]
- Freivogel, B.; Kleban, M. Vacua Morghulis. arXiv 2016, arXiv:1610.04564. [Google Scholar]
- Basile, I.; Mourad, J.; Sagnotti, A. On Classical Stability with Broken Supersymmetry. J. High Energy Phys. 2019, 1, 174. [Google Scholar] [CrossRef] [Green Version]
- Guarino, A.; Malek, E.; Samtleben, H. Stable Nonsupersymmetric Anti–de Sitter Vacua of Massive IIA Supergravity. Phys. Rev. Lett. 2021, 126, 61601. [Google Scholar] [CrossRef]
- Antonelli, R.; Basile, I. Brane annihilation in non-supersymmetric strings. J. High Energy Phys. 2019, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Dibitetto, G.; Petri, N.; Schillo, M. Nothing really matters. J. High Energy Phys. 2020, 8, 40. [Google Scholar] [CrossRef]
- García Etxebarria, I.n.; Montero, M.; Sousa, K.; Valenzuela, I. Nothing is certain in string compactifications. J. High Energy Phys. 2020, 12, 32. [Google Scholar] [CrossRef]
- Bomans, P.; Cassani, D.; Dibitetto, G.; Petri, N. Bubble instability of mIIA on AdS4×S6. arXiv 2021, arXiv:2110.08276. [Google Scholar]
- Guarino, A.; Sterckx, C. Flat deformations of type IIB S-folds. J. High Energy Phys. 2021, 11, 171. [Google Scholar] [CrossRef]
- Giambrone, A.; Guarino, A.; Malek, E.; Samtleben, H.; Sterckx, C.; Trigiante, M. Holographic evidence for nonsupersymmetric conformal manifolds. Phys. Rev. D 2022, 105, 66018. [Google Scholar] [CrossRef]
- Guarino, A.; Sterckx, C. Type IIB S-folds: Flat deformations, holography and stability. In Proceedings of the 21st Hellenic School and Workshops on Elementary Particle Physics and Gravity, Corfu, Greece, 29 August–8 September 2021. [Google Scholar]
- Blum, J.D.; Dienes, K.R. Duality without supersymmetry: The Case of the SO(16) x SO(16) string. Phys. Lett. B 1997, 414, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Blum, J.D.; Dienes, K.R. Strong / weak coupling duality relations for nonsupersymmetric string theories. Nucl. Phys. B 1998, 516, 83–159. [Google Scholar] [CrossRef]
- Dienes, K.R. Duality without supersymmetry. Fortschr. Phys. 1999, 47, 141–149. [Google Scholar] [CrossRef]
- Basile, I. Emergent strings at infinite distance with broken supersymmetry. arXiv 2022, arXiv:2201.08851. [Google Scholar]
- Angelantonj, C.; Dudas, E. Metastable string vacua. Phys. Lett. B 2007, 651, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Cribiori, N.; Lust, D.; Scalisi, M. The gravitino and the swampland. J. High Energy Phys. 2021, 6, 71. [Google Scholar] [CrossRef]
- Castellano, A.; Font, A.; Herraez, A.; Ibáñez, L.E. A gravitino distance conjecture. J. High Energy Phys. 2021, 8, 92. [Google Scholar] [CrossRef]
- Dall’Agata, G.; Emelin, M.; Farakos, F.; Morittu, M. The unbearable lightness of charged gravitini. J. High Energy Phys. 2021, 10, 76. [Google Scholar] [CrossRef]
- Montero, M.; Vafa, C. Cobordism Conjecture, Anomalies, and the String Lamppost Principle. J. High Energy Phys. 2021, 1, 63. [Google Scholar] [CrossRef]
- Hamada, Y.; Vafa, C. 8d supergravity, reconstruction of internal geometry and the Swampland. J. High Energy Phys. 2021, 6, 178. [Google Scholar] [CrossRef]
- Tarazi, H.C.; Vafa, C. On The Finiteness of 6d Supergravity Landscape. arXiv 2021, arXiv:2106.10839. [Google Scholar]
- Bedroya, A.; Hamada, Y.; Montero, M.; Vafa, C. Compactness of brane moduli and the String Lamppost Principle in d > 6. J. High Energy Phys. 2022, 2, 82. [Google Scholar] [CrossRef]
- Alvarez-Gaume, L.; Ginsparg, P.H.; Moore, G.W.; Vafa, C. An O(16) x O(16) Heterotic String. Phys. Lett. B 1986, 171, 155–162. [Google Scholar] [CrossRef]
- Dixon, L.J.; Harvey, J.A. String Theories in Ten-Dimensions Without Space-Time Supersymmetry. Nucl. Phys. B 1986, 274, 93–105. [Google Scholar] [CrossRef]
- Sagnotti, A. Open Strings and their Symmetry Groups. In Proceedings of the NATO Advanced Summer Institute on Nonperturbative Quantum Field Theory (Cargese Summer Institute), Cargese, France, 16–30 July 1987; pp. 521–528. [Google Scholar]
- Pradisi, G.; Sagnotti, A. Open String Orbifolds. Phys. Lett. B 1989, 216, 59–67. [Google Scholar] [CrossRef]
- Horava, P. Strings on World Sheet Orbifolds. Nucl. Phys. B 1989, 327, 461–484. [Google Scholar] [CrossRef]
- Horava, P. Background Duality of Open String Models. Phys. Lett. B 1989, 231, 251–257. [Google Scholar] [CrossRef]
- Bianchi, M.; Sagnotti, A. On the systematics of open string theories. Phys. Lett. B 1990, 247, 517–524. [Google Scholar] [CrossRef]
- Bianchi, M.; Sagnotti, A. Twist symmetry and open string Wilson lines. Nucl. Phys. B 1991, 361, 519–538. [Google Scholar] [CrossRef]
- Bianchi, M.; Pradisi, G.; Sagnotti, A. Toroidal compactification and symmetry breaking in open string theories. Nucl. Phys. B 1992, 376, 365–386. [Google Scholar] [CrossRef]
- Sagnotti, A. A Note on the Green-Schwarz mechanism in open string theories. Phys. Lett. B 1992, 294, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Sagnotti, A. Some properties of open string theories. In Proceedings of theInternational Workshop on Supersymmetry and Unification of Fundamental Interactions (SUSY 95), Palaiseau, France, 15–19 May 1995; pp. 473–484. [Google Scholar]
- Sagnotti, A. Surprises in open string perturbation theory. Nucl. Phys. B Proc. Suppl. 1997, 56, 332–343. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, S. Anomaly cancellations in type I D-9 - anti-D-9 system and the USp(32) string theory. Prog. Theor. Phys. 1999, 102, 685–699. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I.; Dudas, E.; Sagnotti, A. Brane supersymmetry breaking. Phys. Lett. B 1999, 464, 38–45. [Google Scholar] [CrossRef]
- Angelantonj, C. Comments on open string orbifolds with a nonvanishing B(ab). Nucl. Phys. B 2000, 566, 126–150. [Google Scholar] [CrossRef] [Green Version]
- Aldazabal, G.; Uranga, A.M. Tachyon free nonsupersymmetric type IIB orientifolds via Brane - anti-brane systems. J. High Energy Phys. 1999, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Angelantonj, C.; Antoniadis, I.; D’Appollonio, G.; Dudas, E.; Sagnotti, A. Type I vacua with brane supersymmetry breaking. Nucl. Phys. B 2000, 572, 36–70. [Google Scholar] [CrossRef] [Green Version]
- Coudarchet, T.; Dudas, E.; Partouche, H. Geometry of orientifold vacua and supersymmetry breaking. J. High Energy Phys. 2021, 7, 104. [Google Scholar] [CrossRef]
- Dudas, E.; Mourad, J. Consistent gravitino couplings in nonsupersymmetric strings. Phys. Lett. B 2001, 514, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Pradisi, G.; Riccioni, F. Geometric couplings and brane supersymmetry breaking. Nucl. Phys. B 2001, 615, 33–60. [Google Scholar] [CrossRef] [Green Version]
- Dudas, E.; Mourad, J. Brane solutions in strings with broken supersymmetry and dilaton tadpoles. Phys. Lett. B 2000, 486, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Dudas, E.; Mourad, J.; Sagnotti, A. Charged and uncharged D-branes in various string theories. Nucl. Phys. B 2002, 620, 109–151. [Google Scholar] [CrossRef] [Green Version]
- Mourad, J.; Sagnotti, A. An Update on Brane Supersymmetry Breaking. arXiv 2017, arXiv:1711.11494. [Google Scholar]
- Basile, I. Supersymmetry breaking and stability in string vacua: Brane dynamics, bubbles and the swampland. Riv. Nuovo Cim. 2021, 44, 499–596. [Google Scholar] [CrossRef]
- Sagnotti, A.; Mourad, J. String (In)Stability Issues with Broken Supersymmetry. Lett. High Energy Phys. 2021, 2021, 219. [Google Scholar] [CrossRef]
- Mourad, J.; Sagnotti, A. AdS Vacua from Dilaton Tadpoles and Form Fluxes. Phys. Lett. B 2017, 768, 92–96. [Google Scholar] [CrossRef]
- McNamara, J.; Vafa, C. Cobordism Classes and the Swampland. arXiv 2019, arXiv:1909.10355. [Google Scholar]
- Blumenhagen, R.; Cribiori, N. Open-Closed Correspondence of K-theory and Cobordism. arXiv 2021, arXiv:2112.07678. [Google Scholar] [CrossRef]
- Andriot, D.; Carqueville, N.; Cribiori, N. Looking for structure in the cobordism conjecture. SciPost Phys. 2022, 13, 071. [Google Scholar] [CrossRef]
- Blumenhagen, R.; Cribiori, N.; Kneissl, C.; Makridou, A. Dimensional Reduction of Cobordism and K-theory. arXiv 2022, arXiv:2208.01656. [Google Scholar]
- Buratti, G.; Calderón-Infante, J.; Delgado, M.; Uranga, A.M. Dynamical Cobordism and Swampland Distance Conjectures. J. High Energy Phys. 2021, 10, 37. [Google Scholar] [CrossRef]
- Buratti, G.; Delgado, M.; Uranga, A.M. Dynamical tadpoles, stringy cobordism, and the SM from spontaneous compactification. J. High Energy Phys. 2021, 6, 170. [Google Scholar] [CrossRef]
- Angius, R.; Calderón-Infante, J.; Delgado, M.; Huertas, J.; Uranga, A.M. At the End of the World: Local Dynamical Cobordism. arXiv 2022, arXiv:2203.11240. [Google Scholar] [CrossRef]
- Angius, R.; Delgado, M.; Uranga, A.M. Dynamical Cobordism and the Beginning of Time: Supercritical Strings and Tachyon Condensation. arXiv 2022, arXiv:2207.13108v2. [Google Scholar] [CrossRef]
- Ooguri, H.; Vafa, C. On the Geometry of the String Landscape and the Swampland. Nucl. Phys. B 2007, 766, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Pelliconi, P.; Sagnotti, A. Integrable Models and Supersymmetry Breaking. Nucl. Phys. B 2021, 965, 115363. [Google Scholar] [CrossRef]
- Dudas, E.; Kitazawa, N.; Sagnotti, A. On Climbing Scalars in String Theory. Phys. Lett. B 2011, 694, 80–88. [Google Scholar] [CrossRef]
- Gubser, S.S.; Mitra, I. Some interesting violations of the Breitenlohner-Freedman bound. J. High Energy Phys. 2002, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Mourad, J.; Sagnotti, A. On boundaries, charges and Fermi fields. Phys. Lett. B 2020, 804, 135368. [Google Scholar] [CrossRef]
- Mourad, J.; Sagnotti, A. A 4D IIB Flux Vacuum and Supersymmetry Breaking. I. Fermionic Spectrum. arXiv 2022, arXiv:2206.03340. [Google Scholar] [CrossRef]
- Raucci, S. On Codimension-one Vacua and String Theory. arXiv 2022, arXiv:2206.06399. [Google Scholar]
- Fré, P.; Sagnotti, A.; Sorin, A.S. Integrable Scalar Cosmologies I. Foundations and links with String Theory. Nucl. Phys. B 2013, 877, 1028–1106. [Google Scholar] [CrossRef] [Green Version]
- Lüst, S.; Randall, L. Effective Theory of Warped Compactifications and the Implications for KKLT. Fortschr. Phys. 2022, 70, 2200103. [Google Scholar] [CrossRef]
- Raucci, S. On New Vacua of non-Supersymmetric Strings. arXiv 2022, arXiv:2209.06537. [Google Scholar]
- Chang, S.J.; Weiss, N. Instability of Constant Yang-Mills Fields. Phys. Rev. D 1979, 20, 869. [Google Scholar] [CrossRef]
- Sikivie, P. Instability of Abelian Field Configurations in Yang-Mills Theory. Phys. Rev. D 1979, 20, 877. [Google Scholar] [CrossRef] [Green Version]
- Dibitetto, G.; Petri, N. Searching for Coleman-de Luccia bubbles in AdS compactifications. arXiv 2022, arXiv:2207.02172. [Google Scholar]
- Basile, I. On String Vacua without Supersymmetry: Brane Dynamics, Bubbles and Holography. Ph.D. Thesis, Scuola Normale Superiore, Pisa, Italy, 2020. [Google Scholar]
- Baume, F.; Calderón Infante, J. Tackling the SDC in AdS with CFTs. J. High Energy Phys. 2021, 8, 57. [Google Scholar] [CrossRef]
- Perlmutter, E.; Rastelli, L.; Vafa, C.; Valenzuela, I. A CFT distance conjecture. J. High Energy Phys. 2021, 10, 70. [Google Scholar] [CrossRef]
- Blumenhagen, R.; Cribiori, N.; Kneissl, C.; Makridou, A. Dynamical Cobordism of a Domain Wall and its Companion Defect 7-brane. arXiv 2022, arXiv:2205.09782. [Google Scholar] [CrossRef]
- García-Etxebarria, I.n.; Montero, M. Dai-Freed anomalies in particle physics. J. High Energy Phys. 2019, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Debray, A.; Dierigl, M.; Heckman, J.J.; Montero, M. The anomaly that was not meant IIB. Fortschr. Phys. 2021, 70, 2100168. [Google Scholar] [CrossRef]
- Blumenhagen, R.; Font, A. Dilaton tadpoles, warped geometries and large extra dimensions for nonsupersymmetric strings. Nucl. Phys. B 2001, 599, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Montero, M.; Vafa, C.; Valenzuela, I. The Dark Dimension and the Swampland. arXiv 2022, arXiv:2205.12293. [Google Scholar]
- Anchordoqui, L.; Antoniadis, I.; Lust, D. The Dark Dimension, the Swampland, and the Dark Matter Fraction Composed of Primordial Black Holes. Phys. Rev. D 2022, 106, 086001. [Google Scholar] [CrossRef]
- Blumenhagen, R.; Brinkmann, M.; Makridou, A. The Dark Dimension in a Warped Throat. arXiv 2022, arXiv:2208.01057. [Google Scholar]
- Dudas, E.; Mourad, J.; Timirgaziu, C. Time and space dependent backgrounds from nonsupersymmetric strings. Nucl. Phys. B 2003, 660, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Stelle, K.S. Mass gaps and braneworlds. J. Phys. A 2020, 53, 204002. [Google Scholar] [CrossRef] [Green Version]
- Erickson, C.W.; Leung, R.; Stelle, K.S. Taxonomy of brane gravity localisations. J. High Energy Phys. 2022, 1, 130. [Google Scholar] [CrossRef]
- Leung, R.; Stelle, K.S. Supergravities on Branes. arXiv 2022, arXiv:2205.13551. [Google Scholar] [CrossRef]
- Basile, I.; Lanza, S. de Sitter in non-supersymmetric string theories: No-go theorems and brane-worlds. J. High Energy Phys. 2020, 10, 108. [Google Scholar] [CrossRef]
- Banerjee, S.; Danielsson, U.; Dibitetto, G.; Giri, S.; Schillo, M. de Sitter Cosmology on an expanding bubble. J. High Energy Phys. 2019, 10, 164. [Google Scholar] [CrossRef]
- Banerjee, S.; Danielsson, U.; Giri, S. Dark bubbles: Decorating the wall. J. High Energy Phys. 2020, 4, 85. [Google Scholar] [CrossRef]
- Banerjee, S.; Danielsson, U.; Giri, S. Bubble needs strings. J. High Energy Phys. 2020, 21, 250. [Google Scholar] [CrossRef]
- Banerjee, S.; Danielsson, U.; Giri, S. Dark bubbles and black holes. J. High Energy Phys. 2021, 9, 158. [Google Scholar] [CrossRef]
- Banerjee, S.; Danielsson, U.; Giri, S. Curing with Hemlock: Escaping the swampland using instabilities from string theory. Int. J. Mod. Phys. D 2021, 30, 2142029. [Google Scholar] [CrossRef]
- Danielsson, U.H.; Panizo, D.; Tielemans, R.; Van Riet, T. Higher-dimensional view on quantum cosmology. Phys. Rev. D 2021, 104, 86015. [Google Scholar] [CrossRef]
- Danielsson, U.; Panizo, D.; Tielemans, R. Gravitational waves in dark bubble cosmology. Phys. Rev. D 2022, 106, 24002. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basile, I.; Raucci, S.; Thomée, S. Revisiting Dudas-Mourad Compactifications. Universe 2022, 8, 544. https://doi.org/10.3390/universe8100544
Basile I, Raucci S, Thomée S. Revisiting Dudas-Mourad Compactifications. Universe. 2022; 8(10):544. https://doi.org/10.3390/universe8100544
Chicago/Turabian StyleBasile, Ivano, Salvatore Raucci, and Sylvain Thomée. 2022. "Revisiting Dudas-Mourad Compactifications" Universe 8, no. 10: 544. https://doi.org/10.3390/universe8100544
APA StyleBasile, I., Raucci, S., & Thomée, S. (2022). Revisiting Dudas-Mourad Compactifications. Universe, 8(10), 544. https://doi.org/10.3390/universe8100544