Leading Singularities in Higher-Derivative Yang–Mills Theory and Quadratic Gravity
Abstract
:1. Introduction
2. Brief Review of Color–Kinematics Duality and Yang–Mills Amplitudes
3. Brief Review of the Double-Copy Method and Gravity Amplitudes
4. Leading Singularities in One-Loop Processes Involving Merlin Particles
4.1. Higher-Derivative Yang–Mills
4.1.1. Gluon Scattering
4.1.2. Scalar Scattering
4.2. Quadratic Gravity
4.2.1. Graviton Scattering
4.2.2. Scalar Scattering
5. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | |
2 | For this calculation one can make use of the triple-gauge vertex calculated in detail in [87]. |
References
- Witten, E. Perturbative gauge theory as a string theory in twistor space. Commun. Math. Phys. 2004, 252, 189–258. [Google Scholar] [CrossRef]
- Britto, R.; Cachazo, F.; Feng, B. Generalized unitarity and one-loop amplitudes in N = 4 super-Yang–Mills. Nucl. Phys. B 2005, 725, 275–305. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Cachazo, F.; Kaplan, J. What is the Simplest Quantum Field Theory? J. High Energy Phys. 2010, 2010, 16. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Bourjaily, J.; Cachazo, F.; Trnka, J. Unification of Residues and Grassmannian Dualities. J. High Energy Phys. 2011, 2011, 49. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Bourjaily, J.L.; Cachazo, F.; Caron-Huot, S.; Trnka, J. The All-Loop Integrand For Scattering Amplitudes in Planar N = 4 SYM. J. High Energy Phys. 2011, 2011, 41. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Bourjaily, J.L.; Cachazo, F.; Goncharov, A.B.; Postnikov, A.; Trnka, J. Scattering Amplitudes and the Positive Grassmannian; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Eden, R.J.; Landshoff, P.V.; Olive, D.I.; Polkinghorne, J.C. The Analytic S-Matrix; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Weinberg, S. Feynman Rules for Any Spin. 2. Massless Particles. Phys. Rev. 1964, 134, B882–B896. [Google Scholar] [CrossRef]
- Weinberg, S. Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass. Phys. Rev. 1964, 135, B1049–B1056. [Google Scholar] [CrossRef]
- Weinberg, S. Photons and gravitons in perturbation theory: Derivation of Maxwell’s and Einstein’s equations. Phys. Rev. 1965, 138, B988–B1002. [Google Scholar] [CrossRef]
- Olive, D.I. Exploration of S-Matrix Theory? Phys. Rev. 1964, 135, B745–B760. [Google Scholar] [CrossRef]
- Chew, G.F. The Analytic S-Matrix: A Basis for Nuclear Democracy? W. A. Benjamin, Inc.: New York, NY, USA, 1966. [Google Scholar]
- Cutkosky, R.E. Singularities and discontinuities of Feynman amplitudes. J. Math. Phys. 1960, 1, 429–433. [Google Scholar] [CrossRef]
- Schwartz, M.D. Quantum Field Theory and the Standard Model; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Bern, Z.; Dixon, L.J.; Dunbar, D.C.; Kosower, D.A. One loop n point gauge theory amplitudes, unitarity and collinear limits. Nucl. Phys. B 1994, 425, 217–260. [Google Scholar] [CrossRef]
- Bern, Z.; Dixon, L.J.; Dunbar, D.C.; Kosower, D.A. Fusing gauge theory tree amplitudes into loop amplitudes. Nucl. Phys. B 1995, 435, 59–101. [Google Scholar] [CrossRef]
- Bern, Z.; Morgan, A.G. Massive loop amplitudes from unitarity. Nucl. Phys. B 1996, 467, 479–509. [Google Scholar] [CrossRef]
- Bern, Z.; Dixon, L.J.; Kosower, D.A. Progress in one loop QCD computations. Ann. Rev. Nucl. Part. Sci. 1996, 46, 109–148. [Google Scholar] [CrossRef]
- Bern, Z.; Dixon, L.J.; Dunbar, D.C.; Kosower, D.A. One loop selfdual and N = 4 superYang–Mills. Phys. Lett. B 1997, 394, 105–115. [Google Scholar] [CrossRef]
- Bern, Z.; Dixon, L.J.; Kosower, D.A. One loop amplitudes for e+ e− to four partons. Nucl. Phys. B 1998, 513, 3–86. [Google Scholar] [CrossRef]
- Bern, Z.; Dixon, L.J.; Kosower, D.A. Two-loop g —> gg splitting amplitudes in QCD. J. High Energy Phys. 2004, 2004, 12. [Google Scholar] [CrossRef]
- Forde, D. Direct extraction of one-loop integral coefficients. Phys. Rev. D 2007, 75, 125019. [Google Scholar] [CrossRef]
- Kosower, D.A.; Larsen, K.J. Maximal unitarity at two loops. Phys. Rev. D 2012, 85, 045017. [Google Scholar] [CrossRef]
- Caron-Huot, S.; Larsen, K.J. Uniqueness of two-loop master contours. J. High Energy Phys. 2012, 2012, 26. [Google Scholar] [CrossRef]
- Johansson, H.; Kosower, D.A.; Larsen, K.J. Two-Loop Maximal Unitarity with External Masses. Phys. Rev. D 2013, 87, 025030. [Google Scholar] [CrossRef]
- Johansson, H.; Kosower, D.A.; Larsen, K.J. Maximal Unitarity for the Four-Mass Double Box. Phys. Rev. D 2014, 89, 125010. [Google Scholar] [CrossRef]
- Abreu, S.; Britto, R.; Duhr, C.; Gardi, E. Cuts from residues: The one-loop case. J. High Energy Phys. 2017, 2017, 114. [Google Scholar] [CrossRef]
- Sogaard, M.; Zhang, Y. Elliptic Functions and Maximal Unitarity. Phys. Rev. D 2015, 91, 081701. [Google Scholar] [CrossRef]
- Larsen, K.J.; Zhang, Y. Integration-by-parts reductions from unitarity cuts and algebraic geometry. Phys. Rev. D 2016, 93, 041701. [Google Scholar] [CrossRef]
- Ita, H. Two-loop Integrand Decomposition into Master Integrals and Surface Terms. Phys. Rev. D 2016, 94, 116015. [Google Scholar] [CrossRef]
- Remiddi, E.; Tancredi, L. Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral. Nucl. Phys. B 2016, 907, 400. [Google Scholar] [CrossRef]
- Primo, A.; Tancredi, L. On the maximal cut of Feynman integrals and the solution of their differential equations. Nucl. Phys. B 2017, 916, 94–116. [Google Scholar] [CrossRef]
- Frellesvig, H.; Papadopoulos, C.G. Cuts of Feynman Integrals in Baikov representation. J. High Energy Phys. 2017, 2017, 83. [Google Scholar] [CrossRef]
- Zeng, M. Differential equations on unitarity cut surfaces. J. High Energy Phys. 2017, 2017, 121. [Google Scholar] [CrossRef]
- Ellis, R.K.; Kunszt, Z.; Melnikov, K.; Zanderighi, G. One-loop calculations in quantum field theory: From Feynman diagrams to unitarity cuts. Phys. Rep. 2012, 518, 141–250. [Google Scholar] [CrossRef]
- Frellesvig, H.A. Generalized Unitarity Cuts and Integrand Reduction at Higher Loop Orders. Ph.D. Thesis, Faculty of Science, University of Copenhagen, Copenhagen, Denmark, 2014. [Google Scholar]
- Brandhuber, A.; McNamara, S.; Spence, B.; Travaglini, G. Loop amplitudes in pure Yang–Mills from generalised unitarity. J. High Energy Phys. 2005, 2005, 11. [Google Scholar] [CrossRef]
- Britto, R. Loop Amplitudes in Gauge Theories: Modern Analytic Approaches. J. Phys. A 2011, 44, 454006. [Google Scholar] [CrossRef]
- Carrasco, J.J.M.; Johansson, H. Generic multiloop methods and application to = 4 super-Yang–Mills. J. Phys. A Math. Theor. 2011, 44, 454004. [Google Scholar] [CrossRef]
- Abreu, S.; Britto, R.; Grönqvist, H. Cuts and coproducts of massive triangle diagrams. J. High Energy Phys. 2015, 2015, 111. [Google Scholar] [CrossRef]
- Bern, Z.; Duca, V.D.; Dixon, L.J.; Kosower, D.A. All non-maximally-helicity-violating one-loop seven-gluon amplitudes in N = 4 super-yang-Mills theory. Phys. Rev. D 2005, 71, 045006. [Google Scholar] [CrossRef]
- Britto, R.; Feng, B.; Mastrolia, P. Closed-Form Decomposition of One-Loop Massive Amplitudes. Phys. Rev. D 2008, 78, 025031. [Google Scholar] [CrossRef]
- Bern, Z.; Huang, Y.-T. Basics of generalized unitarity. J. Phys. A Math. Theor. 2011, 44, 454003. [Google Scholar] [CrossRef]
- Bern, Z.; Carrasco, J.J.; Dennen, T.; Huang, Y.t.; Ita, H. Generalized Unitarity and Six-Dimensional Helicity. Phys. Rev. D 2011, 83, 085022. [Google Scholar] [CrossRef]
- Drummond, J.M.; Henn, J.; Korchemsky, G.P.; Sokatchev, E. Generalized unitarity for N = 4 super-amplitudes. Nucl. Phys. B 2013, 869, 452–492. [Google Scholar] [CrossRef]
- Engelund, O.T.; McKeown, R.W.; Roiban, R. Generalized unitarity and the worldsheet S matrix in AdSn × Sn × M10−2n. J. High Energy Phys. 2013, 2013, 23. [Google Scholar] [CrossRef]
- Elvang, H.; Hadjiantonis, M.; Jones, C.R.T.; Paranjape, S. All-Multiplicity One-Loop Amplitudes in Born-Infeld Electrodynamics from Generalized Unitarity. J. High Energy Phys. 2020, 2020, 9. [Google Scholar] [CrossRef]
- Bern, Z.; Kosmopoulos, D.; Zhiboedov, A. Gravitational effective field theory islands, low-spin dominance, and the four-graviton amplitude. J. Phys. A 2021, 54, 344002. [Google Scholar] [CrossRef]
- Bern, Z.; Parra-Martinez, J.; Sawyer, E. Structure of two-loop SMEFT anomalous dimensions via on-shell methods. J. High Energy Phys. 2020, 2020, 211. [Google Scholar] [CrossRef]
- Primo, A.; Bobadilla, W.J.T. BCJ Identities and d-Dimensional Generalized Unitarity. J. High Energy Phys. 2016, 2016, 125. [Google Scholar] [CrossRef]
- Elvang, H.; Huang, Y.-T. Scattering Amplitudes in Gauge Theory and Gravity; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Buchbinder, E.I.; Cachazo, F. Two-loop amplitudes of gluons and octa-cuts in N = 4 super Yang–Mills. J. High Energy Phys. 2005, 2005, 36. [Google Scholar] [CrossRef]
- Cachazo, F.; Skinner, D. On the structure of scattering amplitudes in N = 4 super Yang–Mills and N = 8 supergravity. arXiv 2008, arXiv:0801.4574. [Google Scholar]
- Cachazo, F. Sharpening The Leading Singularity. arXiv 2008, arXiv:0803.1988. [Google Scholar]
- Cachazo, F.; Guevara, A. Leading Singularities and Classical Gravitational Scattering. J. High Energy Phys. 2020, 2020, 181. [Google Scholar] [CrossRef]
- Guevara, A. Holomorphic Classical Limit for Spin Effects in Gravitational and Electromagnetic Scattering. arXiv 2017, arXiv:1706.02314. [Google Scholar] [CrossRef]
- Guevara, A.; Ochirov, A.; Vines, J. Scattering of spinning black holes from exponentiated soft factors. J. High Energy Phys. 2019, 2019, 56. [Google Scholar] [CrossRef]
- Menezes, G.; Sergola, M. NLO deflections for spinning particles and Kerr black holes. arXiv 2022, arXiv:2205.11701. [Google Scholar]
- Donoghue, J.F.; Menezes, G. Unitarity, stability, and loops of unstable ghosts. Phys. Rev. D 2019, 100, 105006. [Google Scholar] [CrossRef]
- Donoghue, J.F.; Menezes, G. Gauge Assisted Quadratic Gravity: A Framework for UV Complete Quantum Gravity. Phys. Rev. D 2018, 97, 126005. [Google Scholar] [CrossRef]
- Donoghue, J.F.; Menezes, G. On Quadratic Gravity. arXiv 2021, arXiv:2112.01974. [Google Scholar]
- Emond, W.T.; Moynihan, N. Scattering Amplitudes, Black Holes and Leading Singularities in Cubic Theories of Gravity. J. High Energy Phys. 2019, 2019, 19. [Google Scholar] [CrossRef]
- Burger, D.J.; Emond, W.T.; Moynihan, N. Rotating Black Holes in Cubic Gravity. Phys. Rev. D 2020, 101, 084009. [Google Scholar] [CrossRef]
- Veltman, M. Unitarity and causality in a renormalizable field theory with unstable particles. Physica (Utrecht) 1963, 29, 186. [Google Scholar] [CrossRef]
- T’ Hoof, G.; Veltman, M.J.G. Diagrammar. In Particle Interactions at Very High Energies; Speiser, D., Halzen, F., Weyers, J., Eds.; NATO Advanced Study Institutes, Series B; Plenum Press: New York, NY, USA, 1974; Volume 4, p. 177. [Google Scholar]
- Rodenburg, J. Unstable Particles and Resonances. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2015. [Google Scholar]
- Lang, J.-N.O. The Complex Mass Scheme, Gauge Dependence and Unitarity in Perturbative Quantum Field Theory. Master’s Thesis, Wurzburg University, Würzburg, Germany, 2013. [Google Scholar]
- Denner, A.; Lang, J.N. The Complex-Mass Scheme and Unitarity in perturbative Quantum Field Theory. Eur. Phys. J. C 2015, 75, 377. [Google Scholar] [CrossRef]
- Menezes, G. Generalized unitarity method for unstable particles. arXiv 2021, arXiv:2111.11570. [Google Scholar]
- Lee, T.D.; Wick, G.C. Negative Metric and the Unitarity of the S Matrix. Nucl. Phys. B 1969, 9, 209–243. [Google Scholar] [CrossRef]
- Coleman, S. Acausality. In Erice 1969: Ettore Majorana Schoool on Subnuclear Phenomena; Zicchici, A., Ed.; Academic Press: New York, NY, USA, 1970; p. 282. [Google Scholar]
- Grinstein, B.; O’Connell, D.; Wise, M.B. The Lee-Wick standard model. Phys. Rev. D 2008, 77, 025012. [Google Scholar] [CrossRef]
- Grinstein, B.; O’Connell, D.; Wise, M.B. Causality as an emergent macroscopic phenomenon: The Lee-Wick O(N) model. Phys. Rev. D 2009, 79, 105019. [Google Scholar] [CrossRef]
- Donoghue, J.F.; Menezes, G. Arrow of Causality and Quantum Gravity. Phys. Rev. Lett. 2019, 123, 171601. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, J.F.; Menezes, G. Quantum causality and the arrows of time and thermodynamics. Prog. Part. Nucl. Phys. 2020, 115, 103812. [Google Scholar] [CrossRef]
- Donoghue, J.F.; Menezes, G. Causality and gravity. J. High Energy Phys. 2021, 2021, 10. [Google Scholar] [CrossRef]
- Cutkosky, R.E.; Landshoff, P.V.; Olive, D.I.; Polkinghorne, J.C. A non-analytic S matrix. Nucl. Phys. B 1969, 12, 281–300. [Google Scholar] [CrossRef]
- Aglietti, U.G.; Anselmi, D. Inconsistency of Minkowski higher-derivative theories. Eur. Phys. J. C 2017, 77, 84. [Google Scholar] [CrossRef]
- Anselmi, D.; Piva, M. A new formulation of Lee-Wick quantum field theory. J. High Energy Phys. 2017, 2017, 66. [Google Scholar] [CrossRef]
- Anselmi, D.; Piva, M. Perturbative unitarity of Lee-Wick quantum field theory. Phys. Rev. D 2017, 96, 045009. [Google Scholar] [CrossRef]
- Anselmi, D. Fakeons and Lee-Wick Models. J. High Energy Phys. 2018, 2018, 141. [Google Scholar] [CrossRef]
- Anselmi, D.; Piva, M. Quantum Gravity, Fakeons and Microcausality. J. High Energy Phys. 2018, 2018, 21. [Google Scholar] [CrossRef]
- Anselmi, D. Diagrammar of physical and fake particles and spectral optical theorem. J. High Energy Phys. 2021, 2021, 30. [Google Scholar] [CrossRef]
- Johansson, H.; Nohle, J. Conformal gravity from gauge theory. arXiv 2017, arXiv:1707.02965. [Google Scholar]
- Johansson, H.; Mogull, G.; Teng, F. Unraveling conformal gravity amplitudes. J. High Energy Phys. 2018, 2018, 80. [Google Scholar] [CrossRef]
- Azevedo, T.; Jusinskas, R.L.; Lize, M. Bosonic sectorized strings and the (DF)2 theory. J. High Energy Phys. 2020, 2020, 82. [Google Scholar] [CrossRef]
- Menezes, G. Color-kinematics duality, double copy and the unitarity method for higher-derivative QCD and quadratic gravity. J. High Energy Phys. 2022, 2022, 74. [Google Scholar] [CrossRef]
- Bern, Z.; Carrasco, J.J.; Chiodaroli, M.; Johansson, H.; Roiban, R. The Duality Between Color and Kinematics and its Applications. arXiv 2019, arXiv:1909.01358. [Google Scholar]
- Bern, Z.; Carrasco, J.J.M.; Johansson, H. New relations for gauge-theory amplitudes. Phys. Rev. D 2008, 78, 085011. [Google Scholar] [CrossRef]
- Johansson, H.; Ochirov, A. Color-Kinematics Duality for QCD Amplitudes. J. High Energy Phys. 2016, 2016, 170. [Google Scholar] [CrossRef]
- Mastrolia, P.; Primo, A.; Schubert, U.; Bobadilla, W.J.T. Off-shell currents and color–kinematics duality. Phys. Lett. B 2016, 753, 242. [Google Scholar] [CrossRef]
- Mafra, C.R.; Schlotterer, O.; Stieberger, S. Explicit BCJ Numerators from Pure Spinors. J. High Energy Phys. 2011, 2011, 92. [Google Scholar] [CrossRef]
- Bjerrum-Bohr, N.E.J.; Bourjaily, J.L.; Damgaard, P.H.; Feng, B. Manifesting Color-Kinematics Duality in the Scattering Equation Formalism. J. High Energy Phys. 2016, 2016, 94. [Google Scholar] [CrossRef]
- Du, Y.J.; Teng, F. BCJ numerators from reduced Pfaffian. J. High Energy Phys. 2017, 2017, 33. [Google Scholar] [CrossRef]
- Du, Y.J.; Luo, H. On General BCJ Relation at One-loop Level in Yang–Mills Theory. J. High Energy Phys. 2013, 2013, 129. [Google Scholar] [CrossRef]
- Yuan, E.Y. Virtual Color-Kinematics Duality: 6-pt 1-Loop MHV Amplitudes. J. High Energy Phys. 2013, 2013, 70. [Google Scholar] [CrossRef]
- Boels, R.H.; Kniehl, B.A.; Tarasov, O.V.; Yang, G. Color-kinematic Duality for Form Factors. J. High Energy Phys. 2013, 2013, 63. [Google Scholar] [CrossRef]
- Boels, R.H.; Isermann, R.S.; Monteiro, R.; O’Connell, D. Colour-Kinematics Duality for One-Loop Rational Amplitudes. J. High Energy Phys. 2013, 2013, 107. [Google Scholar] [CrossRef]
- Bjerrum-Bohr, N.E.J.; Dennen, T.; Monteiro, R.; O’Connell, D. Integrand Oxidation and One-Loop Colour-Dual Numerators in N = 4 Gauge Theory. J. High Energy Phys. 2013, 2013, 92. [Google Scholar] [CrossRef]
- Bern, Z.; Davies, S.; Dennen, T.; Huang, Y.t.; Nohle, J. Color-Kinematics Duality for Pure Yang–Mills and Gravity at One and Two Loops. Phys. Rev. D 2015, 92, 045041. [Google Scholar] [CrossRef]
- Mogull, G.; O’Connell, D. Overcoming Obstacles to Colour-Kinematics Duality at Two Loops. J. High Energy Phys. 2015, 2015, 135. [Google Scholar] [CrossRef]
- He, S.; Monteiro, R.; Schlotterer, O. String-inspired BCJ numerators for one-loop MHV amplitudes. J. High Energy Phys. 2016, 2016, 171. [Google Scholar] [CrossRef]
- Yang, G. Color-kinematics duality and Sudakov form factor at five loops for N = 4 supersymmetric Yang–Mills theory. Phys. Rev. Lett. 2016, 117, 271602. [Google Scholar] [CrossRef]
- He, S.; Schlotterer, O.; Zhang, Y. New BCJ representations for one-loop amplitudes in gauge theories and gravity. Nucl. Phys. B 2018, 930, 328. [Google Scholar] [CrossRef]
- Borsten, L.; Jurco, B.; Kim, H.; Macrelli, T.; Saemann, C.; Wolf, M. Tree-Level Color-Kinematics Duality Implies Loop-Level Color-Kinematics Duality. arXiv 2021, arXiv:2108.03030. [Google Scholar]
- Chiodaroli, M.; Jin, Q.; Roiban, R. Color/kinematics duality for general abelian orbifolds of N = 4 super Yang–Mills theory. J. High Energy Phys. 2014, 2014, 152. [Google Scholar] [CrossRef]
- Brandhuber, A.; Chen, G.; Johansson, H.; Travaglini, G.; Wen, C. Kinematic Hopf Algebra for BCJ Numerators in Heavy-Mass Effective Field Theory and Yang–Mills Theory. arXiv 2021, arXiv:2111.15649. [Google Scholar]
- Chen, G.; Du, Y.J. Amplitude Relations in Non-linear Sigma Model. J. High Energy Phys. 2014, 2014, 61. [Google Scholar] [CrossRef]
- Kampf, K. The ChPT: Top-down and bottom-up. arXiv 2021, arXiv:2109.11574. [Google Scholar] [CrossRef]
- Du, Y.J.; Fu, C.H. Explicit BCJ numerators of nonlinear sigma model. J. High Energy Phys. 2016, 2016, 174. [Google Scholar] [CrossRef]
- Low, I.; Yin, Z. New Flavor-Kinematics Dualities and Extensions of Nonlinear Sigma Models. Phys. Lett. B 2020, 807, 135544. [Google Scholar] [CrossRef]
- Donoghue, J.F.; Menezes, G. Ostrogradsky instability can be overcome by quantum physics. Phys. Rev. D 2021, 104, 045010. [Google Scholar] [CrossRef]
- Salvio, A. Metastability in Quadratic Gravity. Phys. Rev. D 2019, 99, 103507. [Google Scholar] [CrossRef]
- Britto, R.; Cachazo, F.; Feng, B. New recursion relations for tree amplitudes of gluons. Nucl. Phys. B 2005, 715, 499. [Google Scholar] [CrossRef]
- Britto, R.; Cachazo, F.; Feng, B.; Witten, E. Direct proof of tree-level recursion relation in Yang–Mills theory. Phys. Rev. Lett. 2005, 94, 181602. [Google Scholar] [CrossRef] [PubMed]
- Aoude, R.; Machado, C.S. The rise of SMEFT on-shell amplitudes. J. High Energy Phys. 2019, 2019, 58. [Google Scholar] [CrossRef]
- Shadmi, Y.; Weiss, Y. Effective field theory amplitudes the on-shell way: Scalar and vector couplings to gluons. J. High Energy Phys. 2019, 2019, 165. [Google Scholar] [CrossRef]
- Durieux, G.; Kitahara, T.; Shadmi, Y.; Weiss, Y. The electroweak effective field theory from on-shell amplitudes. J. High Energy Phys. 2020, 2020, 119. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Huang, T.-C.; Huang, Y.-T. Scattering amplitudes for all masses and spins. arXiv 2017, arXiv:1709.04891. [Google Scholar] [CrossRef]
- Chung, M.-Z.; Kim, Y.-T.H.J.-W.; Lee, S. The simplest massive S-matrix: From minimal coupling to black holes. J. High Energy Phys. 2019, 2019, 156. [Google Scholar] [CrossRef]
- Johansson, H.; Ochirov, A. Double copy for massive quantum particles with spin. J. High Energy Phys. 2019, 2019, 40. [Google Scholar] [CrossRef]
- Henn, J.M.; Plefka, J.C. Scattering Amplitudes in Gauge Theories; Springer: Berlin, Germany, 2014. [Google Scholar]
- Parke, S.J.; Taylor, T.R. An amplitude for n gluon scattering. Phys. Rev. Lett. 1986, 56, 2459. [Google Scholar] [CrossRef] [PubMed]
- Plefka, J.; Shi, C.; Wang, T. Double copy of massive scalar QCD. Phys. Rev. D 2020, 101, 066004. [Google Scholar] [CrossRef]
- Bern, Z.; Dennen, T.; Huang, Y.-t.; Kiermaier, M. Gravity as the square of gauge theory. Phys. Rev. D 2010, 82, 065003. [Google Scholar] [CrossRef]
- Bern, Z.; Carrasco, J.J.M.; Johansson, H. Perturbative quantum gravity as a double copy of gauge theory. Phys. Rev. Lett. 2010, 105, 061602. [Google Scholar] [CrossRef] [PubMed]
- Bern, Z.; Davies, S.; Nohle, J. Double-Copy Constructions and Unitarity Cuts. Phys. Rev. D 2016, 93, 105015. [Google Scholar] [CrossRef]
- Bern, Z.; Carrasco, J.J.; Chen, W.M.; Johansson, H.; Roiban, R. Gravity Amplitudes as Generalized Double Copies of Gauge-Theory Amplitudes. Phys. Rev. Lett. 2017, 118, 181602. [Google Scholar] [CrossRef]
- Carrasco, J.J.M.; Vazquez-Holm, I.A. Loop-Level Double-Copy for Massive Quantum Particles. Phys. Rev. D 2021, 103, 045002. [Google Scholar] [CrossRef]
- Oxburgh, S.; White, C.D. BCJ duality and the double copy in the soft limit. J. High Energy Phys. 2013, 2013, 127. [Google Scholar] [CrossRef]
- Ochirov, A.; Tourkine, P. BCJ duality and double copy in the closed string sector. J. High Energy Phys. 2014, 2014, 136. [Google Scholar] [CrossRef]
- Borsten, L.; Jurco, B.; Kim, H.; Macrelli, T.; Saemann, C.; Wolf, M. Becchi-Rouet-Stora-Tyutin-Lagrangian Double Copy of Yang–Mills Theory. Phys. Rev. Lett. 2021, 126, 191601. [Google Scholar] [CrossRef] [PubMed]
- Low, I.; Rodina, L.; Yin, Z. Double Copy in Higher Derivative Operators of Nambu-Goldstone Bosons. Phys. Rev. D 2021, 103, 025004. [Google Scholar] [CrossRef]
- Brandhuber, A.; Chen, G.; Travaglini, G.; Wen, C. A new gauge-invariant double copy for heavy-mass effective theory. J. High Energy Phys. 2021, 2021, 47. [Google Scholar] [CrossRef]
- Johnson, L.A.; Jones, C.R.T.; Paranjape, S. Constraints on a Massive Double-Copy and Applications to Massive Gravity. J. High Energy Phys. 2021, 2021, 148. [Google Scholar] [CrossRef]
- Chiodaroli, M.; Gunaydin, M.; Johansson, H.; Roiban, R. Explicit Formulae for Yang–Mills–Einstein Amplitudes from the Double Copy. J. High Energy Phys. 2017, 2017, 2. [Google Scholar] [CrossRef]
- Kawai, H.; Lewellen, D.C.; Tye, S.H.H. A relation between tree amplitudes of closed and open strings. Nucl. Phys. B 1986, 269, 1. [Google Scholar] [CrossRef]
- Salvio, A. Quadratic gravity. Front. Phys. 2018, 6, 77. [Google Scholar] [CrossRef]
- Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R. Spontaneously broken Yang–Mills–Einstein supergravities as double copies. J. High Energy Phys. 2017, 2017, 64. [Google Scholar] [CrossRef]
- Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R. Gauged Supergravities and Spontaneous Supersymmetry Breaking from the Double Copy Construction. Phys. Rev. Lett. 2018, 120, 171601. [Google Scholar] [CrossRef]
- Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R. Non-Abelian gauged supergravities as double copies. J. High Energy Phys. 2019, 2019, 99. [Google Scholar] [CrossRef]
- Donà, P.; Giaccari, S.; Modesto, L.; Rachwal, L.; Zhu, Y. Scattering amplitudes in super-renormalizable gravity. J. High Energy Phys. 2015, 2015, 38. [Google Scholar] [CrossRef]
- Holdom, B. Photon-photon scattering from a UV-complete gravity QFT. J. High Energy Phys. 2022, 2022, 133. [Google Scholar] [CrossRef]
- Brandhuber, A.; Spence, B.; Travaglini, G. Amplitudes in Pure Yang–Mills and MHV Diagrams. J. High Energy Phys. 2007, 2007, 88. [Google Scholar] [CrossRef]
- Haber, H.E. Useful relations among the generators in the defining and adjoint representations of SU(N). SciPost Phys. Lect. Notes 2021, 21, 1. [Google Scholar] [CrossRef]
- Dunbar, D.C.; Norridge, P.S. Calculation of graviton scattering amplitudes using string based methods. Nucl. Phys. B 1995, 433, 181–208. [Google Scholar] [CrossRef]
- Bern, Z.; Grant, A.K. Perturbative gravity from QCD amplitudes. Phys. Lett. B 1999, 457, 23–32. [Google Scholar] [CrossRef]
- Boulware, D.G.; Gross, D.J. Lee-Wick indefinite metric quantization: A functional integral approach. Nucl. Phys. B 1984, 233, 1–23. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J. A Duality For The S Matrix. J. High Energy Phys. 2010, 2010, 20. [Google Scholar]
- Hodges, A. Eliminating spurious poles from gauge-theoretic amplitudes. J. High Energy Phys. 2013, 2013, 135. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Bourjaily, J.L.; Cachazo, F.; Hodges, A.; Trnka, J. A Note on Polytopes for Scattering Amplitudes. J. High Energy Phys. 2012, 2012, 81. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Trnka, J. The Amplituhedron. J. High Energy Phys. 2014, 2014, 30. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Bai, Y.; He, S.; Yan, G. Scattering Forms and the Positive Geometry of Kinematics, Color and the Worldsheet. J. High Energy Phys. 2018, 2018, 96. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menezes, G. Leading Singularities in Higher-Derivative Yang–Mills Theory and Quadratic Gravity. Universe 2022, 8, 326. https://doi.org/10.3390/universe8060326
Menezes G. Leading Singularities in Higher-Derivative Yang–Mills Theory and Quadratic Gravity. Universe. 2022; 8(6):326. https://doi.org/10.3390/universe8060326
Chicago/Turabian StyleMenezes, Gabriel. 2022. "Leading Singularities in Higher-Derivative Yang–Mills Theory and Quadratic Gravity" Universe 8, no. 6: 326. https://doi.org/10.3390/universe8060326
APA StyleMenezes, G. (2022). Leading Singularities in Higher-Derivative Yang–Mills Theory and Quadratic Gravity. Universe, 8(6), 326. https://doi.org/10.3390/universe8060326