Description and Application of the Surfing Effect
Abstract
:1. Introduction
2. An Overview on the Surfing Effect
3. An Application of the Surfing Effect to the Case of the Supermassive Black Hole Binary Candidate PKS 2131–021
4. A Look to NANOGrav Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EPTA | European Pulsar Timing Array |
GW | Gravitational Wave |
GWB | Gravitational Wave Background |
INAF | Istituto Nazionale di Astrofisica |
INFN | Istituto Nazionale di Fisica Nucleare |
InPTA | Indian Pulsar Timing Array |
LIGO | Laser Interferometer Gravitational-Wave Observatory |
LISA | Laser Interferometer Space Antenna |
MDPI | Multidisciplinary Digital Publishing Institute |
MSP | Millisecond Pulsar |
NANOGrav | North American Nanohertz Observatory for Gravitational Waves |
OAC | Osservatorio Astronomico di Cagliari |
PPTA | Parkes Pulsar Timing Array |
PTA | Pulsar Timing Array |
SMBHB | Supermassive Black Hole Binary |
SKA | Square Kilometre Array |
TAsP | Theoretical Astroparticle Physics |
ToA | Time of Arrival |
TR | Timing Residual |
1 | Sometimes, in the literature, the versor oriented along the travel direction of the GWs is considered in place of . Since the two versors point toward opposite directions, the relation between them is . |
2 | In this paper, the Einstein notation, which indicates the sum over repeated indices, has been adopted. |
3 | In this paper, the geometrical units c=G=1 have been adopted. |
4 | |
5 | Such a choice would induce spurious TRs, with a period of one year, due to the motion of the Earth relative to the Solar System Barycenter. Although accounting for that is crucial from the experimental point of view and is done during the data processing phase, this issue can be safely ignored in this theoretical context. |
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 61102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 1916, 354, 769–822. [Google Scholar] [CrossRef] [Green Version]
- De Paolis, F. Never bet against Einstein. arXiv 2022, arXiv:2206.06831. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB170817A. Astrophys. J. 2017, 848, L13. [Google Scholar] [CrossRef] [Green Version]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙. Phys. Rev. Lett. 2020, 125, 101102. [Google Scholar] [CrossRef]
- Maggiore, M. Gravitational Waves: Volume 1: Theory and Experiments; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al. Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786. [Google Scholar]
- Moore, C.J.; Cole, R.H.; Berry, C.P.L. Gravitational-wave sensitivity curves. Class. Quantum Gravity 2015, 32, 15014. [Google Scholar] [CrossRef]
- Estabrook, F.B.; Wahlquist, H.D. Response of Doppler spacecraft tracking to gravitational radiation. Gen. Relativ. Gravit. 1975, 6, 439–447. [Google Scholar] [CrossRef]
- Sazhin, M.V. Opportunities for detecting ultralong gravitational waves. Astron. Zhurnal 1978, 55, 65–68. [Google Scholar]
- Detweiler, S. Pulsar timing measurements and the search for gravitational waves. Astrophys. J. 1979, 234, 1100–1104. [Google Scholar] [CrossRef]
- Maggiore, M. Gravitational Waves. Volume 2: Astrophysics and Cosmology; Oxford University Press: Oxford, UK, 2008. [Google Scholar] [CrossRef]
- Mashhoon, B. On the contribution of a stochastic background of gravitationnal radiation to the timing noise of pulsars. Mon. Not. R. Astron. Soc. 1982, 199, 659–666. [Google Scholar] [CrossRef]
- Hellings, R.W.; Downs, G.S. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys. J. 1983, 265, L39–L42. [Google Scholar] [CrossRef]
- Maiorano, M.; De Paolis, F.; Nucita, A.A. Principles of Gravitational-Wave Detection with Pulsar Timing Arrays. Symmetry 2021, 13, 2418. [Google Scholar] [CrossRef]
- Desvignes, G.; Caballero, R.N.; Lentati, L.; Verbiest, J.P.W.; Champion, D.J.; Stappers, B.W.; Janssen, G.H.; Lazaris, P.; Oslowski, S.; Babak, S.; et al. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array. Mon. Not. R. Astron. Soc. 2016, 458, 3341–3380. [Google Scholar] [CrossRef]
- Joshi, B.C.; Arumugasamy, P.; Bagchi, M.; Bandyopadhyay, D.; Basu, A.; Dhanda Batra, N.; Bethapudi, S.; Choudhary, A.; De, K.; Dey, L.; et al. Precision pulsar timing with the ORT and the GMRT and its applications in pulsar astrophysics. J. Astrophys. Astron. 2018, 39, 51. [Google Scholar] [CrossRef]
- Arzoumanian, Z.; Brazier, A.; Burke-Spolaor, S.; Chamberlin, S.; Chatterjee, S.; Christy, B.; Cordes, J.M.; Cornish, N.J.; Crawford, F.; Cromartie, H.T.; et al. The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars. Astrophys. J. Suppl. Ser. 2018, 235, 37. [Google Scholar] [CrossRef] [Green Version]
- Reardon, D.J.; Hobbs, G.; Coles, W.; Levin, Y.; Keith, M.J.; Bailes, M.; Bhat, N.D.R.; Burke-Spolaor, S.; Dai, S.; Kerr, M.; et al. Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array. Mon. Not. R. Astron. Soc. 2016, 455, 1751–1769. [Google Scholar] [CrossRef]
- Verbiest, J.P.W.; Lentati, L.; Hobbs, G.; van Haasteren, R.; Demorest, P.B.; Janssen, G.H.; Wang, J.B.; Desvignes, G.; Caballero, R.N.; Keith, M.J.; et al. The International Pulsar Timing Array: First data release. Mon. Not. R. Astron. Soc. 2016, 458, 1267–1288. [Google Scholar] [CrossRef]
- Maiorano, M.; de Paolis, F.; Nucita, A. Including millisecond pulsars inside the core of globular clusters in pulsar timing arrays. Eur. Phys. J. Plus 2021, 136, 1087. [Google Scholar] [CrossRef]
- Zic, A.; Hobbs, G.; Shannon, R.M.; Reardon, D.; Goncharov, B.; Bhat, N.D.R.; Cameron, A.; Dai, S.; Dawson, J.R.; Kerr, M.; et al. Evaluating the prevalence of spurious correlations in pulsar timing array data sets. Mon. Not. R. Astron. Soc. 2022, 516, 410–420. [Google Scholar] [CrossRef]
- Bonetti, M.; Bortolas, E.; Lupi, A.; Dotti, M.; Raimundo, S.I. Dynamical friction-driven orbital circularization in rotating discs: A semi-analytical description. Mon. Not. R. Astron. Soc. 2020, 494, 3053–3059. [Google Scholar] [CrossRef]
- Perrodin, D.; Sesana, A. Radio Pulsars: Testing Gravity and Detecting Gravitational Waves. Phys. Astrophys. Neutron Stars 2018, 457, 95. [Google Scholar] [CrossRef] [Green Version]
- Sesana, A.; Vecchio, A. Measuring the parameters of massive black hole binary systems with pulsar timing array observations of gravitational waves. Phys. Rev. D 2010, 81, 104008. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects; A Wiley-Interscience Publication; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Jenet, F.A.; Lommen, A.; Larson, S.L.; Wen, L. Constraining the Properties of Supermassive Black Hole Systems Using Pulsar Timing: Application to 3C 66B. Astrophys. J. 2004, 606, 799–803. [Google Scholar] [CrossRef]
- Sesana, A. Gravitational wave emission from binary supermassive black holes. Class. Quantum Gravity 2013, 30, 244009. [Google Scholar] [CrossRef] [Green Version]
- De Paolis, F.; Ingrosso, G.; Nucita, A.A. A super massive black hole binary in 3C 66B: Future observational perspectives. Astron. Astrophys. 2004, 426, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Arzoumanian, Z.; Baker, P.T.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; Bécsy, B.; Charisi, M.; Chatterjee, S.; Cordes, J.M.; Cornish, N.J.; et al. Multimessenger Gravitational-wave Searches with Pulsar Timing Arrays: Application to 3C 66B Using the NANOGrav 11-year Data Set. Astrophys. J. 2020, 900, 102. [Google Scholar] [CrossRef]
- O’Neill, S.; Kiehlmann, S.; Readhead, A.C.S.; Aller, M.F.; Blandford, R.D.; Liodakis, I.; Lister, M.L.; Mróz, P.; O’dea, C.P.; Pearson, T.J.; et al. The Unanticipated Phenomenology of the Blazar PKS 2131-021: A Unique Supermassive Black Hole Binary Candidate. Astrophys. J. Lett. 2022, 926, L35. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, D.R.; Gu, M.; Liu, Y. VLBI observations of seven BL Lacertae objects from RGB sample. Astron. Astrophys. 2007, 466, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef] [Green Version]
- VizieR Online Data Catalog: Gaia EDR3 (Gaia Collaboration, 2020). Available online: https://archives.esac.esa.int/doi/html/data/astronomy/gaia/EDR3.html (accessed on 20 October 2022).
- Deller, A.T.; Goss, W.M.; Brisken, W.F.; Chatterjee, S.; Cordes, J.M.; Janssen, G.H.; Kovalev, Y.Y.; Lazio, T.J.W.; Petrov, L.; Stappers, B.W.; et al. Microarcsecond VLBI Pulsar Astrometry with PSRπ II. Parallax Distances for 57 Pulsars. Astrophys. J. 2019, 875, 100. [Google Scholar] [CrossRef]
- Alam, M.F.; Arzoumanian, Z.; Baker, P.T.; Blumer, H.; Bohler, K.E.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; Caballero, K.; Camuccio, R.S.; et al. The NANOGrav 12.5 yr Data Set: Observations and Narrowband Timing of 47 Millisecond Pulsars. Astrophys. J. Suppl. Ser. 2021, 252, 4. [Google Scholar] [CrossRef]
- Alam, M.F.; Arzoumanian, Z.; Baker, P.T.; Blumer, H.; Bohler, K.E.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; Caballero, K.; Camuccio, R.S.; et al. The NANOGrav 12.5 yr Data Set: Wideband Timing of 47 Millisecond Pulsars. Astrophys. J. Suppl. Ser. 2021, 252, 5. [Google Scholar] [CrossRef]
- NANOGrav Data. Available online: https://data.nanograv.org (accessed on 20 October 2022).
- Lomb, N.R. Least-Squares Frequency Analysis of Unequally Spaced Data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- Scargle, J.D. Studies in astronomical time series analysis II Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 1982, 263, 835–853. [Google Scholar] [CrossRef]
- Lentati, L.; Taylor, S.R.; Mingarelli, C.M.; Sesana, A.; Sanidas, S.A.; Vecchio, A.; Caballero, R.N.; Lee, K.J.; Van Haasteren, R.; Babak, S.; et al. European Pulsar Timing Array limits on an isotropic stochastic gravitational-wave background. Mon. Not. R. Astron. Soc. 2015, 453, 2576–2598. [Google Scholar] [CrossRef] [Green Version]
- Arzoumanian, Z.; Baker, P.T.; Blumer, H.; Bécsy, B.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; Chatterjee, S.; Chen, S.; Cordes, J.M.; et al. The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-Wave Background. Astrophys. J. 2020, 905, L34. [Google Scholar] [CrossRef]
- Goncharov, B.; Shannon, R.M.; Reardon, D.J.; Hobbs, G.; Zic, A.; Bailes, M.; Curyło, M.; Dai, S.; Kerr, M.; Lower, M.E.; et al. On the evidence for a common-spectrum process in the search for the nanohertz gravitational-wave background with the Parkes Pulsar Timing Array. arXiv 2021, arXiv:2107.12112. [Google Scholar] [CrossRef]
- Perera, B.B.P.; DeCesar, M.E.; Demorest, P.B.; Kerr, M.; Lentati, L.; Nice, D.J.; Osłowski, S.; Ransom, S.M.; Keith, M.J.; Arzoumanian, Z.; et al. The International Pulsar Timing Array: Second data release. Mon. Not. R. Astron. Soc. 2019, 490, 4666–4687. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.; Bailes, M.; Bartel, N.; Baugh, C.; Bietenholz, M.; Blake, C.; Braun, R.; Brown, J.; Chatterjee, S.; Darling, J.; et al. Science with the Australian Square Kilometre Array Pathfinder. Publ. Astron. Soc. Aust. 2007, 24, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.; Stappers, B. Pulsar Science with the SKA. arXiv 2015, arXiv:1507.04423. [Google Scholar]
- Weltman, A.; Bull, P.; Camera, S.; Kelley, K.; Padmanabhan, H.; Pritchard, J.; Raccanelli, A.; Riemer-Sørensen, S.; Shao, L.; Andrianomena, S.; et al. Fundamental physics with the Square Kilometre Array. Publ. Astron. Soc. Aust. 2020, 37, e002. [Google Scholar] [CrossRef]
- Padmanabhan, H.; Loeb, A. Unravelling the formation of the first supermassive black holes with the SKA pulsar timing array. arXiv 2022, arXiv:2207.14309. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maiorano, M.; De Paolis, F.; Nucita, A.A. Description and Application of the Surfing Effect. Universe 2022, 8, 620. https://doi.org/10.3390/universe8120620
Maiorano M, De Paolis F, Nucita AA. Description and Application of the Surfing Effect. Universe. 2022; 8(12):620. https://doi.org/10.3390/universe8120620
Chicago/Turabian StyleMaiorano, Michele, Francesco De Paolis, and Achille A. Nucita. 2022. "Description and Application of the Surfing Effect" Universe 8, no. 12: 620. https://doi.org/10.3390/universe8120620
APA StyleMaiorano, M., De Paolis, F., & Nucita, A. A. (2022). Description and Application of the Surfing Effect. Universe, 8(12), 620. https://doi.org/10.3390/universe8120620