n_TOF: Measurements of Key Reactions of Interest to AGB Stars
Abstract
:1. Introduction
- The main neutron source in low-mass AGB stars is the C(,n)O reaction [8], which releases neutrons in radiative conditions (see, e.g., [9]). The formation of the C reservoir (the so-called C-pocket) needed to reproduce spectroscopic observations and presolar grain measurements is still a matter of debate [10,11,12,13]. For this reason, any source of uncertainty (as its destruction channel via charged particle reactions) has to be reduced as much as possible. The C in the pocket burns radiatively between two TPs at temperatures around 100 MK. However, in some AGB stars it may be engulfed in the next TP, leading to the anomalous production of some isotopes (see, e.g., [14]). A second additional neutron burst is released by the Ne(,n)Mg reaction, which is efficiently activated during TPs at temperatures larger than 300 MK (see, e.g., [15]). Its contribution is particular important in intermediate mass AGB stars (4–8 M) and in the synthesis of isotopes close to branching points (see item below). The n_TOF contribution to this topic is discussed in Section 3;
- The seeds for the s-process are considered to be the isotopes around the broad iron peak in the Solar System abundance curve (Fe is the most abundant isotope in the upper panel of Figure 1). Those isotopes formed in the last stages of massive star evolution (type II supernovae) and in supernova explosions of type Ia. For nuclei heavier than iron, Coulomb barriers prevent significant synthesis of heavier elements via charged particle reactions, and thus neutron capture reactions are dominantly responsible for their creation. Precise neutron capture cross sections on s-process seed isotopes are important, as these impact on the number of neutron captures per seed, which in turn determines in which mass region the peak production of isotopes occurs (for example, a higher neutron capture rate on a seed isotope will lower the number of neutron captures per seed and result in a shift of the peak production to lower mass numbers). This effect is, for example, demonstrated for the case of the Fe() reaction in Figure 3 of [16]. The n_TOF contribution to this topic is discussed in Section 4;
- Other interesting isotopes are those with a closed shell configuration. These isotopes, named magic nuclei, are characterized by a very small neutron capture cross section (blue squares in Figure 1). In correspondence to these “nuclear bottlenecks”, the s process presents three peaks (see upper panel of Figure 1). Depending on the initial amount of iron seeds, the s-process abundance distribution shows different relative enhancements among the three peaks (see, e.g., Figure 18 of [17]). At close-to-solar metallicities, isotopes up to the first peak (Sr-Y-Zr) are favoured, while at lower metallicities, elements belonging to the second peak (Ba-La-Ce) are mostly produced. Finally, at low metallicities, the s process may develop up to its termination point (Pb-Bi), where Pb shows the lowest neutron capture cross section (being a double magic nucleus). The n_TOF contribution to this topic is discussed in Section 5;
- There exist a limited number of isotopes whose production is entirely ascribed to the s process: they are known as s-only isotopes (magenta triangles in Figure 1). In fact, any contribution from the rapid neutron capture process is shielded by their stable isobars 2. Those nuclei are almost uniformly distributed along the nuclide chart and are extremely useful to evaluate the robustness of theoretical calculations (see, e.g., [18]). In fact, theoretical stellar models (possibly coupled to galactic chemical evolutionary models) must reproduce the observed distribution of solar s-only isotopes at the epoch of the Solar System formation. Local deviations from the observed trends often highlight problems in the adopted nuclear data. The n_TOF contribution to this topic is discussed in Section 6;
- Along the s-process path, there are unstable isotopes where beta decay competes with neutron capture, called branching points. The abundances of the successive isotopes in the reaction flow are sensitive to the branching ratio, which depends on the half-life and the neutron capture cross section at the branching point, and the neutron density in the star. Thus, for branchings which are followed by s-only isotopes (i.e., the abundance is well known), the measurement of the neutron capture cross section allows the determination of the neutron density (half lives are usually well-known). If the beta decay half-life is temperature dependent, and the neutron density was already determined from other branchings, the temperature at which s-process nucleosynthesis develops can be determined (see, e.g., [19]). The higher the temperature, the larger the probability to activate these branchings, as neutron densities increase due to higher interaction energies of neutron source reactions. As a consequence, major effects are expected in intermediate mass AGB stars, where temperatures are larger (see, e.g., [20]). In Figure 1, we report the most important branching points of the s process (stable close-by isotopes are magnified with red dots). The n_TOF contribution to this topic is discussed in Section 7.
- Finally, of extreme interest is any experimental measurement focused on measuring neutron capture cross sections related to processes able to modify the local number of neutrons available to the production of heavy elements.Apart from the neutron sources already discussed, the neutron density can be modified by so-called neutron poisons. These are light isotopes, which modify the number of neutrons available for the s process, either because of their high abundances, or because their neutron reaction cross sections are comparable to radiative capture on s-process isotopes. The two major neutron poisons in AGB stars are represented by the N(n,p)C and the Al(n,p)Mg reactions. The n_TOF contribution to this topic is discussed in Section 8.
2. The n_TOF Facility at CERN
3. Stellar Neutron Sources
4. Seed Isotopes
5. Magic Nuclei and End-Point
6. S-Only Nuclei
7. Branching Points of the s Process
8. Neutron Poisons and Neutron Captures on Light Elements
9. Future Perspectives
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | In terms of the center-of-mass energy E it can be expressed as:
|
2 | The contribution from the so-called p process (i.e., proton capture and photodisintegration reactions) to these abundances is typically two orders of magnitude smaller. |
3 | https://www-nds.iaea.org/exfor/ (accessed on 8 December 2021). |
References
- Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the Elements in Stars. Rev. Mod. Phys. 1957, 29, 547–650. [Google Scholar] [CrossRef] [Green Version]
- Busso, M.; Gallino, R.; Wasserburg, G.J. Nucleosynthesis in Asymptotic Giant Branch Stars: Relevance for Galactic Enrichment and Solar System Formation. Annu. Rev. Astron. Astrophys. 1999, 37, 239–309. [Google Scholar] [CrossRef] [Green Version]
- Herwig, F. Evolution of Asymptotic Giant Branch Stars. Annu. Rev. Astron. Astrophys. 2005, 43, 435–479. [Google Scholar] [CrossRef] [Green Version]
- Straniero, O.; Gallino, R.; Cristallo, S. s process in low-mass asymptotic giant branch stars. Nucl. Phys. A 2006, 777, 311–339. [Google Scholar] [CrossRef] [Green Version]
- Karakas, A.I.; Lattanzio, J.C. The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars. Publ. Astron. Soc. Aust. 2014, 31, e030. [Google Scholar] [CrossRef] [Green Version]
- Pignatari, M.; Gallino, R.; Heil, M.; Wiescher, M.; Käppeler, F.; Herwig, F.; Bisterzo, S. The Weak s-Process in Massive Stars and its Dependence on the Neutron Capture Cross Sections. Astrophys. J. 2010, 710, 1557–1577. [Google Scholar] [CrossRef]
- Wallner, A.; Buczak, K.; Dillmann, I.; Feige, J.; Käppeler, F.; Korschinek, G.; Lederer, C.; Mengoni, A.; Ott, U.; Paul, M.; et al. AMS Applications in Nuclear Astrophysics: New Results for 13C(n,γ)14C and 14N(n,p)14C. Publ. Astron. Soc. Aust. 2012, 29, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Straniero, O.; Gallino, R.; Busso, M.; Chiefei, A.; Raiteri, C.M.; Limongi, M.; Salaris, M. Radiative 13C Burning in Asymptotic Giant Branch Stars and s-Processing. Astrophys. J. Lett. 1995, 440, L85. [Google Scholar] [CrossRef]
- Cristallo, S.; La Cognata, M.; Massimi, C.; Best, A.; Palmerini, S.; Straniero, O.; Trippella, O.; Busso, M.; Ciani, G.F.; Mingrone, F.; et al. The Importance of the 13C(α,n)16O Reaction in Asymptotic Giant Branch Stars. Astrophys. J. 2018, 859, 105. [Google Scholar] [CrossRef] [Green Version]
- Vescovi, D.; Cristallo, S.; Busso, M.; Liu, N. Magnetic-buoyancy-induced Mixing in AGB Stars: Presolar SiC Grains. Astrophys. J. Lett. 2020, 897, L25. [Google Scholar] [CrossRef]
- Busso, M.; Vescovi, D.; Palmerini, S.; Cristallo, S.; Antonuccio-Delogu, V. s-processing in AGB Stars Revisited. III. Neutron Captures from MHD Mixing at Different Metallicities and Observational Constraints. Astrophys. J. 2021, 908, 55. [Google Scholar] [CrossRef]
- Palmerini, S.; Busso, M.; Vescovi, D.; Naselli, E.; Pidatella, A.; Mucciola, R.; Cristallo, S.; Mascali, D.; Mengoni, A.; Simonucci, S.; et al. Presolar Grain Isotopic Ratios as Constraints to Nuclear and Stellar Parameters of Asymptotic Giant Branch Star Nucleosynthesis. Astrophys. J. 2021, 921, 7. [Google Scholar] [CrossRef]
- Battino, U.; Pignatari, M.; Ritter, C.; Herwig, F.; Denisenkov, P.; Den Hartogh, J.W.; Trappitsch, R.; Hirschi, R.; Freytag, B.; Thielemann, F.; et al. Application of a Theory and Simulation-based Convective Boundary Mixing Model for AGB Star Evolution and Nucleosynthesis. Astrophys. J. 2016, 827, 30. [Google Scholar] [CrossRef]
- Ciani, G.F.; Csedreki, L.; Rapagnani, D.; Aliotta, M.; Balibrea-Correa, J.; Barile, F.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; et al. Direct Measurement of the C 13 (α,n)O 16 Cross Section into the s -Process Gamow Peak. Phys. Rev. Lett. 2021, 127, 152701. [Google Scholar] [CrossRef] [PubMed]
- Adsley, P.; Battino, U.; Best, A.; Caciolli, A.; Guglielmetti, A.; Imbriani, G.; Jayatissa, H.; La Cognata, M.; Lamia, L.; Masha, E.; et al. Reevaluation of the 22Ne(α, γ )26Mg and 22Ne(α, n )25Mg reaction rates. Phys. Rev. C 2021, 103, 015805. [Google Scholar] [CrossRef]
- Koloczek, A.; Thomas, B.; Glorius, J.; Plag, R.; Pignatari, M.; Reifarth, R.; Ritter, C.; Schmidt, S.; Sonnabend, K. Sensitivity study for s process nucleosynthesis in AGB stars. At. Data Nucl. Data Tables 2016, 108, 1–14. [Google Scholar] [CrossRef]
- Cristallo, S.; Straniero, O.; Gallino, R.; Piersanti, L.; Domínguez, I.; Lederer, M.T. Evolution, Nucleosynthesis, and Yields of Low-Mass Asymptotic Giant Branch Stars at Different Metallicities. Astrophys. J. 2009, 696, 797–820. [Google Scholar] [CrossRef] [Green Version]
- Prantzos, N.; Abia, C.; Cristallo, S.; Limongi, M.; Chieffi, A. Chemical evolution with rotating massive star yields II. A new assessment of the solar s- and r-process components. Mon. Not. R. Astron. Soc. 2020, 491, 1832–1850. [Google Scholar] [CrossRef]
- Bisterzo, S.; Gallino, R.; Käppeler, F.; Wiescher, M.; Imbriani, G.; Straniero, O.; Cristallo, S.; Görres, J.; de Boer, R.J. The branchings of the main s-process: Their sensitivity to α-induced reactions on 13C and 22Ne and to the uncertainties of the nuclear network. Mon. Not. R. Astron. Soc. 2015, 449, 506–527. [Google Scholar] [CrossRef] [Green Version]
- Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface. Astrophys. J. Suppl. Ser. 2015, 219, 40. [Google Scholar] [CrossRef]
- Guerrero, C.; Tsinganis, A.; Berthoumieux, E.; Barbagallo, M.; Belloni, F.; Gunsing, F.; Weiß, C.; Chiaveri, E.; Calviani, M.; Vlachoudis, V.; et al. Performance of the neutron time-of-flight facility n_TOF at CERN. Eur. Phys. J. A 2013, 49, 27. [Google Scholar] [CrossRef]
- Barbagallo, M.; Guerrero, C.; Tsinganis, A.; Tarrío, D.; Altstadt, S.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bečvář, F.; et al. High-accuracy determination of the neutron flux at n_TOF. Eur. Phys. J. A 2013, 49, 156. [Google Scholar] [CrossRef]
- Sabaté-Gilarte, M.; Barbagallo, M.; Colonna, N.; Gunsing, F.; Žugec, P.; Vlachoudis, V.; Chen, Y.H.; Stamatopoulos, A.; Lerendegui-Marco, J.; Cortés-Giraldo, M.A.; et al. High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN. Eur. Phys. J. A 2017, 53, 210. [Google Scholar] [CrossRef]
- Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Taín, J.L.; Algora, A.; Berthoumieux, E.; Colonna, N.; Domingo-Pardo, C.; González-Romero, E.; Heil, M.; et al. Monte Carlo simulation of the n_TOF Total Absorption Calorimeter. Nucl. Instrum. Methods Phys. Res. A 2012, 671, 108–117. [Google Scholar] [CrossRef]
- Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Wright, T. Correction of dead-time and pile-up in a detector array for constant and rapidly varying counting rates. Nucl. Instrum. Methods Phys. Res. A 2015, 777, 63–69. [Google Scholar] [CrossRef]
- Plag, R.; Heil, M.; Käppeler, F.; Pavlopoulos, P.; Reifarth, R.; Wisshak, K.; n TOF Collaboration. An optimized C6D6 detector for studies of resonance-dominated (n,γ) cross-sections. Nucl. Instrum. Methods Phys. Res. A 2003, 496, 425–436. [Google Scholar] [CrossRef]
- Abbondanno, U.; Aerts, G.; Alvarez-Velarde, F.; Álvarez-Pol, H.; Andriamonje, S.; Andrzejewski, J.; Badurek, G.; Baumann, P.; Bečvář, F.; Benlliure, J.; et al. Neutron Capture Cross Section Measurement of 151Sm at the CERN Neutron Time of Flight Facility (n_TOF). Phys. Rev. Lett. 2004, 93, 161103. [Google Scholar] [CrossRef] [PubMed]
- Lederer, C.; Massimi, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; et al. Neutron Capture Cross Section of Unstable Ni63: Implications for Stellar Nucleosynthesis. Phys. Rev. Lett. 2013, 110, 022501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrero, C.; Lerendegui-Marco, J.; Paul, M.; Tessler, M.; Heinitz, S.; Domingo-Pardo, C.; Cristallo, S.; Dressler, R.; Halfon, S.; Kivel, N.; et al. Neutron Capture on the s -Process Branching Point Tm 171 via Time-of-Flight and Activation. Phys. Rev. Lett. 2020, 125, 142701. [Google Scholar] [CrossRef]
- Casanovas, A.; Tarifeño-Saldivia, A.E.; Domingo-Pardo, C.; Calviño, F.; Maugeri, E.; Guerrero, C.; Lerendegui-Marco, J.; Dressler, R.; Heinitz, S.; Schumann, D.; et al. Neutron capture measurement at the n TOF facility of the 204Tl and 205Tl s-process branching points. J. Phys. Conf. Ser. 2020, 1668, 012005. [Google Scholar] [CrossRef]
- Esposito, R.; Calviani, M.; Aberle, O.; Barbagallo, M.; Cano-Ott, D.; Coiffet, T.; Colonna, N.; Domingo-Pardo, C.; Dragoni, F.; Franqueira Ximenes, R.; et al. Design of the third-generation lead-based neutron spallation target for the neutron time-of-flight facility at CERN. Phys. Rev. Accel. Beams 2021, 24, 093001. [Google Scholar] [CrossRef]
- Mondelears, W.; Schillebeeckx, P. GELINA, a Neutron Time-of-Flight Facility for High-Resolution Neutron Data Measurements. Research Infrastructures II (2). 2006. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC35644 (accessed on 8 December 2021).
- Paul, M.; Tessler, M.; Friedman, M.; Halfon, S.; Palchan, T.; Weissman, L.; Arenshtam, A.; Berkovits, D.; Eisen, Y.; Eliahu, I.; et al. Reactions along the astrophysical s-process path and prospects for neutron radiotherapy with the Liquid-Lithium Target (LiLiT) at the Soreq Applied Research Accelerator Facility (SARAF). Eur. Phys. J. A 2019, 55, 44. [Google Scholar] [CrossRef]
- Ratynski, W.; Käppeler, F. Neutron capture cross section of 197Au: A standard for stellar nucleosynthesis. Phys. Rev. C 1988, 37, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Macklin, R.L.; Halperin, J.; Winters, R.R. Gold neutron-capture cross section from 3 to 550 keV. Phys. Rev. C 1975, 11, 1270–1279. [Google Scholar] [CrossRef]
- Dillmann, I.; Käppeler, F.; Plag, R.; Rauscher, T.; Thielemann, F. KADoNiS v0.3—The third update of the “Karlsruhe Astrophysical Database of Nucleosynthesis in Stars”. In EFNUDAT Fast Neutrons Proceedings of the Scientific Workshop on Neutron Measurements, Theory and Applications—Nuclear Data for Sustainable Nuclear Energy; Geel, Belgium, 28–30 April 2009, Hambsch, F., Ed.; EUR 23883 EN; Publications Office of the European Union: Luxembourg, 2010; JRC56548; p. 123. [Google Scholar]
- Massimi, C.; Domingo-Pardo, C.; Vannini, G.; Audouin, L.; Guerrero, C.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; et al. Au197(n,γ) cross section in the resonance region. Phys. Rev. C 2010, 81, 044616. [Google Scholar] [CrossRef] [Green Version]
- Lederer, C.; Colonna, N.; Domingo-Pardo, C.; Gunsing, F.; Käppeler, F.; Massimi, C.; Mengoni, A.; Wallner, A.; Abbondanno, U.; Aerts, G.; et al. Au197(n,γ) cross section in the unresolved resonance region. Phys. Rev. C 2011, 83, 034608. [Google Scholar] [CrossRef] [Green Version]
- Massimi, C.; Becker, B.; Dupont, E.; Kopecky, S.; Lampoudis, C.; Massarczyk, R.; Moxon, M.; Pronyaev, V.; Schillebeeckx, P.; Sirakov, I.; et al. Neutron capture cross section measurements for 197Au from 3.5 to 84 keV at GELINA. Eur. Phys. J. A 2014, 50, 124. [Google Scholar] [CrossRef] [Green Version]
- Sirakov, I.; Becker, B.; Capote, R.; Dupont, E.; Kopecky, S.; Massimi, C.; Schillebeeckx, P. Results of total cross section measurements for 197Au in the neutron energy region from 4 to 108 keV at GELINA. Eur. Phys. J. A 2013, 49, 144. [Google Scholar] [CrossRef]
- Reifarth, R.; Erbacher, P.; Fiebiger, S.; Göbel, K.; Heftrich, T.; Heil, M.; Käppeler, F.; Klapper, N.; Kurtulgil, D.; Langer, C.; et al. Neutron-induced cross sections. From raw data to astrophysical rates. Eur. Phys. J. Plus 2018, 133, 424. [Google Scholar] [CrossRef]
- Dillmann, I. The new KADoNiS v1 0 and its influence on the s-process. In Proceedings of the Science, XIII Nuclei in the Cosmos (NIC XIII), Debrecen, Hungary, 7–11 July 2014; p. 57. [Google Scholar] [CrossRef] [Green Version]
- Massimi, C.; Koehler, P.; Bisterzo, S.; Colonna, N.; Gallino, R.; Gunsing, F.; Käppeler, F.; Lorusso, G.; Mengoni, A.; Pignatari, M.; et al. Resonance neutron-capture cross sections of stable magnesium isotopes and their astrophysical implications. Phys. Rev. C 2012, 85, 044615. [Google Scholar] [CrossRef] [Green Version]
- Massimi, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; et al. Neutron spectroscopy of 26Mg states: Constraining the stellar neutron source 22Ne(α,n)25Mg. Phys. Lett. B 2017, 768, 1–6. [Google Scholar] [CrossRef]
- Giubrone, G.; Domingo-Pardo, C.; Taín, J.L.; Lederer, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvař, F.; et al. Measurement of the 54,57Fe(n,γ) Cross Section in the Resolved Resonance Region at CERN n_TOF. Nucl. Data Sheets 2014, 119, 117–120. [Google Scholar] [CrossRef]
- Žugec, P.; Barbagallo, M.; Colonna, N.; Bosnar, D.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bečvář, F.; Belloni, F.; et al. Experimental neutron capture data of 58Ni from the CERN n_TOF facility. Phys. Rev. C 2014, 89, 014605. [Google Scholar] [CrossRef] [Green Version]
- Lederer, C.; Massimi, C.; Berthoumieux, E.; Colonna, N.; Dressler, R.; Guerrero, C.; Gunsing, F.; Käppeler, F.; Kivel, N.; Pignatari, M.; et al. Ni62(n,γ) and Ni63(n,γ) cross sections measured at the n_TOF facility at CERN. Phys. Rev. C 2014, 89, 025810. [Google Scholar] [CrossRef] [Green Version]
- Lederer, C.; Massimi, C.; Berthoumieux, E.; Colonna, N.; Dressler, R.; Guerrero, C.; Gunsing, F.; Käppeler, F.; Kivel, N.; Pignatari, M.; et al. Erratum: 62Ni(n,γ ) and 63Ni(n,γ ) cross sections measured at the n_TOF facility at CERN [Phys. Rev. C 89, 025810 (2014)]. Phys. Rev. C 2015, 92, 019903. [Google Scholar] [CrossRef] [Green Version]
- Guber, K.H.; Derrien, H.; Leal, L.C.; Arbanas, G.; Wiarda, D.; Koehler, P.E.; Harvey, J.A. Astrophysical reaction rates for Ni58,60(n,γ) from new neutron capture cross section measurements. Phys. Rev. C 2010, 82, 057601. [Google Scholar] [CrossRef]
- Alpizar-Vicente, A.M.; Bredeweg, T.A.; Esch, E.I.; Greife, U.; Haight, R.C.; Hatarik, R.; O’Donnell, J.M.; Reifarth, R.; Rundberg, R.S.; Ullmann, J.L.; et al. Neutron capture cross section of Ni62 at s-process energies. Phys. Rev. C 2008, 77, 015806. [Google Scholar] [CrossRef]
- Nassar, H.; Paul, M.; Ahmad, I.; Berkovits, D.; Bettan, M.; Collon, P.; Dababneh, S.; Ghelberg, S.; Greene, J.P.; Heger, A.; et al. Stellar (n,γ) Cross Section of 62Ni. Phys. Rev. Lett. 2005, 94, 092504. [Google Scholar] [CrossRef] [Green Version]
- Walter, S. Wissenschaftliche Berichte, FZKA-7411 (August 2008) Dissertation, Universität Karlsruhe 2008, Universität Karlsruhe (TH). Ph.D. Thesis, University of Karlsruhe, Karlsruhe, Germany, 2008. [Google Scholar]
- Dillmann, I.; Faestermann, T.; Korschinek, G.; Lachner, J.; Maiti, M.; Poutivtsev, M.; Rugel, G.; Walter, S.; Käppeler, F.; Erhard, M.; et al. Solving the stellar 62Ni problem with AMS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 1283–1286. [Google Scholar] [CrossRef] [Green Version]
- Weiss, C.; Guerrero, C.; Griesmayer, E.; Andrzejewski, J.; Badurek, G.; Chiaveri, E.; Dressler, R.; Ganesan, S.; Jericha, E.; Kappeler, F.; et al. The (n, α) Reaction in the s-process Branching Point 59Ni. Nucl. Data Sheets 2014, 120, 208–210. [Google Scholar] [CrossRef]
- Mengoni, A.; Otsuka, T.; Ishihara, M. Direct radiative capture of p-wave neutrons. Phys. Rev. C 1995, 52, R2334–R2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corvi, F.; Prevignano, A.; Liskien, H.; Smith, P.B. An experimental method for determining the total efficiency and the response function of a gamma-ray detector in the range 0.5–10 MeV. Nucl. Instrum. Methods Phys. Res. A 1988, 265, 475–484. [Google Scholar] [CrossRef]
- Domingo-Pardo, C.; Abbondanno, U.; Aerts, G.; Álvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; et al. Measurement of the neutron capture cross section of the s-only isotope Pb204 from 1 eV to 440 keV. Phys. Rev. C 2007, 75, 015806. [Google Scholar] [CrossRef] [Green Version]
- Domingo-Pardo, C.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; et al. Measurement of the radiative neutron capture cross section of Pb206 and its astrophysical implications. Phys. Rev. C 2007, 76, 045805. [Google Scholar] [CrossRef] [Green Version]
- Domingo-Pardo, C.; Abbondanno, U.; Aerts, G.; Álvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; et al. Resonance capture cross section of Pb207. Phys. Rev. C 2006, 74, 055802. [Google Scholar] [CrossRef]
- Domingo-Pardo, C.; Abbondanno, U.; Aerts, G.; Álvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; et al. New measurement of neutron capture resonances in Bi209. Phys. Rev. C 2006, 74, 025807. [Google Scholar] [CrossRef] [Green Version]
- Abbondanno, U.; Aerts, G.; Alvarez, H.; Andriamonje, S.; Angelopoulos, A.; Assimakopoulos, P.; Bacri, C.O.; Badurek, G.; Baumann, P.; Bečvář, F.; et al. New experimental validation of the pulse height weighting technique for capture cross-section measurements. Nucl. Instrum. Methods Phys. Res. A 2004, 521, 454–467. [Google Scholar] [CrossRef]
- Gallino, R.; Arlandini, C.; Busso, M.; Lugaro, M.; Travaglio, C.; Straniero, O.; Chieffi, A.; Limongi, M. Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the S-Process. Astrophys. J. 1998, 497, 388–403. [Google Scholar] [CrossRef]
- Amaducci, S.; Colonna, N.; Cosentino, L.; Cristallo, S.; Finocchiaro, P.; Krtička, M.; Massimi, C.; Mastromarco, M.; Mazzone, A.; Mengoni, A.; et al. First Results of the 140Ce(n,γ)141Ce Cross-Section Measurement at n_TOF. Universe 2021, 7, 200. [Google Scholar] [CrossRef]
- Gawlik, A.; Lederer-Woods, C.; Andrzejewski, J.; Battino, U.; Ferreira, P.; Gunsing, F.; Heinitz, S.; Krtička, M.; Massimi, C.; Mingrone, F.; et al. Measurement of the 70Ge(n,γ) cross section up to 300 keV at the CERN n_TOF facility. Phys. Rev. C 2019, 100, 045804. [Google Scholar] [CrossRef] [Green Version]
- Mazzone, A.; Cristallo, S.; Aberle, O.; Alaerts, G.; Alcayne, V.; Amaducci, S.; Andrzejewski, J.; Audouin, L.; Babiano-Suarez, V.; Bacak, M.; et al. Measurement of the 154Gd(n,γ) cross section and its astrophysical implications. Phys. Lett. B 2020, 804, 135405. [Google Scholar] [CrossRef]
- Mosconi, M.; Fujii, K.; Mengoni, A.; Domingo-Pardo, C.; Käppeler, F.; Abbondanno, U.; Aerts, G.; Álvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; et al. Neutron physics of the Re/Os clock. I. Measurement of the (n,γ) cross sections of Os186,187,188 at the CERN n_TOF facility. Phys. Rev. C 2010, 82, 015802. [Google Scholar] [CrossRef] [Green Version]
- Fujii, K.; Mosconi, M.; Mengoni, A.; Domingo-Pardo, C.; Käppeler, F.; Abbondanno, U.; Aerts, G.; Álvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; et al. Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n,γ) cross sections of Os186,187,188. Phys. Rev. C 2010, 82, 015804. [Google Scholar] [CrossRef] [Green Version]
- Käppeler, F. Stellar neutron capture rates—Key data for the s process. Eur. Phys. J. Web Conf. 2013, 63, 03002. [Google Scholar] [CrossRef]
- Mastromarco, M.; Manna, A.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Bečvář, F.; Berthoumieux, E.; et al. Cross section measurements of 155,157Gd(n,γ) induced by thermal and epithermal neutrons. Eur. Phys. J. A 2019, 55, 9. [Google Scholar] [CrossRef] [Green Version]
- Beer, H.; Macklin, R.L. The 151Sm Branching: A Probe for the Irradiation Time Scale of the s-Process. Astrophys. J. 1988, 331, 1047. [Google Scholar] [CrossRef]
- Cristallo, S.; Abia, C.; Straniero, O.; Piersanti, L. On the Need for the Light Elements Primary Process (LEPP). Astrophys. J. 2015, 801, 53. [Google Scholar] [CrossRef] [Green Version]
- Reifarth, R.; Arlandini, C.; Heil, M.; Käppeler, F.; Sedyshev, P.V.; Mengoni, A.; Herman, M.; Rauscher, T.; Gallino, R.; Travaglio, C. Stellar Neutron Capture on Promethium: Implications for the s-Process Neutron Density. Astrophys. J. 2003, 582, 1251–1262. [Google Scholar] [CrossRef] [Green Version]
- Winters, R.R.; Macklin, R.L. Maxwellian-averaged Neutron Capture Cross Sections for 99Tc and 95-98Mo. Astrophys. J. 1987, 313, 808. [Google Scholar] [CrossRef]
- Jaag, S.; Käppeler, F.; Koehler, P. The Stellar (n,γ) Cross Section of the Unstable 135Cs. Nucl. Phys. A 1997, 621, 247–250. [Google Scholar] [CrossRef]
- Patronis, N.; Dababneh, S.; Assimakopoulos, P.A.; Gallino, R.; Heil, M.; Käppeler, F.; Karamanis, D.; Koehler, P.E.; Mengoni, A.; Plag, R. Neutron capture studies on unstable 135Cs for nucleosynthesis and transmutation. Phys. Rev. C 2004, 69, 025803. [Google Scholar] [CrossRef] [Green Version]
- Jaag, S.; Käppeler, F. Stellar (n,γ) cross section of the unstable isotope 155Eu. Phys. Rev. C 1995, 51, 3465–3471. [Google Scholar] [CrossRef] [PubMed]
- Jaag, S.; Kaeppeler, F. The Stellar (n,gamma ) Cross Section of the Unstable Isotope 163Ho and the Origin of 164Er. Astrophys. J. 1996, 464, 874. [Google Scholar] [CrossRef]
- Babiano-Suárez, V.; Balibrea-Correa, J.; Caballero, L.; Calviño, F.; Cano-Ott, D.; Casanovas, A.; Colonna, N.; Cristallo, S.; Domingo-Pardo, C.; Guerrero, C.; et al. First Measurement of the Branching 79Se(n,γ); Technical Report CERN-INTC-2020-065; INTC-P-580, CERN: Geneva, Switzerland, 2020. [Google Scholar]
- Lederer-Woods, C.; Woods, P.J.; Davinson, T.; Kahl, D.; Lonsdale, S.J.; Aberle, O.; Amaducci, S.; Andrzejewski, J.; Audouin, L.; Bacak, M.; et al. Destruction of the cosmic γ-ray emitter 26Al in massive stars: Study of the key 26Al(n,p) reaction. Phys. Rev. C 2021, 104, L022803. [Google Scholar] [CrossRef]
- Praena, J. Proposal to the ISOLDE and Neutron Time-of-Flight Committee: The 14N(n,p)14C and 35Cl(n,p)35S Reactions at n_TOF-EAR2: Dosimetry in BNCT and Astrophysics; Technical Report CERN-INTC-2017-039; INTC-P-510, CERN: Geneva, Switzerland, 2017. [Google Scholar]
- Ingelbrecht, C.; Moens, A.; Wagemans, J.; Denecke, B.; Altzitzoglou, T.; Johnston, P. An 26Al target for (n,p) and (n,α) cross-section measurements. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2002, 480, 114–118. [Google Scholar] [CrossRef]
- Koehler, P.E.; Kavanagh, R.W.; Vogelaar, R.B.; Gledenov, Y.M.; Popov, Y.P. 26Al(n,p1) and (n,α0) cross sections from thermal energy to 70 keV and the nucleosynthesis of 26Al. Phys. Rev. C 1997, 56, 1138–1143. [Google Scholar] [CrossRef]
- Trautvetter, H.P.; Becker, H.W.; Heinemann, U.; Buchmann, L.; Rolfs, C.; Käppeler, F.; Baumann, M.; Freiesleben, H.; Lütke-Stetzkamp, H.J.; Geltenbort, P.; et al. Destruction of26Al in explosive nucleosynthesis. Z. Phys. A 1986, 323, 1–11. [Google Scholar] [CrossRef]
- Mendoza, E.; Cano-Ott, D.; Guerrero, C.; Berthoumieux, E.; n TOF Collaboration. Pulse pile-up and dead time corrections for digitized signals from a BaF2 calorimeter. Nucl. Instrum. Methods Phys. Res. A 2014, 768, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Schumann, D.; Dressler, R.; Maugeri, E.A.; Heinitz, S. Isotope production and target preparation for nuclear astrophysics data. Eur. Phys. J. Web Conf. 2017, 146, 03005. [Google Scholar] [CrossRef] [Green Version]
- Barros, S.; Bergström, I.; Vlachoudis, V.; Weiss, C. Optimization of n_TOF-EAR2 using FLUKA. J. Instrum. 2015, 10, P09003. [Google Scholar] [CrossRef] [Green Version]
- Tagliente, G.; Milazzo, P.M.; Fujii, K.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; et al. The 93Zr(n,γ) reaction up to 8 keV neutron energy. Phys. Rev. C 2013, 87, 014622. [Google Scholar] [CrossRef]
- Neyskens, P.; van Eck, S.; Jorissen, A.; Goriely, S.; Siess, L.; Plez, B. The temperature and chronology of heavy-element synthesis in low-mass stars. Nature 2015, 517, 174–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- High-sensitivitY Measurements of Key Stellar Nucleo-Synthesis Reactions (HYMNS), ERC-Consolidator Grant Agreement No 681740, PI: C. Domingo Pardo. Available online: https://cordis.europa.eu/project/id/681740 (accessed on 8 December 2021).
- Domingo-Pardo, C. i-TED: A novel concept for high-sensitivity (n,γ) cross-section measurements. Nucl. Instrum. Methods Phys. Res. A 2016, 825, 78–86. [Google Scholar] [CrossRef]
- Balibrea-Correa, J.; Lerendegui-Marco, J.; Calvo, D.; Caballero, L.; Babiano, V.; Ladarescu, I.; Redondo, M.L.; Tain, J.L.; Tolosa, A.; Domingo-Pardo, C.; et al. A first prototype of C6D6 total-energy detector with SiPM readout for neutron capture time-of-flight experiments. Nucl. Instrum. Methods Phys. Res. A 2021, 985, 164709. [Google Scholar] [CrossRef]
- Mengoni, A. (Agenzia Nazionale per le Nuove Tecnologie (ENEA), 40129 Bologna, Italy). Personal communication, 2021.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massimi, C.; Cristallo, S.; Domingo-Pardo, C.; Lederer-Woods, C. n_TOF: Measurements of Key Reactions of Interest to AGB Stars. Universe 2022, 8, 100. https://doi.org/10.3390/universe8020100
Massimi C, Cristallo S, Domingo-Pardo C, Lederer-Woods C. n_TOF: Measurements of Key Reactions of Interest to AGB Stars. Universe. 2022; 8(2):100. https://doi.org/10.3390/universe8020100
Chicago/Turabian StyleMassimi, Cristian, Sergio Cristallo, César Domingo-Pardo, and Claudia Lederer-Woods. 2022. "n_TOF: Measurements of Key Reactions of Interest to AGB Stars" Universe 8, no. 2: 100. https://doi.org/10.3390/universe8020100
APA StyleMassimi, C., Cristallo, S., Domingo-Pardo, C., & Lederer-Woods, C. (2022). n_TOF: Measurements of Key Reactions of Interest to AGB Stars. Universe, 8(2), 100. https://doi.org/10.3390/universe8020100