The Complex Behaviour of s-Process Element Abundances at Young Ages
Abstract
:1. Historical Background
2. Recent Updates
The Barium Abundance for RZ Piscium
3. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruzual A., G. Star clusters as simple stellar populations. Philos. Trans. R. Soc. Lond. Ser. A 2010, 368, 783–799. [Google Scholar] [CrossRef] [PubMed]
- Friel, E.D. The Old Open Clusters of the Milky Way. Annu. Rev. Astron. Astrophys. 1995, 33, 381–414. [Google Scholar] [CrossRef]
- Friel, E.D. Open Clusters and Their Role in the Galaxy. In Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations; Oswalt, T.D., Gilmore, G., Eds.; Springer: Dordrecht, The Netherland, 2013; Volume 5, p. 347. [Google Scholar] [CrossRef]
- Magrini, L.; Randich, S.; Kordopatis, G.; Prantzos, N.; Romano, D.; Chieffi, A.; Limongi, M.; François, P.; Pancino, E.; Friel, E.; et al. The Gaia-ESO Survey: Radial distribution of abundances in the Galactic disc from open clusters and young-field stars. Astron. Astrophys. 2017, 603, A2. [Google Scholar] [CrossRef]
- Donor, J.; Frinchaboy, P.M.; Cunha, K.; O’Connell, J.E.; Allende Prieto, C.; Almeida, A.; Anders, F.; Beaton, R.; Bizyaev, D.; Brownstein, J.R.; et al. The Open Cluster Chemical Abundances and Mapping Survey. IV. Abundances for 128 Open Clusters Using SDSS/APOGEE DR16. Astron. J. 2020, 159, 199. [Google Scholar] [CrossRef] [Green Version]
- Spina, L.; Randich, S.; Magrini, L.; Jeffries, R.D.; Friel, E.D.; Sacco, G.G.; Pancino, E.; Bonito, R.; Bravi, L.; Franciosini, E.; et al. The Gaia-ESO Survey: The present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters. Astron. Astrophys. 2017, 601, A70. [Google Scholar] [CrossRef] [Green Version]
- Casamiquela, L.; Blanco-Cuaresma, S.; Carrera, R.; Balaguer-Núñez, L.; Jordi, C.; Anders, F.; Chiappini, C.; Carbajo-Hijarrubia, J.; Aguado, D.S.; del Pino, A.; et al. OCCASO-III. Iron peak and α elements of 18 open clusters. Comparison with chemical evolution models and field stars. Mon. Not. R. Astron. Soc. 2019, 490, 1821–1842. [Google Scholar] [CrossRef]
- Spina, L.; Ting, Y.S.; De Silva, G.M.; Frankel, N.; Sharma, S.; Cantat-Gaudin, T.; Joyce, M.; Stello, D.; Karakas, A.I.; Asplund, M.B.; et al. The GALAH survey: Tracing the Galactic disk with open clusters. Mon. Not. R. Astron. Soc. 2021, 503, 3279–3296. [Google Scholar] [CrossRef]
- Liu, F.; Yong, D.; Asplund, M.; Ramírez, I.; Meléndez, J. The Hyades open cluster is chemically inhomogeneous. Mon. Not. R. Astron. Soc. 2016, 457, 3934–3948. [Google Scholar] [CrossRef] [Green Version]
- Bovy, J. The Chemical Homogeneity of Open Clusters. Astrophys. J. 2016, 817, 49. [Google Scholar] [CrossRef] [Green Version]
- Souto, D.; Prieto, C.A.; Cunha, K.; Pinsonneault, M.; Smith, V.V.; Garcia-Dias, R.; Bovy, J.; García-Hernández, D.A.; Holtzman, J.; Johnson, J.A.; et al. Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. II. Atomic Diffusion in M67 Stars. Astrophys. J. 2019, 874, 97. [Google Scholar] [CrossRef] [Green Version]
- Spina, L.; Meléndez, J.; Karakas, A.I.; dos Santos, L.; Bedell, M.; Asplund, M.; Ramírez, I.; Yong, D.; Alves-Brito, A.; Bean, J.L.; et al. The temporal evolution of neutron-capture elements in the Galactic discs. Mon. Not. R. Astron. Soc. 2018, 474, 2580–2593. [Google Scholar] [CrossRef] [Green Version]
- Poovelil, V.J.; Zasowski, G.; Hasselquist, S.; Seth, A.; Donor, J.; Beaton, R.L.; Cunha, K.; Frinchaboy, P.M.; García-Hernández, D.A.; Hawkins, K.; et al. Open Cluster Chemical Homogeneity throughout the Milky Way. Astrophys. J. 2020, 903, 55. [Google Scholar] [CrossRef]
- Netopil, M.; Oralhan, İ.A.; Çakmak, H.; Michel, R.; Karataş, Y. The Galactic metallicity gradient shown by open clusters in the light of radial migration. Mon. Not. R. Astron. Soc. 2022, 509, 421–439. [Google Scholar] [CrossRef]
- Cowan, J.J.; Sneden, C.; Lawler, J.E.; Aprahamian, A.; Wiescher, M.; Langanke, K.; Martínez-Pinedo, G.; Thielemann, F.K. Origin of the heaviest elements: The rapid neutron-capture process. Rev. Mod. Phys. 2021, 93, 015002. [Google Scholar] [CrossRef]
- Wanajo, S.; Sekiguchi, Y.; Nishimura, N.; Kiuchi, K.; Kyutoku, K.; Shibata, M. Production of All the r-process Nuclides in the Dynamical Ejecta of Neutron Star Mergers. Astrophys. J. Lett. 2014, 789, L39. [Google Scholar] [CrossRef] [Green Version]
- Shibagaki, S.; Kajino, T.; Mathews, G.J.; Chiba, S.; Nishimura, S.; Lorusso, G. Relative Contributions of the Weak, Main, and Fission-recycling r-process. Astrophys. J. 2016, 816, 79. [Google Scholar] [CrossRef] [Green Version]
- Gallino, R.; Arlandini, C.; Busso, M.; Lugaro, M.; Travaglio, C.; Straniero, O.; Chieffi, A.; Limongi, M. Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the S-Process. Astrophys. J. 1998, 497, 388–403. [Google Scholar] [CrossRef]
- Bisterzo, S.; Travaglio, C.; Gallino, R.; Wiescher, M.; Käppeler, F. Galactic Chemical Evolution and Solar s-process Abundances: Dependence on the 13C-pocket Structure. Astrophys. J. 2014, 787, 10. [Google Scholar] [CrossRef] [Green Version]
- Käppeler, F.; Gallino, R.; Bisterzo, S.; Aoki, W. The s process: Nuclear physics, stellar models, and observations. Rev. Mod. Phys. 2011, 83, 157–194. [Google Scholar] [CrossRef] [Green Version]
- Lugaro, M.; Karakas, A.I.; Stancliffe, R.J.; Rijs, C. The s-process in Asymptotic Giant Branch Stars of Low Metallicity and the Composition of Carbon-enhanced Metal-poor Stars. Astrophys. J. 2012, 747, 2. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, C.; Karakas, A.I.; Lugaro, M. The Origin of Elements from Carbon to Uranium. Astrophys. J. 2020, 900, 179. [Google Scholar] [CrossRef]
- Pignatari, M.; Gallino, R.; Heil, M.; Wiescher, M.; Käppeler, F.; Herwig, F.; Bisterzo, S. The Weak s-Process in Massive Stars and its Dependence on the Neutron Capture Cross Sections. Astrophys. J. 2010, 710, 1557–1577. [Google Scholar] [CrossRef]
- Limongi, M.; Chieffi, A. Presupernova Evolution and Explosive Nucleosynthesis of Rotating Massive Stars in the Metallicity Range-3 ≤ [Fe/H] ≤ 0. Astrophys. J. Suppl. 2018, 237, 13. [Google Scholar] [CrossRef]
- D’Orazi, V.; Magrini, L.; Randich, S.; Galli, D.; Busso, M.; Sestito, P. Enhanced Production of Barium in Low-Mass Stars: Evidence from Open Clusters. Astrophys. J. Lett. 2009, 693, L31–L34. [Google Scholar] [CrossRef] [Green Version]
- Yong, D.; Carney, B.W.; Friel, E.D. Elemental Abundance Ratios in Stars of the Outer Galactic Disk. IV. A New Sample of Open Clusters. Astron. J. 2012, 144, 95. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, H.R.; Friel, E.D. Zirconium, Barium, Lanthanum, and Europium Abundances in Open Clusters. Astron. J. 2013, 145, 107. [Google Scholar] [CrossRef] [Green Version]
- Reddy, A.B.S.; Lambert, D.L. Local associations and the barium puzzle. Mon. Not. R. Astron. Soc. 2015, 454, 1976–1991. [Google Scholar] [CrossRef] [Green Version]
- Reddy, A.B.S.; Lambert, D.L. Solar Twins and the Barium Puzzle. Astrophys. J. 2017, 845, 151. [Google Scholar] [CrossRef] [Green Version]
- Mishenina, T.; Pignatari, M.; Carraro, G.; Kovtyukh, V.; Monaco, L.; Korotin, S.; Shereta, E.; Yegorova, I.; Herwig, F. New insights on Ba overabundance in open clusters. Evidence for the intermediate neutron-capture process at play? Mon. Not. R. Astron. Soc. 2015, 446, 3651–3668. [Google Scholar] [CrossRef] [Green Version]
- Magrini, L.; Spina, L.; Randich, S.; Friel, E.; Kordopatis, G.; Worley, C.; Pancino, E.; Bragaglia, A.; Donati, P.; Tautvaišienė, G.; et al. The Gaia-ESO Survey: The origin and evolution of s-process elements. Astron. Astrophys. 2018, 617, A106. [Google Scholar] [CrossRef] [Green Version]
- da Silva, R.; Porto de Mello, G.F.; Milone, A.C.; da Silva, L.; Ribeiro, L.S.; Rocha-Pinto, H.J. Accurate and homogeneous abundance patterns in solar-type stars of the solar neighbourhood: A chemo-chronological analysis. Astron. Astrophys. 2012, 542, A84. [Google Scholar] [CrossRef]
- Cowan, J.J.; Rose, W.K. Production of 14C and neutrons in red giants. Astrophys. J. 1977, 212, 149–158. [Google Scholar] [CrossRef]
- Maiorca, E.; Randich, S.; Busso, M.; Magrini, L.; Palmerini, S. s-processing in the Galactic Disk. I. Super-solar Abundances of Y, Zr, La, and Ce in Young Open Clusters. Astrophys. J. 2011, 736, 120. [Google Scholar] [CrossRef] [Green Version]
- D’Orazi, V.; Biazzo, K.; Desidera, S.; Covino, E.; Andrievsky, S.M.; Gratton, R.G. The chemical composition of nearby young associations: S-process element abundances in AB Doradus, Carina-Near and Ursa Major. Mon. Not. R. Astron. Soc. 2012, 423, 2789–2799. [Google Scholar] [CrossRef] [Green Version]
- D’Orazi, V.; De Silva, G.M.; Melo, C.F.H. First determination of s-process element abundances in pre-main sequence clusters. Y, Zr, La, and Ce in IC 2391, the Argus association, and IC 2602. Astron. Astrophys. 2017, 598, A86. [Google Scholar] [CrossRef] [Green Version]
- Yana Galarza, J.; Meléndez, J.; Lorenzo-Oliveira, D.; Valio, A.; Reggiani, H.; Carlos, M.; Ponte, G.; Spina, L.; Haywood, R.D.; Gandolfi, D. The effect of stellar activity on the spectroscopic stellar parameters of the young solar twin HIP 36515. Mon. Not. R. Astron. Soc. 2019, 490, L86–L90. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.; Pilachowski, C.A.; Punzi, K.M.; Kastner, J.H.; Melis, C.; Zuckerman, B. The Barium Abundance in the Young Star RZ Piscium. Res. Notes Am. Astron. Soc. 2019, 3, 170. [Google Scholar] [CrossRef]
- Baratella, M.; D’Orazi, V.; Sheminova, V.; Spina, L.; Carraro, G.; Gratton, R.; Magrini, L.; Randich, S.; Lugaro, M.; Pignatari, M.; et al. The Gaia-ESO Survey: A new approach to chemically characterising young open clusters. II. Abundances of the neutron-capture elements Cu, Sr, Y, Zr, Ba, La, and Ce. Astron. Astrophys. 2021, 653, A67. [Google Scholar] [CrossRef]
- Baratella, M.; D’Orazi, V.; Carraro, G.; Desidera, S.; Randich, S.; Magrini, L.; Adibekyan, V.; Smiljanic, R.; Spina, L.; Tsantaki, M.; et al. The Gaia-ESO Survey: A new approach to chemically characterising young open clusters. I. Stellar parameters, and iron-peak, α-, and proton-capture elements. Astron. Astrophys. 2020, 634, A34. [Google Scholar] [CrossRef] [Green Version]
- Radick, R.R.; Lockwood, G.W.; Skiff, B.A.; Baliunas, S.L. Patterns of Variation among Sun-like Stars. Astrophys. J. Suppl. 1998, 118, 239. [Google Scholar] [CrossRef] [Green Version]
- Laming, J.M. The FIP and Inverse FIP Effects in Solar and Stellar Coronae. Living Rev. Sol. Phys. 2015, 12, 2. [Google Scholar] [CrossRef]
- Herwig, F.; Pignatari, M.; Woodward, P.R.; Porter, D.H.; Rockefeller, G.; Fryer, C.L.; Bennett, M.; Hirschi, R. Convective-reactive Proton-12C Combustion in Sakurai’s Object (V4334 Sagittarii) and Implications for the Evolution and Yields from the First Generations of Stars. Astrophys. J. 2011, 727, 89. [Google Scholar] [CrossRef] [Green Version]
- Lugaro, M.; Campbell, S.W.; Van Winckel, H.; De Smedt, K.; Karakas, A.I.; Käppeler, F. Post-AGB stars in the Magellanic Clouds and neutron-capture processes in AGB stars. Astron. Astrophys. 2015, 583, A77. [Google Scholar] [CrossRef] [Green Version]
- Roederer, I.U.; Karakas, A.I.; Pignatari, M.; Herwig, F. The Diverse Origins of Neutron-capture Elements in the Metal-poor Star HD 94028: Possible Detection of Products of I-Process Nucleosynthesis. Astrophys. J. 2016, 821, 37. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.; Ritter, C.; Herwig, F.; Fryer, C.; Pignatari, M.; Bertolli, M.G.; Paxton, B. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis. Mon. Not. R. Astron. Soc. 2016, 455, 3848–3863. [Google Scholar] [CrossRef] [Green Version]
- Denissenkov, P.A.; Herwig, F.; Woodward, P.; Andrassy, R.; Pignatari, M.; Jones, S. The i-process yields of rapidly accreting white dwarfs from multicycle He-shell flash stellar evolution models with mixing parametrizations from 3D hydrodynamics simulations. Mon. Not. R. Astron. Soc. 2019, 488, 4258–4270. [Google Scholar] [CrossRef] [Green Version]
- Choplin, A.; Siess, L.; Goriely, S. The intermediate neutron capture process. I. Development of the i-process in low-metallicity low-mass AGB stars. Astron. Astrophys. 2021, 648, A119. [Google Scholar] [CrossRef]
- Vural, J.; Kreplin, A.; Kishimoto, M.; Weigelt, G.; Hofmann, K.H.; Kraus, S.; Schertl, D.; Dugué, M.; Duvert, G.; Lagarde, S.; et al. The inner circumstellar disk of the UX Orionis star V1026 Scorpii. Astron. Astrophys. 2014, 564, A118. [Google Scholar] [CrossRef] [Green Version]
- Potravnov, I.S.; Grinin, V.P.; Ilyin, I.V.; Shakhovskoy, D.N. An in-depth analysis of the RZ Piscium atmosphere. Astron. Astrophys. 2014, 563, A139. [Google Scholar] [CrossRef] [Green Version]
- Grinin, V.P.; Potravnov, I.S.; Musaev, F.A. The evolutionary status of the UX Orionis star RZ Piscium. Astron. Astrophys. 2010, 524, A8. [Google Scholar] [CrossRef]
- Williams, J.P.; Cieza, L.A. Protoplanetary Disks and Their Evolution. Annu. Rev. Astron. Astrophys. 2011, 49, 67–117. [Google Scholar] [CrossRef] [Green Version]
- Potravnov, I.S.; Grinin, V.P.; Serebriakova, N.A. Flares of accretion activity of the 20 Myr old UXOR RZ Psc. Astron. Astrophys. 2019, 630, A64. [Google Scholar] [CrossRef]
- Brown, A.G.A. et al. [Gaia Collaboration] Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 2018, 616, A1. [Google Scholar] [CrossRef] [Green Version]
- Punzi, K.M.; Kastner, J.H.; Melis, C.; Zuckerman, B.; Pilachowski, C.; Gingerich, L.; Knapp, T. Is the Young Star RZ Piscium Consuming Its Own (Planetary) Offspring? Astron. J. 2018, 155, 33. [Google Scholar] [CrossRef] [Green Version]
- Baratella, M.; D’Orazi, V.; Biazzo, K.; Desidera, S.; Gratton, R.; Benatti, S.; Bignamini, A.; Carleo, I.; Cecconi, M.; Claudi, R.; et al. The GAPS Programme at TNG. XXV. Stellar atmospheric parameters and chemical composition through GIARPS optical and near-infrared spectra. Astron. Astrophys. 2020, 640, A123. [Google Scholar] [CrossRef]
- Casagrande, L.; Ramírez, I.; Meléndez, J.; Bessell, M.; Asplund, M. An absolutely calibrated Teff scale from the infrared flux method. Dwarfs and subgiants. Astron. Astrophys. 2010, 512, A54. [Google Scholar] [CrossRef] [Green Version]
- Mucciarelli, A.; Bellazzini, M.; Massari, D. Exploiting the Gaia EDR3 photometry to derive stellar temperatures. Astron. Astrophys. 2021, 653, A90. [Google Scholar] [CrossRef]
- Dutra-Ferreira, L.; Pasquini, L.; Smiljanic, R.; Porto de Mello, G.F.; Steffen, M. Consistent metallicity scale for cool dwarfs and giants. A benchmark test using the Hyades. Astron. Astrophys. 2016, 585, A75. [Google Scholar] [CrossRef] [Green Version]
- Schuler, S.C.; King, J.R.; Terndrup, D.M.; Pinsonneault, M.H.; Murray, N.; Hobbs, L.M. Oxygen from the λ7774 High-Excitation Triplet in Open Cluster Dwarfs: Hyades. Astrophys. J. 2006, 636, 432–444. [Google Scholar] [CrossRef] [Green Version]
- Schuler, S.C.; Plunkett, A.L.; King, J.R.; Pinsonneault, M.H. Fe I and Fe II Abundances of Solar-Type Dwarfs in the Pleiades Open Cluster. Publ. Astron. Soc. Pac. 2010, 122, 766. [Google Scholar] [CrossRef] [Green Version]
- D’Orazi, V.; Randich, S. Chemical composition of the young open clusters IC 2602 and IC 2391. Astron. Astrophys. 2009, 501, 553–562. [Google Scholar] [CrossRef]
- Kaminskiĭ, B.M.; Kovalchuk, G.U.; Pugach, A.F. Spectral Features of RZ Psc, a Cool Star with Algol-like Brightness Minima. Astron. Rep. 2000, 44, 611–623. [Google Scholar] [CrossRef]
- Minchev, I.; Chiappini, C.; Martig, M. Chemodynamical evolution of the Milky Way disk. I. The solar vicinity. Astron. Astrophys. 2013, 558, A9. [Google Scholar] [CrossRef] [Green Version]
- Sneden, C.A. Carbon and Nitrogen Abundances in Metal-Poor Stars. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 1973. [Google Scholar]
- D’Orazi, V.; Desidera, S.; Gratton, R.G.; Lanza, A.F.; Messina, S.; Andrievsky, S.M.; Korotin, S.; Benatti, S.; Bonnefoy, M.; Covino, E.; et al. A critical reassessment of the fundamental properties of GJ 504: Chemical composition and age. Astron. Astrophys. 2017, 598, A19. [Google Scholar] [CrossRef]
- Nissen, P.E. High-precision abundances of elements in solar twin stars. Trends with stellar age and elemental condensation temperature. Astron. Astrophys. 2015, 579, A52. [Google Scholar] [CrossRef] [Green Version]
Star | (K) | (dex) | (km/s) | [Fe/H] | [Ti/H] | [Ba/Fe] |
---|---|---|---|---|---|---|
RZ Pic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Orazi, V.; Baratella, M.; Lugaro, M.; Magrini, L.; Pignatari, M. The Complex Behaviour of s-Process Element Abundances at Young Ages. Universe 2022, 8, 110. https://doi.org/10.3390/universe8020110
D’Orazi V, Baratella M, Lugaro M, Magrini L, Pignatari M. The Complex Behaviour of s-Process Element Abundances at Young Ages. Universe. 2022; 8(2):110. https://doi.org/10.3390/universe8020110
Chicago/Turabian StyleD’Orazi, Valentina, Martina Baratella, Maria Lugaro, Laura Magrini, and Marco Pignatari. 2022. "The Complex Behaviour of s-Process Element Abundances at Young Ages" Universe 8, no. 2: 110. https://doi.org/10.3390/universe8020110
APA StyleD’Orazi, V., Baratella, M., Lugaro, M., Magrini, L., & Pignatari, M. (2022). The Complex Behaviour of s-Process Element Abundances at Young Ages. Universe, 8(2), 110. https://doi.org/10.3390/universe8020110