Vacuum Energy in Saez-Ballester Theory and Stabilization of Extra Dimensions
Abstract
:1. Introduction
2. Formulation of Problem and Solutions
3. Discussion
4. Stabilization of Extra Dimensions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Chan, M.H. The energy conservation in our universe and the pressureless dark energy. J. Gravity 2015, 2015, 384673. [Google Scholar] [CrossRef] [Green Version]
- Carroll, S.M. The cosmological constant. Living Rev. Rel. 2001, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, S.M. Dark energy and the preposterous universe. arXiv 2001, arXiv:astro-ph/0107571. [Google Scholar]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.S.; Singh, K.P. A higher dimensional cosmological model for the search of dark energy source. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150026. [Google Scholar] [CrossRef]
- Singh, P.S.; Singh, K.P. f(R,T) Gravity model behaving as a dark energy source. New Astron. 2021, 84, 101542. [Google Scholar] [CrossRef]
- Wang, Y.; Pogosian, L.; Zhao, G.B.; Zucca, A. Evolution of dark energy reconstructed from the latest observations. Astrophys. J. Lett. 2018, 869, L8. [Google Scholar] [CrossRef] [Green Version]
- Collaboration, D.E.S. More than dark energy—An overview. Mon. Not. R. Astron. Soc. 2016, 460, 1270–1299. [Google Scholar]
- Dikshit, B. Quantum mechanical explanation for dark energy, cosmic coincidence, flatness, age, and size of the universe. Open Astron. 2019, 28, 220–227. [Google Scholar] [CrossRef]
- Moradpour, H.; Sheykhi, A.; Riazi, N.; Wang, B. Necessity of Dark energy from thermodynamic arguments. Adv. High Energy Phys. 2014, 2014, 718583. [Google Scholar] [CrossRef]
- Gutierrez, G. Dark Energy, a Summary. Nucl. Part. Phys. Proc. 2015, 267–269, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Hecht, J. The speed of dark energy. Nature 2013, 500, 618. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, P.; Jaffe, M.; Haslinger, P.; Simmons, Q.; Muller, H.; Khoury, J. Atom-interferometry constraints on dark energy. Science 2015, 349, 849–851. [Google Scholar] [CrossRef] [Green Version]
- Josset, T.; Perez, A.; Sudarsky, D. Dark Energy from Violation of Energy Conservation. Phys. Rev. Lett. 2017, 118, 021102. [Google Scholar] [CrossRef] [Green Version]
- Clery, D. Survey finds galaxy clumps stirred up by dark energy. Science 2017, 357, 537–538. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.H. A Natural Solution to the Dark Energy Problem. Phys. Sci. Int. J. 2015, 5, 267–275. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep. 2012, 513, 1. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Pradhan, A. Probing κ(R,T) cosmology via empirical approach. arXiv 2020, arXiv:2002.03798v1. [Google Scholar]
- Gorji, M.A. Late time cosmic acceleration from natural infrared cutoff. Phys. Lett. B 2016, 760, 769–774. [Google Scholar] [CrossRef] [Green Version]
- Narain, G.; Li, T. Non-locality and late-time cosmic acceleration from an Ultraviolet Complete Theory. Universe 2018, 4, 82. [Google Scholar] [CrossRef] [Green Version]
- Berezhiani, L.; Khoury, J.; Wang, J. Universe without dark energy: Cosmic acceleration from dark matter-baryon interactions. Phys. Rev. D 2017, 95, 123530. [Google Scholar] [CrossRef] [Green Version]
- Collaboration, P. Planck 2018 results: VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.; Sangwan, A.; Jassal, H. Dark energy equation of state parameter and its evolution at low redshift. J. Cosmol. Astropart. Phys. 2017, 2017, 012. [Google Scholar] [CrossRef] [Green Version]
- Zlatev, I.; Wang, L.; Steinhardt, P.J. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 1999, 82, 896–899. [Google Scholar] [CrossRef] [Green Version]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1935. [Google Scholar] [CrossRef] [Green Version]
- Bousso, R. The holographic principle. Rev. Mod. Phys. 2002, 74, 825–874. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wang, Y.; Li, M. Holographic dark energy. Phys. Rep. 2017, 696, 1–57. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, A.; Dixit, A.; Bhardwaj, V.K. Barrow HDE model for statefinder diagnostic in FLRW universe. Int. J. Mod. Phys. A 2021, 36, 2150030. [Google Scholar] [CrossRef]
- Srivastava, S.; Sharma, U.K.; Pradhan, A. New holographic dark energy in Bianchi-III universe with k-essence. New Astron. 2019, 68, 57–64. [Google Scholar] [CrossRef]
- Prasanthi, U.Y.D.; Aditya, Y. Anisotropic Renyi holographic dark energy models in general relativity. Results Phys. 2020, 17, 103101. [Google Scholar] [CrossRef]
- Korunur, M. Tsallis holographic dark energy in Bianchi type-III spacetime with scalar fields. Mod. Phys. Lett. A 2019, 34, 1950310. [Google Scholar] [CrossRef]
- Reddy, D.R.K.; Raju, P.; Sobhanbabu, K. Five dimensional spherically symmetric minimally interacting holographic dark energy model in Brans–Dicke theory. Astrophys. Space Sci. 2016, 361, 123. [Google Scholar] [CrossRef]
- Reddy, D.R.K.; Anitha, S.; Umadevi, S. Five dimensional minimally interacting holographic dark energy model in Brans–Dicke theory of gravitation. Astrophys. Space Sci. 2016, 361, 356. [Google Scholar] [CrossRef]
- Singh, K.P.; Singh, P.S. Dark energy on higher dimensional spherically symmetric Brans–Dicke universe. Chin. J. Phys. 2019, 60, 239. [Google Scholar] [CrossRef]
- Felice, A.D.; Tsujikawa, S. f(R) Theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.H.; Wang, B.; Abdalla, E. Deep connection between f(R) gravity and the interacting dark sector model. Phys. Rev. D 2011, 84, 123526. [Google Scholar] [CrossRef] [Green Version]
- Zumalacárregui, M.; Koivisto, T.S.; Mota, D.F. DBI Galileons in the Einstein frame: Local gravity and cosmology. Phys. Rev. D 2013, 87, 083010. [Google Scholar] [CrossRef] [Green Version]
- Kofinas, G.; Papantonopoulos, E.; Saridakis, E.N. Modified Brans–Dicke cosmology with matter-scalar field interaction. Class. Quan. Gravit. 2016, 33, 155004. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.F.; Capozziello, S.; de Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amendola, L.; Tocchini-Valentini, D. Stationary dark energy: The present universe as a global attractor. Phys. Rev. D 2001, 64, 043509. [Google Scholar] [CrossRef] [Green Version]
- Zimdahl, W.; Pavón, D.; Chimento, L.P. Interacting quintessence. Phys. Lett. B 2001, 521, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Zimdahl, W.; Pavón, D. Letter: Statefinder Parameters for Interacting Dark Energy. Gen. Relat. Gravit. 2004, 36, 1483–1491. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.G.; Wang, A. Cosmology with interaction between phantom dark energy and dark matter and the coincidence problem. J. Cosmol. Astropart. Phys. 2005, 3, 002. [Google Scholar] [CrossRef]
- Singh, C.P.; Kumar, P. Holographic dark energy models with statefinder diagnostic in modified f(R,T) gravity. arXiv 2015, arXiv:1507.07314v2. [Google Scholar]
- Sadri, E.; Khurshudyan, M.; Chattopadhyay, S. An interacting new holographic dark energy in the framework of fractal cosmology. Astrophys. Space Sci. 2018, 363, 230. [Google Scholar] [CrossRef] [Green Version]
- Dubey, V.C.; Sharma, U.K. Comparing the holographic principle inspired dark energy models. New Astron. 2021, 86, 101586. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, J.; Kim, H.C. Dark energy from vacuum entanglement. J. Cosmol. Astropart. Phys. 2007, 08, 005. [Google Scholar] [CrossRef]
- Mukohyama, S.; Seriu, M.; Kodama, H. Can the entanglement entropy be the origin of black-hole entropy? Phys. Rev. D 1997, 55, 7666–7679. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Li, M.; Li, N.; Zhang, Z. Holographic dark energy with cosmological constant. J. Cosmol. Astropart. Phys. 2015, 08, 012. [Google Scholar] [CrossRef] [Green Version]
- Myung, Y.S. Instability of holographic dark energy models. Phys. Lett. B 2007, 652, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Mathew, T.K.; Suresh, J.; Divakaran, D. Modified holographic Ricci dark energy model and state finder diagnosis in flat universe. Int. J. Mod. Phys. D 2013, 22, 1350056. [Google Scholar] [CrossRef] [Green Version]
- Saez, D.; Ballester, V. A simple coupling with cosmological implications. Phys. Lett. A 1986, 113, 467–470. [Google Scholar] [CrossRef]
- Aditya, Y.; Raju, K.D.; Ravindranath, P.J.; Reddy, D.R.K. Dynamical aspects of anisotropic Bianchi type VI0 cosmological model with dark energy fluid and massive scalar field. Indian J. Phys. 2021, 95, 383–389. [Google Scholar] [CrossRef]
- Kim, H. Brans-Dicke theory as a unified model for dark matter-dark energy. Mon. Not. R. Astron. Soc. 2005, 364, 813–822. [Google Scholar] [CrossRef] [Green Version]
- Panotopoulos, G.; Rincón, N. Stability of cosmic structures in scalar–tensor theories of gravity. Eur. Phys. J. C 2018, 78, 40. [Google Scholar] [CrossRef] [Green Version]
- Mandal, R.; Sarkar, C.; Sanyal, A.K. Early universe with modified scalar-tensor theory of gravity. J. High Energy Phys. 2018, 05, 078. [Google Scholar] [CrossRef] [Green Version]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Linde, A. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Pradhan, A.; Kumar Singh, A.; Chouhan, D.S. Accelerating Bianchi Type-V Cosmology with Perfect Fluid and Heat Flow in Sáez-Ballester Theory. Int. J. Theor. Phys. 2013, 52, 266–278. [Google Scholar] [CrossRef] [Green Version]
- Sharma, U.K.; Zia, R.; Pradhan, A. Transit cosmological models with perfect fluid and heat flow in Sáez-Ballester theory of gravitation. J. Astrophys. Astr. 2019, 40, 2. [Google Scholar] [CrossRef]
- Kaluza, T. Zum Unitätsproblem der Physik (On the unification problem in physics). Sitzungsber. Preuss Akad. Wiss. Berlin Math. Phys. 1921, K1, 966. [Google Scholar]
- Klein, O. Quantentheorie und fünfdimensionale Relativitätstheorie (Quantum theory and five-dimensional relativity theory). Z. Phys. 1926, 37, 895–906. [Google Scholar] [CrossRef]
- Banik, S.K.; Bhuyan, K. Dynamics of higher-dimensional FRW cosmology in Rpexp(λR) gravity. Pramana J. Phys. 2017, 88, 26. [Google Scholar] [CrossRef]
- Aly, A.A. Tsallis holographic dark energy with Granda-Oliveros scale in (n + 1)-dimensional FRW universe. Adv. Astron. 2019, 2019, 8138067. [Google Scholar] [CrossRef] [Green Version]
- Farajollahi, H.; Amiri, H. A 5D noncompact Kaluza-Klein cosmology in the presence of null perfect fluid. Int. J. Mod. Phys. D 2010, 19, 1823–1830. [Google Scholar] [CrossRef] [Green Version]
- Wesson, P.S. The status of modern five-dimensional gravity (A short review: Why physics needs the fifth dimension). Int. J. Mod. Phys. D 2015, 24, 1530001. [Google Scholar] [CrossRef] [Green Version]
- Marciano, W.J. Time variation of the fundamental constants and Kaluza-Klein theories. Phy. Rev. Lett. 1984, 52, 489–491. [Google Scholar] [CrossRef]
- Chakraborty, S.; Debnath, U. Higher dimensional cosmology with normal scalar field and tachyonic field. Int. J. Theor. Phys. 2010, 49, 1693–1698. [Google Scholar] [CrossRef]
- Zhang, X. Heal the world: Avoiding the cosmic doomsday in the holographic dark energy model. Phys. Lett. B 2010, 683, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Astefanesei, D.; Herdeiro, C.; Oliveira, J.; Radu, E. Higher dimensional black hole scalarization. J. High Energy Phys. 2020, 9, 186. [Google Scholar] [CrossRef]
- Ghaffarnejad, H.; Farsam, M.; Yaraie, E. Effects of quintessence dark energy on the action growth and butterfly velocity. Adv. High Energy Phys. 2020, 2020, 9529356. [Google Scholar] [CrossRef]
- Montefalcone, G.; Steinhardt, P.J.; Wesley, D.H. Dark energy, extra dimensions, and the Swampland. J. High Energy Phys. 2020, 6, 091. [Google Scholar] [CrossRef]
- Saha, A.; Ghose, S. Interacting Tsallis holographic dark energy in higher dimensional cosmology. Astrophys. Space Sci. 2020, 365, 98. [Google Scholar] [CrossRef]
- Mishra, A.K.; Sharma, U.K.; Pradhan, A. A comparative study of Kaluza–Klein model with magnetic field in Lyra manifold and general relativity. New Astron. 2019, 70, 27–35. [Google Scholar] [CrossRef]
- Ahmed, N.; Pradhan, A. Crossing the phantom divide line in universal extra dimensions. New Astron. 2020, 80, 101406. [Google Scholar] [CrossRef]
- Samanta, G.C.; Dhal, S.N. Higher dimensional cosmological models filled with perfect fluid in f(R,T) theory of gravity. Int. J. Theor. Phys. 2013, 52, 1334–1344. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S. Holographic dark energy model with linearly varying deceleration parameter and generalised Chaplygin gas dark energy model in Bianchi type-I universe. Astrophys. Space Sci. 2014, 349, 985–993. [Google Scholar] [CrossRef]
- Sarkar, S. Interacting holographic dark energy with variable deceleration parameter and accreting black holes in Bianchi type-V universe. Astrophys. Space Sci. 2014, 352, 245–253. [Google Scholar] [CrossRef]
- Ghaffari, S.; Sheykhi, A.; Dehghani, M. Statefinder diagnosis for holographic dark energy in the DGP braneworld. Phys. Rev. D 2015, 91, 023007. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.M.; Samanta, G.C. Dark energy in spherically symmetric universe coupled with Brans-Dicke scalar field. Adv. High Energy Phys. 2019, 2019, 5234014. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Kamionkowski, M.; Weinberg, N.N. Phantom energy: Dark energy with ω < −1 causes a cosmic doomsday. Phys. Rev. Lett. 2003, 91, 071301. [Google Scholar] [PubMed]
- Mollah, M.R.; Singh, K.P.; Singh, P.S. Bianchi type-III cosmological model with quadratic EoS in Lyra geometry. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850194. [Google Scholar] [CrossRef] [Green Version]
- Aditya, Y.; Reddy, D.R.K. Anisotropic new holographic dark energy model in Saez–Ballester theory of gravitation. Astrophys. Space Sci. 2018, 363, 207. [Google Scholar] [CrossRef]
- Skibba, R. Crunch, rip, freeze or decay—How will the Universe end? Nature 2020, 584, 187. [Google Scholar] [CrossRef]
- Mack, K. The End of Everything: (Astrophysically Speaking); Scribner: New York, NY, USA, 2020. [Google Scholar]
- Camarena, D.; Marra, V. Local determination of the Hubble constant and the deceleration parameter. Phys. Rev. Res. 2020, 2, 013028. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Ruchika; Sen, A.A. Model-independent constraints on dark energy evolution from low-redshift observations. Mon. Not. R. Astron. Soc. 2019, 484, 4484–4494. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.P.; Bishi, B.K. Bulk viscous cosmological model in Brans-Dicke theory with new form of time varying deceleration parameter. Adv. High Energy Phys. 2017, 2017, 1390572. [Google Scholar] [CrossRef] [Green Version]
- Biswas, M.; Debnath, U.; Ghosh, S.; Guha, B.K. Study of QCD generalized ghost dark energy in FRW universe. Eur. Phys. J. C 2019, 79, 659. [Google Scholar] [CrossRef]
- Mishra, R.K.; Chand, A. Cosmological models in Sáez-Ballester theory with bilinear varying deceleration parameter. Astrophys. Space Sci. 2020, 365, 76. [Google Scholar] [CrossRef]
- Ellis, G.F.R.; Elst, H.V. Cosmological models (Cargèse lectures 1998). NATO Adv. Study Inst. Ser. C Math. Phys. Sci. 1999, 541, 1. [Google Scholar]
- Khodadi, M.; Heydarzade, Y.; Nozari, K.; Darabi, F. On the stability of Einstein static universe in doubly general relativity scenario. Eur. Phys. J. C 2015, 75, 590. [Google Scholar] [CrossRef] [Green Version]
- Levin, J.J.; Freese, K. Curvature and flatness in a Brans-Dicke universe. Nucl. Phys. B 1994, 421, 635–661. [Google Scholar] [CrossRef] [Green Version]
- Holman, M. How Problematic is the Near-Euclidean spatial geometry of the large-scale Universe? Found. Phys. 2018, 8, 1617–1647. [Google Scholar] [CrossRef] [Green Version]
- Valentino, E.D.; Melchiorri, A.; Silk, J. Planck evidence for a closed Universe and a possible crisis for cosmology. Nat. Astron. 2020, 4, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Javed, W.; Nawazish, I.; Shahid, F.; Irshad, N. Evolution of non-flat cosmos via GGPDE f(R) model. Eur. Phys. J. C 2020, 80, 90. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Hanafy, W. A built-in inflation in the f(T)-cosmology. Eur. Phys. J. C 2014, 74, 3099. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.J.; Overduin, J.M. The nearly flat universe. Gen. Relativ. Gravit. 2005, 37, 1491. [Google Scholar] [CrossRef] [Green Version]
- Kribs, G.D. TASI 2004 Lectures on the phenomenology of extra dimensions. arXiv 2006, arXiv:hep-ph/0605325v1. [Google Scholar]
- Ketov, S.V. Modified gravity in higher dimensions, flux compactification, and cosmological inflation. Symmetry 2019, 11, 1528. [Google Scholar] [CrossRef] [Green Version]
- Hamed, N.A.; Dimopoulos, S.; Dvali, G. Large extra dimensions: A new arena for particle physics. Phys. Today 2002, 55, 35–40. [Google Scholar] [CrossRef]
- Goldberger, W.D.; Wise, M.B. Modulus stabilization with bulk fields. Phys. Rev. Lett. 1999, 83, 4922–4925. [Google Scholar] [CrossRef] [Green Version]
- Carroll, S.M.; Geddes, J.; Hoffman, M.B.; Wald, R.M. Classical stabilization of homogeneous extra dimensions. Phys. Rev. D 2002, 66, 024036. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.J.H.; Freese, K. Cosmological challenges in theories with extra dimensions and remarks on the horizon problem. Phys. Rev. D 1999, 61, 023511. [Google Scholar] [CrossRef] [Green Version]
- Arapoğlu, A.S.; Yalçınkaya, E.; Yükselci, A.E. Dynamical system analysis of a five-dimensional cosmological model. Astrophys. Space Sci. 2018, 363, 215. [Google Scholar] [CrossRef] [Green Version]
- Bronnikov, K.A.; Rubinn, S.G. Self-stabilization of extra dimensions. Phys. Rev. D 2006, 73, 124019. [Google Scholar] [CrossRef] [Green Version]
- Sundrum, R. TASI 2004 lectures: To the fifth dimension and back. arXiv 2005, arXiv:hep-th/0508134v2. [Google Scholar]
- Kainulainen, K.; Sunhede, D. Dark energy, scalar-tensor gravity, and large extra dimensions. Phys. Rev. D 2006, 73, 083510. [Google Scholar] [CrossRef]
- Mazumdar, A. Extra dimensions and inflation. Phys. Lett. B 1999, 469, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, F.; Rasanen, S. Lovelock inflation and the number of large dimensions. J. High Energy Phys. 2007, 11, 003. [Google Scholar] [CrossRef] [Green Version]
- Chirkov, D.; Pavluchenko, S.A. Some aspects of the cosmological dynamics in Einstein–Gauss–Bonnet gravity. Mod. Phys. Lett. A 2021, 36, 2150092. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Moniz, P.V. Modified Saez–Ballester scalar–tensor theory from 5D space-time. Class. Quantum Grav. 2018, 35, 025004. [Google Scholar] [CrossRef] [Green Version]
- Moraes, P.H.R.S.; Correa, R.A.C. The importance of scalar fields as extra dimensional metric components in Kaluza-Klein models. Adv. Astron. 2019, 2019, 5104529. [Google Scholar] [CrossRef]
- Bruck, C.D.E.; Longden, C. Einstein–Gauss–Bonnet gravity with extra dimensions. Galaxies 2019, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Hamed, N.A.; Cohen, A.G.; Georgi, H. (De)Constructing dimensions. Phys. Rev. Lett. 2001, 86, 4757–4761. [Google Scholar] [CrossRef] [Green Version]
- Tosa, Y. Classical Kaluza-Klein cosmology for a torus space with a cosmological constant and matter. Phys. Rev. D 1984, 30, 2054, Erratum in Phys. Rev. D 1985, 31, 2697.. [Google Scholar] [CrossRef]
- Egorov, V.O.; Volobuev, I.P. Stabilization of the extra dimension size in RS model by bulk Higgs field. J. Phys. Conf. Ser. 2017, 798, 012085. [Google Scholar] [CrossRef] [Green Version]
- Dudas, E.; Quiros, M. Five-dimensional massive vector fields and radion stabilization. Nucl. Phys. B 2005, 721, 309. [Google Scholar] [CrossRef] [Green Version]
- Kanti, P.; Olive, K.A.; Pospelov, M. On the stabilization of the size of extra dimensions. Phys. Lett. B 2002, 538, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Ponton, E.; Poppitz, E. Casimir energy and radius stabilization in five and six dimensional orbifolds. J. High Energy Phys. 2001, 06, 019. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Mukherjee, H.; Paul, T.; SenGupta, S. Radion stabilization in higher curvature warped spacetime. Eur. Phys. J. C 2018, 78, 108. [Google Scholar] [CrossRef]
- Wongjun, P. Casimir dark energy, stabilization of the extra dimensions and Gauss–Bonnet term. Eur. Phys. J. C 2015, 75, 6. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Wang, A.; Wu, Q. Cosmological constant and late transient acceleration of the universe in the Horava–Witten heterotic M-theory on S1/Z2. Phys. Lett. B 2008, 663, 147–151. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Santos, N.O.; Vo, P.; Wang, A. Late transient acceleration of the universe in string theory on S1/Z2. J. Cosmol. Astropart. Phys. 2008, 09, 004. [Google Scholar] [CrossRef] [Green Version]
- Wang, A. Thick de Sitter 3-branes, dynamic black holes, and localization of gravity. Phys. Rev. D 2002, 66, 024024. [Google Scholar] [CrossRef] [Green Version]
- Rador, T. Acceleration of the Universe via f(R) gravities and the stability of extra dimensions. Phys. Rev. D 2007, 75, 064033. [Google Scholar] [CrossRef] [Green Version]
- Greene, B.R.; Levin, J. Dark energy and stabilization of extra dimensions. J. High Energy Phys. 2007, 11, 096. [Google Scholar] [CrossRef]
- Roberts, M.D. Vacuum Energy. arXiv 2001, arXiv:hep-th/0012062v3. [Google Scholar]
- Ichinose, S. Casimir Energy of the Universe and the Dark Energy Problem. J. Phys. Conf. Ser. 2012, 384, 012028. [Google Scholar] [CrossRef] [Green Version]
- Dupays, A.; Lamine, B.; Blanchard, A. Can dark energy emerge from quantum effects in a compact extra dimension? Astron. Astrophys. 2013, 554, A60. [Google Scholar]
- Shiromizu, T.; Maeda, K.I.; Sasaki, M. The Einstein equations on the 3-brane world. Phys. Rev. D 2000, 62, 024012. [Google Scholar] [CrossRef] [Green Version]
- Dick, R. Brane worlds. Class. Quant. Grav. 2001, 18, R1–R23. [Google Scholar] [CrossRef]
- Hogan, C.J. Classical gravitational-wave backgrounds from formation of the brane world. Class. Quant. Grav. 2001, 18, 4039–4044. [Google Scholar] [CrossRef]
- Ichiki, K.; Yahiro, M.; Kajino, T.; Orito, M.; Mathews, G.J. Observational constraints on dark radiation in brane cosmology. Phys. Rev. D 2002, 66, 043521. [Google Scholar] [CrossRef] [Green Version]
- Freese, K.; Lewis, M. Cardassian expansion: A model in which the universe is flat, matter dominated, and accelerating. Phys. Lett. B 2002, 540, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.H.; Fujimoto, M. Cardassian expansion: Constraints from compact radio source angular size versus redshift data. Astrophys. J. 2002, 581, 1. [Google Scholar] [CrossRef] [Green Version]
- Langlois, D. Cosmology in a brane-universe. Astrophys. Space Sci. 2003, 283, 469–479. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Fujimoto, M. Constraints on Cardassian expansion from distant type Ia supernovae. Astrophys. J. 2003, 585, 52–56. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Fujimoto, M. Constraints on the Cardassian scenario from the expansion turnaround redshift and the Sunyaev-Zeldovich/X-ray data. Astrophys. J. 2004, 602, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G.; Gabadadze, G.; Porrati, M. 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B 2000, 485, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Alcaniz, J.S. Dark energy and some alternatives: A brief overview. Braz. J. Phys. 2006, 36, 1109–1117. [Google Scholar] [CrossRef] [Green Version]
- Satheeshkumar, V.H.; Suresh, P.K. Understanding gravity: Some extra-dimensional perspectives. ISRN Astron. Astrophys. 2011, 2011, 131473. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.H.S.; Suresh, P.K. Are We Living in a Higher Dimensional Universe? arXiv 2005, arXiv:gr-qc/0506125v2. [Google Scholar]
- Dvali, G.; Turner, M.S. Dark energy as a modification of the Friedmann equation. arXiv 2003, arXiv:astro-ph/0301510v1. [Google Scholar]
- Wang, A. Orbifold branes in string/M-Theory and their cosmological applications. arXiv 2010, arXiv:1003.4991v1. [Google Scholar]
- Wu, Q.; Gong, Y.; Wang, A. Brane cosmology in the Horava-Witten heterotic M-theory on S1/Z2. J. Cosmol. Astropart. Phys. 2009, 6, 015. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Santos, N.O. The cosmological constant in the brane world of string theory on S1/Z2. Phys. Lett. B 2008, 669, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Santos, N.O. The hierarchy problem, radion mass, localization of gravity and 4D effective newtonian potential in string theory on S1/Z2. Int. J. Mod. Phys. A 2010, 25, 1661–1698. [Google Scholar] [CrossRef] [Green Version]
- Devin, M.; Ali, T.; Cleaver, G.; Wang, A.; Wu, Q. Branes in the MD × Md+ × Md− compactification of type II string on S1/Z2 and their cosmological applications. J. High Energy Phys. 2009, 10, 095. [Google Scholar] [CrossRef]
- Wang, A.; Cai, R.-G.; Santos, N.O. Two 3-Branes in Randall-Sundrum setup and current acceleration of the universe. Nucl. Phys. B 2008, 797, 395. [Google Scholar] [CrossRef] [Green Version]
- Garriga, J.; Pomarol, A. A stable hierarchy from Casimir forces and the holographic interpretation. Phys. Lett. B 2003, 560, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Garriga, J.; Pujolas, O.; Tanaka, T. Radion effective potential in the Brane-World. Nucl. Phys. B 2001, 605, 192–214. [Google Scholar] [CrossRef] [Green Version]
u | v | k | q |
---|---|---|---|
2.78 | 1 | −0.64 | |
2.78 | 1 | −0.55 | |
2.25 | 1 | −0.55 | |
2.25 | 1.9 | −0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, P.S.; Singh, K.P. Vacuum Energy in Saez-Ballester Theory and Stabilization of Extra Dimensions. Universe 2022, 8, 60. https://doi.org/10.3390/universe8020060
Singh PS, Singh KP. Vacuum Energy in Saez-Ballester Theory and Stabilization of Extra Dimensions. Universe. 2022; 8(2):60. https://doi.org/10.3390/universe8020060
Chicago/Turabian StyleSingh, Pheiroijam Suranjoy, and Kangujam Priyokumar Singh. 2022. "Vacuum Energy in Saez-Ballester Theory and Stabilization of Extra Dimensions" Universe 8, no. 2: 60. https://doi.org/10.3390/universe8020060
APA StyleSingh, P. S., & Singh, K. P. (2022). Vacuum Energy in Saez-Ballester Theory and Stabilization of Extra Dimensions. Universe, 8(2), 60. https://doi.org/10.3390/universe8020060