A Matrix Model of Four-Dimensional Noncommutative Gravity
Abstract
:1. Introduction
2. Gauge-Theoretic Approach of Gravity Theories
3. Gauge Theories and Noncommutativity
4. Noncommutative Gravity in Four Dimensions: A Matrix Model
4.1. A Fuzzy Version of the Four-Sphere
4.2. Four-Dimensional Gravity Matrix Model
4.2.1. Gauge Group and Representation
4.2.2. Action and Equations of Motion
- , the covariant coordinate of the noncommutative gauge theory, where is the gauge connection and is decomposed on the various generators as:
- , the covariant noncommutative tensor, with the two-form field;
- , the field strength tensor of the theory,
4.2.3. Spontaneous Symmetry Breaking of the Noncommutative Action
4.2.4. The Commutative Limit
- As long as the noncommutativity of the space ceases to exist, the two-form field , that was related to the preservation of covariance of the fuzzy space, decouples, as does the field, which was introduced to extend the gauge group due to the behaviour of the anticommutators in noncommutative gauge theories;
- The commutators of functions vanish, while the anticommutators of functions reduce to products, ;
- The inner derivation reduces to the simple derivative: and the traces reduce to integrations, ;
- Additionally, in the specific gauge in which the symmetry breaking occurred, the expression of the D-related component tensor , (19), of the field strength tensor reduces to:
- In order to exactly match the results of the commutative case, we also need to take into account the following reparametrizations:
5. Conclusions—Future Plans
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | |
2 | |
3 | |
4 | |
5 | For another approach using the Drinfel’d twist see also [82]. |
6 | Sciama’s general relativistic background is compensated in Kibble’s theory by the presence of the vierbeins. This implies a correlation between the reparametrizations and local translational transformations. |
7 | The Poincaré group is not semi-simple since it possesses the translations as a normal subgroup. For this reason no non-degenerate invariant form exists and that is why no quadratic action was available [18]. |
8 | Here, we follow the construction for the group. The same methodology applies for the case, too. |
9 | Regarding the vierbein and the spin connection, this is an a posteriori identification as the gauge fields, since, in order to proceed with it, the torsionless condition and the field equation should hold (on-shell state) or else, especially for the vierbein, the transformation is not even covariant. In other words, reparametrizations and gauge transformations of the fields may be used interchangeably after the symmetry breaking of the considered action and the attainment of the equations of motion. |
10 | Therefore the torsionless condition is derived as the equation of motion of the Lorentz gauge field. |
11 | |
12 | The momenta operators will become more relevant in our future work, as matter fields is planned to be introduced. |
13 | |
14 | See also [113], in which the authors make use of a similar term in their action in the framework of stringy RVM. |
15 | Had we taken into consideration the antisymmetric part (antisymmetric tensor) or the adjoint representation, the symmetry breaking would lead to the same gauge symmetry enhanced by a . In case the scalars are charged under the initial , this Abelian gauge group also breaks to a global . |
References
- Carroll, S.M. Spacetime and Geometry; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Wald, R.M. General Relativity; Chicago University Press: Chicago, IL, USA, 1984. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Blagojević, M.; Hehl, F.W. (Eds.) Gauge Theories of Gravitation: A Reader with Commentaries; World Scientific: Singapore, 2013. [Google Scholar] [CrossRef] [Green Version]
- Ortin, T. Gravity and Strings; Cambridge Monographs on Mathematical Physics Series; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Utiyama, R. Invariant theoretical interpretation of interaction. Phys. Rev. 1956, 101, 1597–1607. [Google Scholar] [CrossRef]
- Sciama, D.W. On the analogy between charge and spin in general relativity. In Recent Developments in General Relativity; Festschrift for Infeld; Pergamon Press: Oxford, UK; PWN: Warsaw, Poland, 1962; pp. 415–439. [Google Scholar]
- Kibble, T.W.B. Lorentz invariance and the gravitational field. J. Math. Phys. 1961, 2, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Stelle, K.S.; West, P.C. Spontaneously Broken De Sitter Symmetry and the Gravitational Holonomy Group. Phys. Rev. D 1980, 21, 1466. [Google Scholar] [CrossRef]
- Oda, I. Planck Scale from Broken Local Conformal Invariance in Weyl Geometry. Adv. Stud. Theor. Phys. 2020, 14, 9–28. [Google Scholar] [CrossRef]
- Ghilencea, D.M. Stueckelberg breaking of Weyl conformal geometry and applications to gravity. Phys. Rev. D 2020, 101, 045010. [Google Scholar] [CrossRef] [Green Version]
- Chamseddine, A.H.; West, P.C. Supergravity as a Gauge Theory of Supersymmetry. Nucl. Phys. B 1977, 129, 39–44. [Google Scholar] [CrossRef]
- Kaku, M.; Townsend, P.K.; van Nieuwenhuizen, P. Gauge Theory of the Conformal and Superconformal Group. Phys. Lett. B 1977, 69, 304–308. [Google Scholar] [CrossRef]
- MacDowell, S.W.; Mansouri, F. Unified Geometric Theory of Gravity and Supergravity. Phys. Rev. Lett. 1977, 38, 739, Erratum in Phys. Rev. Lett. 1977, 38, 1376. [Google Scholar] [CrossRef]
- Ivanov, E.A.; Niederle, J. Gauge Formulation of Gravitation Theories. 1. The Poincare, De Sitter and Conformal Cases. Phys. Rev. D 1982, 25, 976. [Google Scholar] [CrossRef]
- Kibble, T.W.B.; Stelle, K.S. Gauge Theories of Gravity and Supergravity; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Fradkin, E.S.; Tseytlin, A.A. Conformal supergravity. Phys. Rep. 1985, 119, 233–362. [Google Scholar] [CrossRef]
- Witten, E. (2+1)-Dimensional Gravity as an Exactly Soluble System. Nucl. Phys. B 1988, 311, 46. [Google Scholar] [CrossRef]
- Connes, A. Noncommutative Geometry; InterEditions: Paris, France, 1994; ISBN 9780121858605. [Google Scholar]
- Chamseddine, A.H.; Connes, A. The Spectral action principle. Commun. Math. Phys. 1997, 186, 731–750. [Google Scholar] [CrossRef] [Green Version]
- Gracia-Bondia, J.M.; Varilly, J.C.; Figueroa, H. Elements of Noncommutative Geometry; Birkhauser: Boston, MA, USA, 2001. [Google Scholar]
- Bayen, F.; Flato, M.; Fronsdal, C.; Lichnerowicz, A.; Sternheimer, D. Deformation Theory and Quantization. 1. Deformations of Symplectic Structures. Ann. Phys. 1978, 111, 61. [Google Scholar] [CrossRef]
- Kontsevich, M. Deformation quantization of Poisson manifolds. Lett. Math. Phys. 2003, 66, 157–216. [Google Scholar] [CrossRef] [Green Version]
- Fritz, C.; Majid, S. Noncommutative spherically symmetric spacetimes at semiclassical order. Class. Quantum Gravity 2017, 34, 135013. [Google Scholar] [CrossRef] [Green Version]
- Buric, M.; Grammatikopoulos, T.; Madore, J.; Zoupanos, G. Gravity and the structure of noncommutative algebras. JHEP 2006, 04, 054. [Google Scholar] [CrossRef]
- Buric, M.; Madore, J.; Zoupanos, G. The Energy-momentum of a Poisson structure. Eur. Phys. J. C 2008, 55, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Buric, M.; Madore, J.; Zoupanos, G. WKB Approximation in Noncommutative Gravity. SIGMA 2007, 3, 125. [Google Scholar] [CrossRef] [Green Version]
- Maceda, M.; Madore, J.; Manousselis, P.; Zoupanos, G. Can noncommutativity resolve the big bang singularity? Eur. Phys. J. C 2004, 36, 529–534. [Google Scholar] [CrossRef] [Green Version]
- Lukierski, J.; Ruegg, H.; Nowicki, A.; Tolstoi, V.N. Q deformation of Poincare algebra. Phys. Lett. B 1991, 264, 331–338. [Google Scholar] [CrossRef]
- Lukierski, J.; Nowicki, A.; Ruegg, H. New quantum Poincare algebra and k deformed field theory. Phys. Lett. B 1992, 293, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Madore, J. An Introduction to Noncommutative Differential Geometry and Its Physical Applications; Cambridge University Press: Cambridge, UK, 2000; Volume 257. [Google Scholar]
- Landi, G. An Introduction to Noncommutative Spaces and Their Geometry; Springer: Berlin/Heidelberg, Germany, 1997; Volume 51. [Google Scholar] [CrossRef] [Green Version]
- Szabo, R.J. Quantum field theory on noncommutative spaces. Phys. Rep. 2003, 378, 207–299. [Google Scholar] [CrossRef] [Green Version]
- Douglas, M.R.; Nekrasov, N.A. Noncommutative field theory. Rev. Mod. Phys. 2001, 73, 977–1029. [Google Scholar] [CrossRef] [Green Version]
- Madore, J.; Schraml, S.; Schupp, P.; Wess, J. Gauge theory on noncommutative spaces. Eur. Phys. J. C 2000, 16, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Aschieri, P.; Dimitrijevic, M.; Meyer, F.; Schraml, S.; Wess, J. Twisted gauge theories. Lett. Math. Phys. 2006, 78, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Jurco, B.; Schraml, S.; Schupp, P.; Wess, J. Enveloping algebra valued gauge transformations for nonAbelian gauge groups on noncommutative spaces. Eur. Phys. J. C 2000, 17, 521–526. [Google Scholar] [CrossRef] [Green Version]
- Connes, A. Gravity coupled with matter and foundation of noncommutative geometry. Commun. Math. Phys. 1996, 182, 155–176. [Google Scholar] [CrossRef] [Green Version]
- Chamseddine, A.H.; Connes, A.; Mukhanov, V. Geometry and the Quantum: Basics. JHEP 2014, 12, 098. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Connes, A.; Mukhanov, V. Quanta of Geometry: Noncommutative Aspects. Phys. Rev. Lett. 2015, 114, 091302. [Google Scholar] [CrossRef]
- Batakis, N.A.; Kehagias, A.A.; Zoupanos, G. Structure and spontaneous symmetry breaking of a gauge theory based on SU(5/1). Phys. Lett. B 1993, 315, 319–324, Erratum in Phys. Lett. B 1993, 318, 650–650. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Connes, A.; Marcolli, M. Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 2007, 11, 991–1089. [Google Scholar] [CrossRef]
- Lambiase, G.; Sakellariadou, M.; Stabile, A. Constraints on NonCommutative Spectral Action from Gravity Probe B and Torsion Balance Experiments. JCAP 2013, 12, 020. [Google Scholar] [CrossRef] [Green Version]
- Glaser, L.; Stern, A.B. Reconstructing manifolds from truncations of spectral triples. J. Geom. Phys. 2021, 159, 103921. [Google Scholar] [CrossRef]
- Bochniak, A.; Sitarz, A. Stability of Friedmann-Lemaître-Robertson-Walker solutions in doubled geometries. Phys. Rev. D 2021, 103, 044041. [Google Scholar] [CrossRef]
- Seiberg, N.; Witten, E. String theory and noncommutative geometry. JHEP 1999, 09, 032. [Google Scholar] [CrossRef] [Green Version]
- Chamseddine, A.H. Deforming Einstein’s gravity. Phys. Lett. B 2001, 504, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Chamseddine, A.H. SL(2,C) gravity with complex vierbein and its noncommutative extension. Phys. Rev. D 2004, 69, 024015. [Google Scholar] [CrossRef] [Green Version]
- Nair, V.P. Gravitational fields on a noncommutative space. Nucl. Phys. B 2003, 651, 313–327. [Google Scholar] [CrossRef] [Green Version]
- Abe, Y.; Nair, V.P. Noncommutative gravity: Fuzzy sphere and others. Phys. Rev. D 2003, 68, 025002. [Google Scholar] [CrossRef] [Green Version]
- Cardella, M.A.; Zanon, D. Noncommutative deformation of four-dimensional Einstein gravity. Class. Quantum Gravity 2003, 20, L95–L104. [Google Scholar] [CrossRef] [Green Version]
- Aschieri, P.; Castellani, L. Noncommutative supergravity in D = 3 and D = 4. JHEP 2009, 06, 087. [Google Scholar] [CrossRef] [Green Version]
- Aschieri, P.; Castellani, L. Noncommutative D = 4 gravity coupled to fermions. JHEP 2009, 06, 086. [Google Scholar] [CrossRef] [Green Version]
- Dimitrijević Ćirić, M.; Nikolić, B.; Radovanović, V. Noncommutative SO(2,3)⋆ gravity: Noncommutativity as a source of curvature and torsion. Phys. Rev. D 2017, 96, 064029. [Google Scholar] [CrossRef] [Green Version]
- Cacciatori, S.; Klemm, D.; Martucci, L.; Zanon, D. Noncommutative Einstein-AdS gravity in three-dimensions. Phys. Lett. B 2002, 536, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Aschieri, P.; Castellani, L. Noncommutative Chern-Simons gauge and gravity theories and their geometric Seiberg-Witten map. JHEP 2014, 11, 103. [Google Scholar] [CrossRef] [Green Version]
- Banados, M.; Chandia, O.; Grandi, N.E.; Schaposnik, F.A.; Silva, G.A. Three-dimensional noncommutative gravity. Phys. Rev. D 2001, 64, 084012. [Google Scholar] [CrossRef] [Green Version]
- Aschieri, P.; Blohmann, C.; Dimitrijevic, M.; Meyer, F.; Schupp, P.; Wess, J. A Gravity theory on noncommutative spaces. Class. Quantum Gravity 2005, 22, 3511–3532. [Google Scholar] [CrossRef]
- Ishibashi, N.; Kawai, H.; Kitazawa, Y.; Tsuchiya, A. A Large N reduced model as superstring. Nucl. Phys. B 1997, 498, 467–491. [Google Scholar] [CrossRef] [Green Version]
- Banks, T.; Fischler, W.; Shenker, S.H.; Susskind, L. M theory as a matrix model: A Conjecture. Phys. Rev. D 1997, 55, 5112–5128. [Google Scholar] [CrossRef] [Green Version]
- Connes, A.; Douglas, M.R.; Schwarz, A.S. Noncommutative geometry and matrix theory: Compactification on tori. JHEP 1998, 02, 003. [Google Scholar] [CrossRef] [Green Version]
- Aoki, H.; Iso, S.; Kawai, H.; Kitazawa, Y.; Tada, T. Space-time structures from IIB matrix model. Prog. Theor. Phys. 1998, 99, 713–746. [Google Scholar] [CrossRef] [Green Version]
- Hanada, M.; Kawai, H.; Kimura, Y. Describing curved spaces by matrices. Prog. Theor. Phys. 2006, 114, 1295–1316. [Google Scholar] [CrossRef] [Green Version]
- Furuta, K.; Hanada, M.; Kawai, H.; Kimura, Y. Field equations of massless fields in the new interpretation of the matrix model. Nucl. Phys. B 2007, 767, 82–99. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, J. The Origin of space-time as seen from matrix model simulations. PTEP 2012, 2012, 01A101. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.W.; Nishimura, J.; Tsuchiya, A. Expanding (3+1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9+1)-dimensions. Phys. Rev. Lett. 2012, 108, 011601. [Google Scholar] [CrossRef] [Green Version]
- Valtancoli, P. Gravity on a fuzzy sphere. Int. J. Mod. Phys. A 2004, 19, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Nair, V.P. The Chern-Simons one-form and gravity on a fuzzy space. Nucl. Phys. B 2006, 750, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Steinacker, H. Emergent Geometry and Gravity from Matrix Models: An Introduction. Class. Quantum Gravity 2010, 27, 133001. [Google Scholar] [CrossRef]
- Steinacker, H.C. Emergent gravity on covariant quantum spaces in the IKKT model. JHEP 2016, 12, 156. [Google Scholar] [CrossRef] [Green Version]
- Buric, M.; Madore, J. On noncommutative spherically symmetric spaces. Eur. Phys. J. C 2014, 74, 2820. [Google Scholar] [CrossRef] [Green Version]
- Buric, M.; Madore, J. Noncommutative de Sitter and FRW spaces. Eur. Phys. J. C 2015, 75, 502. [Google Scholar] [CrossRef] [Green Version]
- Chatzistavrakidis, A.; Jonke, L.; Jurman, D.; Manolakos, G.; Manousselis, P.; Zoupanos, G. Noncommutative Gauge Theory and Gravity in Three Dimensions. Fortschritte Phys. 2018, 66, 1800047. [Google Scholar] [CrossRef] [Green Version]
- Manolakos, G.; Manousselis, P.; Zoupanos, G. Four-dimensional Gravity on a Covariant Noncommutative Space. JHEP 2020, 08, 001. [Google Scholar] [CrossRef]
- Manolakos, G.; Manousselis, P.; Zoupanos, G. Four-Dimensional Gravity on a Covariant Noncommutative Space (II). Fortschritte Phys. 2021, 69, 2100085. [Google Scholar] [CrossRef]
- Jurman, D.; Manolakos, G.; Manousselis, P.; Zoupanos, G. Gravity as a Gauge Theory on Three-Dimensional Noncommutative spaces. PoS 2018, CORFU2017, 162. [Google Scholar] [CrossRef]
- Manolakos, G.; Manousselis, P.; Zoupanos, G. Gauge Theories: From Kaluza–Klein to noncommutative gravity theories. Symmetry 2019, 11, 856. [Google Scholar] [CrossRef] [Green Version]
- Lada, T.; Stasheff, J. Introduction to SH Lie algebras for physicists. Int. J. Theor. Phys. 1993, 32, 1087–1104. [Google Scholar] [CrossRef] [Green Version]
- Zwiebach, B. Closed string field theory: Quantum action and the B-V master equation. Nucl. Phys. B 1993, 390, 33–152. [Google Scholar] [CrossRef] [Green Version]
- Blumenhagen, R.; Brunner, I.; Kupriyanov, V.; Lüst, D. Bootstrapping non-commutative gauge theories from L∞ algebras. JHEP 2018, 05, 097. [Google Scholar] [CrossRef] [Green Version]
- Ćirić, M.D.; Giotopoulos, G.; Radovanović, V.; Szabo, R.J. Braided L∞-Algebras, Braided Field Theory and Noncommutative Gravity. arXiv 2021, arXiv:2103.08939. [Google Scholar]
- Aschieri, P.; Schenkel, A. Noncommutative connections on bimodules and Drinfeld twist deformation. Adv. Theor. Math. Phys. 2014, 18, 513–612. [Google Scholar] [CrossRef]
- Grewcoe, C.J.; Jonke, L.; Kodžoman, T.; Manolakos, G. From Hopf algebra to braided L∞-algebra. 2022; in press. [Google Scholar]
- Grosse, H.; Presnajder, P. The Construction on noncommutative manifolds using coherent states. Lett. Math. Phys. 1993, 28, 239–250. [Google Scholar] [CrossRef]
- Hammou, A.B.; Lagraa, M.; Sheikh-Jabbari, M.M. Coherent state induced star product on R**3(lambda) and the fuzzy sphere. Phys. Rev. D 2002, 66, 025025. [Google Scholar] [CrossRef] [Green Version]
- Vitale, P.; Wallet, J.C. Noncommutative field theories on : Toward UV/IR mixing freedom. JHEP 2013, 04, 115, Addendum in JHEP 2015, 03, 115. [Google Scholar] [CrossRef] [Green Version]
- Vitale, P. Noncommutative field theory on . Fortschritte Phys. 2014, 62, 825–834. [Google Scholar] [CrossRef] [Green Version]
- KováčIk, S.; Prešnajder, P. The velocity operator in quantum mechanics in noncommutative space. J. Math. Phys. 2013, 54, 102103. [Google Scholar] [CrossRef] [Green Version]
- Madore, J. The Fuzzy sphere. Class. Quantum Gravity 1992, 9, 69–88. [Google Scholar] [CrossRef]
- Jurman, D.; Steinacker, H. 2D fuzzy Anti-de Sitter space from matrix models. JHEP 2014, 01, 100. [Google Scholar] [CrossRef] [Green Version]
- Snyder, H.S. Quantized space-time. Phys. Rev. 1947, 71, 38–41. [Google Scholar] [CrossRef]
- Yang, C.N. On quantized space-time. Phys. Rev. 1947, 72, 874. [Google Scholar] [CrossRef]
- Heckman, J.; Verlinde, H. Covariant non-commutative space–time. Nucl. Phys. B 2015, 894, 58–74. [Google Scholar] [CrossRef] [Green Version]
- Sperling, M.; Steinacker, H.C. Covariant 4-dimensional fuzzy spheres, matrix models and higher spin. J. Phys. A 2017, 50, 375202. [Google Scholar] [CrossRef]
- Sperling, M.; Steinacker, H.C. The fuzzy 4-hyperboloid and higher-spin in Yang–Mills matrix models. Nucl. Phys. B 2019, 941, 680–743. [Google Scholar] [CrossRef]
- Buric, M.; Latas, D.; Nenadovic, L. Fuzzy de Sitter Space. Eur. Phys. J. C 2018, 78, 953. [Google Scholar] [CrossRef]
- Kimura, Y. Noncommutative gauge theory on fuzzy four sphere and matrix model. Nucl. Phys. B 2002, 637, 177–198. [Google Scholar] [CrossRef] [Green Version]
- Abe, Y. Construction of fuzzy S**4. Phys. Rev. D 2004, 70, 126004. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.N.; Mills, R.L. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Phys. Rev. 1954, 96, 191–195. [Google Scholar] [CrossRef]
- Alvarez-Gaume, L.; Kehagias, A.; Kounnas, C.; Lüst, D.; Riotto, A. Aspects of Quadratic Gravity. Fortschritte Phys. 2016, 64, 176–189. [Google Scholar] [CrossRef] [Green Version]
- Møller, C. Conservation laws and absolute parallelism in general relativity. Mat. Fys. Dan. Vid. Selsk. 1961, 1, 1–50. [Google Scholar]
- Aschieri, P.; Madore, J.; Manousselis, P.; Zoupanos, G. Dimensional reduction over fuzzy coset spaces. JHEP 2004, 04, 034. [Google Scholar] [CrossRef] [Green Version]
- Aschieri, P.; Madore, J.; Manousselis, P.; Zoupanos, G. Unified theories from fuzzy extra dimensions. Fortschritte Phys. 2004, 52, 718–723. [Google Scholar] [CrossRef] [Green Version]
- Aschieri, P.; Madore, J.; Manousselis, P.; Zoupanos, G. Renormalizable theories from fuzzy higher dimensions. In Proceedings of the 3rd Summer School in Modern Mathematical Physics, Zlatibor, Serbia, 20–31 August 2004; pp. 135–145. [Google Scholar]
- Aschieri, P.; Grammatikopoulos, T.; Steinacker, H.; Zoupanos, G. Dynamical generation of fuzzy extra dimensions, dimensional reduction and symmetry breaking. JHEP 2006, 09, 026. [Google Scholar] [CrossRef] [Green Version]
- Aschieri, P.; Steinacker, H.; Madore, J.; Manousselis, P.; Zoupanos, G. Fuzzy extra dimensions: Dimensional reduction, dynamical generation and renormalizability. SFIN A 2007, 1, 25–42. [Google Scholar]
- Steinacker, H.; Zoupanos, G. Fermions on spontaneously generated spherical extra dimensions. JHEP 2007, 09, 017. [Google Scholar] [CrossRef]
- Chatzistavrakidis, A.; Steinacker, H.; Zoupanos, G. On the fermion spectrum of spontaneously generated fuzzy extra dimensions with fluxes. Fortschritte Phys. 2010, 58, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Chatzistavrakidis, A.; Steinacker, H.; Zoupanos, G. Orbifolds, fuzzy spheres and chiral fermions. JHEP 2010, 05, 100. [Google Scholar] [CrossRef] [Green Version]
- Chatzistavrakidis, A.; Zoupanos, G. Higher-Dimensional Unified Theories with Fuzzy Extra Dimensions. SIGMA 2010, 6, 063. [Google Scholar] [CrossRef] [Green Version]
- Gavriil, D.; Manolakos, G.; Orfanidis, G.; Zoupanos, G. Higher-Dimensional Unification with continuous and fuzzy coset spaces as extra dimensions. Fortschritte Phys. 2015, 63, 442–467. [Google Scholar] [CrossRef] [Green Version]
- Manolakos, G.; Zoupanos, G. The trinification model SU(3)3 from orbifolds for fuzzy spheres. Phys. Part. Nucl. Lett. 2017, 14, 322–327. [Google Scholar] [CrossRef]
- Mavromatos, N.E.; Solà Peracaula, J. Inflationary physics and trans-Planckian conjecture in the stringy running vacuum model: From the phantom vacuum to the true vacuum. Eur. Phys. J. Plus 2021, 136, 1152. [Google Scholar] [CrossRef]
- Chamseddine, A.H. An invariant action for noncommutative gravity in four dimensions. J. Math. Phys. 2003, 44, 2534. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manolakos, G.; Manousselis, P.; Roumelioti, D.; Stefas, S.; Zoupanos, G. A Matrix Model of Four-Dimensional Noncommutative Gravity. Universe 2022, 8, 215. https://doi.org/10.3390/universe8040215
Manolakos G, Manousselis P, Roumelioti D, Stefas S, Zoupanos G. A Matrix Model of Four-Dimensional Noncommutative Gravity. Universe. 2022; 8(4):215. https://doi.org/10.3390/universe8040215
Chicago/Turabian StyleManolakos, George, Pantelis Manousselis, Danai Roumelioti, Stelios Stefas, and George Zoupanos. 2022. "A Matrix Model of Four-Dimensional Noncommutative Gravity" Universe 8, no. 4: 215. https://doi.org/10.3390/universe8040215
APA StyleManolakos, G., Manousselis, P., Roumelioti, D., Stefas, S., & Zoupanos, G. (2022). A Matrix Model of Four-Dimensional Noncommutative Gravity. Universe, 8(4), 215. https://doi.org/10.3390/universe8040215