GRB Prompt Emission: Observed Correlations and Their Interpretations
Abstract
:1. Introduction
1.1. Observations
- BeppoSAX [3];
- The Compton Gamma Ray Observatory (CGRO), with the Burst and Transient Source Experiment (BATSE) on board [4];
- The High Energy Transient Explorer (HETE-2) with the Wide-field X-ray Monitor [5];
- The Wind Spacecraft with the Konus Wind GRB Experiment on board [6];
- The INTEGRAL satellite with the IBIS (Imager on-Board the INTEGRAL Satellite) instrument [7];
- The Fermi Gamma-ray Space Telescope with the Gamma Ray Burst Monitor (GBM) instrument onboard [10].
1.2. Models
2. Relevant Physical Quantities
2.1. Fundamental Quantities of Energy and Spectra
- (i)
- The band spectrum [60], which is defined as
- (ii)
- The cutoff power-law spectrum [33] (also called the Comptonized spectrum; this name is misleading since Comptonization can produce many types of spectra, while cutoff power-laws can be produced for a number of emission processes ), which is defined as
- i
- Fluence, S, which has units of erg cm, is the total energy emitted by the GRB as measured by a detector with some effective area within some energy band;
- ii
- Flux, F, which has units erg s cm, is the energy emitted by the GRB within some time period, as measured by a detector with some effective area.
- (i)
- (ii)
- (iii)
2.2. Light Curve Morphology Quantities
2.3. Transformation of Physical Quantities
2.4. GRB Jet Model Parameters
3. Prompt Observed Correlations
3.1. Luminosity–Time Scale Relations
Physical Interpretation
- Inverse Compton must dominate over synchrotron radiation in the emission region of the internal shock model, to produce spectral energies that are in agreement with highly variable GRBs [94].
- Larger optical depths, , to Compton scattering in the shells is necessary to: (1) produce lower energy photons for collisions that occur close to the central engine and (2) elongate the temporal pulses of the radiation that is produced in these collisions.
- The radius of the emission region must be located away from the central engine;
- The magnetic field strength within the emitting region must decrease as it expands;
- There must be a burst of rapid bulk acceleration when the emission is produced;
- The photon spectrum must have curvature associated with it (meaning it cannot be a single power-law across typical GRB energies);
- The spectral peak must progress from high to low energies as a function of time.
3.2. Spectral Peak Energy-Emitted Energy Relations
Physical Interpretation
3.3. Amati (-) and Yonetoku (-) Relations
Physical Interpretation
3.4. Golenetskii (Hardness-Intensity) Relation
Physical Interpretation
3.5. Ghirlanda Relation
Physical Interpretation
3.6. Lorentz Factor ()-Prompt Emission (, , and ) Relations
Physical Interpretation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klebesadel, R.W.; Strong, I.B.; Olson, R.A. Observations of Gamma-Ray Bursts of Cosmic Origin. Astrophys. J. Lett. 1973, 182, L85. [Google Scholar] [CrossRef]
- Reichart, D.E. The Redshift of GRB 970508. Astrophys. J. 1998, 495, L99–L101. [Google Scholar] [CrossRef]
- Boella, G.; Butler, R.C.; Perola, G.C.; Piro, L.; Scarsi, L.; Bleeker, J.A.M. BeppoSAX, the wide band mission for X-ray astronomy. Astron. Astrophys. Suppl. Ser. 1997, 122, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Fishman, G.J.; Meegan, C.A.; Wilson, R.B.; Brock, M.N.; Horack, J.M.; Kouveliotou, C.; Howard, S.; Paciesas, W.S.; Briggs, M.S.; Pendleton, G.N.; et al. The First BATSE Gamma-Ray Burst Catalog. Astrophys. J. Suppl. 1994, 92, 229. [Google Scholar] [CrossRef]
- Kawai, N.; Matsuoka, M.; Yoshida, A.; Shirasaki, Y.; Namiki, M.; Takagishi, K.; Yamauchi, M.; Hatsukade, I.; Fenimore, E.E.; Galassi, M. Wide-field X-ray Monitor on HETE-2. Astron. Astrophys. Suppl. Ser. 1999, 138, 563–564. [Google Scholar] [CrossRef]
- Aptekar, R.L.; Frederiks, D.D.; Golenetskii, S.V.; Ilynskii, V.N.; Mazets, E.P.; Panov, V.N.; Sokolova, Z.J.; Terekhov, M.M.; Sheshin, L.O.; Cline, T.L.; et al. Konus-W Gamma-Ray Burst Experiment for the GGS Wind Spacecraft. Space Sci. Rev. 1995, 71, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Ubertini, P.; Lebrun, F.; Di Cocco, G.; Bazzano, A.; Bird, A.J.; Broenstad, K.; Goldwurm, A.; La Rosa, G.; Labanti, C.; Laurent, P.; et al. IBIS: The Imager on-board INTEGRAL. Astron. Astrophys. 2003, 411, L131–L139. [Google Scholar] [CrossRef] [Green Version]
- Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K.O.; Nousek, J.A.; Wells, A.A.; White, N.E.; Barthelmy, S.D.; Burrows, D.N.; Cominsky, L.R.; et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 2004, 611, 1005–1020. [Google Scholar] [CrossRef] [Green Version]
- Barthelmy, S.D.; Barbier, L.M.; Cummings, J.R.; Fenimore, E.E.; Gehrels, N.; Hullinger, D.; Krimm, H.A.; Markwardt, C.B.; Palmer, D.M.; Parsons, A.; et al. The Burst Alert Telescope (BAT) on the SWIFT Midex Mission. Space Sci. Rev. 2005, 120, 143–164. [Google Scholar] [CrossRef] [Green Version]
- Case, G.; Cherry, M.; Wilson-Hodge, C.; Camero-Arranz, A.; Rodi, J.; Chaplin, V.; Finger, M.; Jenke, P.; Beklen, E.; Bhat, P.; et al. First Results from Fermi Gamma-ray Burst Monitor Earth Occultation Monitoring: Observations of Soft Gamma-ray Sources Above 100 keV. Astrophys. J. 2011, 729, 105. [Google Scholar] [CrossRef] [Green Version]
- Mazets, E.P.; Golenetskii, S.V. Observations of cosmic gamma-ray bursts. Astrophys. Space Phys. Rev. 1988, 6, 281–311. [Google Scholar]
- Goldstein, A.; Preece, R.D.; Mallozzi, R.S.; Briggs, M.S.; Fishman, G.J.; Kouveliotou, C.; Paciesas, W.S.; Burgess, J.M. The BATSE 5B Gamma-Ray Burst Spectral Catalog. Astrophys. J. Suppl. Ser. 2013, 208, 21. [Google Scholar] [CrossRef]
- Kouveliotou, C.; Meegan, C.A.; Fishman, G.J.; Bhat, N.P.; Briggs, M.S.; Koshut, T.M.; Paciesas, W.S.; Pendleton, G.N. Identification of two classes of gamma-ray bursts. Astrophys. J. 1993, 413, L101–L104. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 2017, 848, L13. [Google Scholar] [CrossRef]
- Goldstein, A.; Veres, P.; Burns, E.; Briggs, M.S.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C.A.; Preece, R.D.; Poolakkil, S.; Roberts, O.J.; et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A. Astrophys. J. Lett. 2017, 848, L14. [Google Scholar] [CrossRef] [Green Version]
- Bloom, J.S.; Kulkarni, S.R.; Djorgovski, S.G.; Eichelberger, A.C.; Côté, P.; Blakeslee, J.P.; Odewahn, S.C.; Harrison, F.A.; Frail, D.A.; Filippenko, A.V.; et al. The unusual afterglow of the γ-ray burst of 26 March 1998 as evidence for a supernova connection. Nature 1999, 401, 453. [Google Scholar] [CrossRef]
- Hjorth, J.; Sollerman, J.; Møller, P.; Fynbo, J.P.; Woosley, S.E.; Kouveliotou, C.; Tanvir, N.R.; Greiner, J.; Andersen, M.I.; Castro-Tirado, A.J.; et al. A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 2003, 423, 847–850. [Google Scholar] [CrossRef] [Green Version]
- Woosley, S.; Bloom, J. The supernova–gamma-ray burst connection. Annu. Rev. Astron. Astrophys. 2006, 44, 507–556. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.W.; Shao, L.; Yan, J.Z.; Wei, D.M. Revisiting the long/soft–short/hard classification of gamma-ray bursts in the fermi era. Astrophys. J. 2012, 750, 88. [Google Scholar] [CrossRef] [Green Version]
- Norris, J.P.; Bonnell, J.T. Short Gamma-Ray Bursts with Extended Emission. Astrophys. J. 2006, 643, 266–275. [Google Scholar] [CrossRef]
- Gehrels, N.; Norris, J.P.; Barthelmy, S.D.; Granot, J.; Kaneko, Y.; Kouveliotou, C.; Markwardt, C.B.; Mészáros, P.; Nakar, E.; Nousek, J.A.; et al. A new γ-ray burst classification scheme from GRB060614. Nature 2006, 444, 1044–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boër, M.; Gendre, B.; Stratta, G. Are ultra-long gamma-ray bursts different? Astrophys. J. 2015, 800, 16. [Google Scholar] [CrossRef] [Green Version]
- Levan, A.J.; Tanvir, N.R.; Starling, R.L.C.; Wiersema, K.; Page, K.L.; Perley, D.A.; Schulze, S.; Wynn, G.A.; Chornock, R.; Hjorth, J.; et al. A new population of ultra-long duration gamma-ray bursts. Astrophys. J. 2013, 781, 13. [Google Scholar] [CrossRef]
- Parsotan, T.; Lazzati, D. Photospheric Prompt Emission From Long Gamma-ray Burst Simulations. I. Optical Emission. Astrophys. J. 2021, 922, 257. [Google Scholar] [CrossRef]
- Gill, R.; Granot, J.; Kumar, P. Linear polarization in gamma-ray burst prompt emission. Mon. Not. R. Astron. Soc. 2019, 491, 3343–3373. [Google Scholar] [CrossRef]
- Pe’Er, A. Physics of gamma-ray bursts prompt emission. Adv. Astron. 2015, 2015, 907321. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. Gamma-ray burst prompt emission. In The Thirteenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories; World Scientific: Singapore, 2015; pp. 224–241. [Google Scholar]
- Mészáros, P. Theories of Gamma-Ray Bursts. Annu. Rev. Astron. Astrophys. 2002, 40, 137–169. [Google Scholar] [CrossRef] [Green Version]
- Beloborodov, A.; Mészáros, P. Photospheric emission of gamma-ray bursts. Space Sci. Rev. 2017, 207, 87–110. [Google Scholar] [CrossRef] [Green Version]
- D’Avanzo, P. Short gamma-ray bursts: A review. J. High Energy Astrophys. 2015, 7, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Rep. 2015, 561, 1–109. [Google Scholar] [CrossRef] [Green Version]
- Mészáros, P. Gamma-Ray Bursts: Theoretical issues and developments. Mem. Della Soc. Astron. Ital. 2019, 90, 57. [Google Scholar]
- Yu, H.F.; Preece, R.D.; Greiner, J.; Narayana Bhat, P.; Bissaldi, E.; Briggs, M.S.; Cleveland, W.H.; Connaughton, V.; Goldstein, A.; von Kienlin, A.; et al. The Fermi GBM gamma-ray burst time-resolved spectral catalog: Brightest bursts in the first four years. Astron. Astrophys. 2016, 588, A135. [Google Scholar] [CrossRef] [Green Version]
- Norris, J.; Nemiroff, R.; Bonnell, J.; Scargle, J.; Kouveliotou, C.; Paciesas, W.; Meegan, C.; Fishman, G. Attributes of pulses in long bright gamma-ray bursts. Astrophys. J. 1996, 459, 393. [Google Scholar] [CrossRef]
- Norris, J.P.; Bonnell, J.T.; Kazanas, D.; Scargle, J.D.; Hakkila, J.; Giblin, T.W. Long-lag, wide-pulse gamma-ray bursts. Astrophys. J. 2005, 627, 324. [Google Scholar] [CrossRef] [Green Version]
- Ryde, F. Is Thermal Emission in Gamma-Ray Bursts Ubiquitous? Astrophys. J. Lett. 2005, 625, L95–L98. [Google Scholar] [CrossRef] [Green Version]
- Pe’er, A.; Barlow, H.; O’Mahony, S.; Margutti, R.; Ryde, F.; Larsson, J.; Lazzati, D.; Livio, M. Hydrodynamic Properties of Gamma-Ray Burst Outflows Deduced from the Thermal Component. Astrophys. J. 2015, 813, 127. [Google Scholar] [CrossRef] [Green Version]
- Guiriec, S.; Connaughton, V.; Briggs, M.S.; Burgess, M.; Ryde, F.; Daigne, F.; Mészáros, P.; Goldstein, A.; McEnery, J.; Omodei, N.; et al. Detection of a Thermal Spectral Component in the Prompt Emission of GRB 100724B. Astrophys. J. Lett. 2011, 727, L33. [Google Scholar] [CrossRef]
- Guiriec, S.; Daigne, F.; Hascoët, R.; Vianello, G.; Ryde, F.; Mochkovitch, R.; Kouveliotou, C.; Xiong, S.; Bhat, P.N.; Foley, S.; et al. Evidence for a Photospheric Component in the Prompt Emission of the Short GRB 120323A and Its Effects on the GRB Hardness-Luminosity Relation. Astrophys. J. 2013, 770, 32. [Google Scholar] [CrossRef]
- Axelsson, M.; Baldini, L.; Barbiellini, G.; Baring, M.G.; Bellazzini, R.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Caliandro, G.A.; et al. GRB110721A: An Extreme Peak Energy and Signatures of the Photosphere. Astrophys. J. Lett. 2012, 757, L31. [Google Scholar] [CrossRef]
- Rees, M.J.; Mészáros, P. Unsteady outflow models for cosmological gamma-ray bursts. Astrophys. J. Lett. 1994, 430, L93–L96. [Google Scholar] [CrossRef]
- Zhang, B.; Yan, H. The internal-collision-induced magnetic reconnection and turbulence (icmart) model of gamma-ray bursts. Astrophys. J. 2011, 726, 90. [Google Scholar] [CrossRef] [Green Version]
- Toma, K.; Sakamoto, T.; Zhang, B.; Hill, J.E.; McConnell, M.L.; Bloser, P.F.; Yamazaki, R.; Ioka, K.; Nakamura, T. Statistical properties of gamma-ray burst polarization. Astrophys. J. 2009, 698, 1042. [Google Scholar] [CrossRef] [Green Version]
- Daigne, F.; Bošnjak, Ž.; Dubus, G. Reconciling observed gamma-ray burst prompt spectra with synchrotron radiation? Astron. Astrophys. 2011, 526, A110. [Google Scholar] [CrossRef] [Green Version]
- Fenimore, E.E.; Ramirez-Ruiz, E.; Wu, B. GRB 990123: Evidence that the Gamma Rays Come from a Central Engine. Astrophys. J. Lett. 1999, 518, L73. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, N.M.; Petrosian, V.; Mallozzi, R.S. Cosmological versus Intrinsic: The Correlation between Intensity and the Peak of the νFν Spectrum of Gamma-Ray Bursts. Astrophys. J. 2000, 534, 227. [Google Scholar] [CrossRef] [Green Version]
- Rees, M.J.; Mészáros, P. Dissipative Photosphere Models of Gamma-Ray Bursts and X-Ray Flashes. Astrophys. J. 2005, 628, 847. [Google Scholar] [CrossRef]
- Lazzati, D.; Morsony, B.J.; Margutti, R.; Begelman, M.C. Photospheric Emission as the Dominant Radiation Mechanism in Long-duration Gamma-Ray Bursts. Astrophys. J. 2013, 765, 103. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C. A model of gamma-ray bursts. Mon. Not. R. Astron. Soc. 1994, 270, 480–498. [Google Scholar] [CrossRef]
- Mészáros, P.; Ramirez-Ruiz, E.; Rees, M.J.; Zhang, B. X-ray-rich gamma-ray bursts, photospheres, and variability. Astrophys. J. 2002, 578, 812. [Google Scholar] [CrossRef]
- Pe’er, A.; Ryde, F. A theory of multicolor blackbody emission from relativistically expanding plasmas. Astrophys. J. 2011, 732, 49. [Google Scholar] [CrossRef]
- Parsotan, T.; López-Cámara, D.; Lazzati, D. Photospheric emission from variable engine gamma-ray burst simulations. Astrophys. J. 2018, 869, 103. [Google Scholar] [CrossRef]
- Chhotray, A.; Lazzati, D. Gamma-ray Burst Spectra and Spectral Correlations from Sub-photospheric Comptonization. Astrophys. J. 2015, 802, 132. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, M.; Kumar, P. Explaining GRB prompt emission with sub-photospheric dissipation and Comptonization. Mon. Not. R. Astron. Soc. 2020, 491, 4656–4671. [Google Scholar] [CrossRef] [Green Version]
- Parsotan, T.; Lazzati, D. A Monte Carlo Radiation Transfer Study of Photospheric Emission in Gamma-Ray Bursts. Astrophys. J. 2018, 853, 8. [Google Scholar] [CrossRef]
- Pe’er, A. Temporal Evolution of Thermal Emission from Relativistically Expanding Plasma. Astrophys. J. 2008, 682, 463. [Google Scholar] [CrossRef]
- Beloborodov, A.M. Collisional mechanism for gamma-ray burst emission. Mon. Not. R. Astron. Soc. 2010, 407, 1033. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Nagataki, S.; Ono, M.; Lee, S.H.; Mao, J.; Yamada, S.; Peer, A.; Mizuta, A.; Harikae, S. Photospheric Emission from Stratified Jets. Astrophys. J. 2013, 777, 62. [Google Scholar] [CrossRef] [Green Version]
- Dainotti, M.G.; Del Vecchio, R.; Tarnopolski, M. Gamma-Ray Burst Prompt Correlations. Adv. Astron. 2018, 2018, 4969503. [Google Scholar] [CrossRef]
- Band, D.; Matteson, J.; Ford, L.; Schaefer, B.; Palmer, D.; Teegarden, B.; Cline, T.; Briggs, M.; Paciesas, W.; Pendleton, G.; et al. BATSE observations of gamma-ray burst spectra. I - Spectral diversity. Astrophys. J. 1993, 413, 281–292. [Google Scholar] [CrossRef]
- Bloom, J.S.; Frail, D.A.; Sari, R. The prompt energy release of gamma-ray bursts using a cosmological k-correction. Astron. J. 2001, 121, 2879. [Google Scholar] [CrossRef]
- Amati, L.; Frontera, F.; Tavani, M.; Zand, J.J.M.; Antonelli, A.; Ta, E.C.; Feroci, M.; Guidorzi, C.; Hei, E.J.; Etti, N.M.; et al. Intrinsic spectra and energetics of BeppoSAX Gamma Ray Bursts with known redshifts. Astron. Astrophys. 2002, 390, 81–89. [Google Scholar] [CrossRef]
- Yonetoku, D.; Murakami, T.; Nakamura, T.; Yamazaki, R.; Inoue, A.K.; Ioka, K. Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak Energy-Peak Luminosity Relation. Astrophys. J. 2004, 609, 935. [Google Scholar] [CrossRef] [Green Version]
- Fenimore, E.E.; Ramirez-Ruiz, E. Redshifts for 220 batse gamma-ray bursts determined by variability and the cosmological consequences. arXiv 2000, arXiv:2000.4176. [Google Scholar]
- Guidorzi, C.; Frontera, F.; Montanari, E.; Rossi, F.; Amati, L.; Gomboc, A.; Hurley, K.; Mundell, C. The gamma-ray burst variability-peak luminosity correlation: New results. Mon. Not. R. Astron. Soc. 2005, 363, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, B.E. The Hubble diagram to redshift> 6 from 69 gamma-ray bursts. Astrophys. J. 2007, 660, 16. [Google Scholar] [CrossRef] [Green Version]
- Lazzati, D.; Perna, R.; Morsony, B.J.; Lopez-Camara, D.; Cantiello, M.; Ciolfi, R.; Giacomazzo, B.; Workman, J.C. Late time afterglow observations reveal a collimated relativistic jet in the ejecta of the binary neutron star merger GW170817. Phys. Rev. Lett. 2018, 120, 241103. [Google Scholar] [CrossRef] [Green Version]
- Gottlieb, O.; Nakar, E.; Bromberg, O. The structure of hydrodynamic γ-ray burst jets. Mon. Not. R. Astron. Soc. 2021, 500, 3511–3526. [Google Scholar] [CrossRef]
- Fenimore, E.E.; Epstein, R.I.; Ho, C. The escape of 100 MeV photons from cosmological gamma-ray bursts. Astron. Astrophys. Suppl. Ser. 1993, 97, 59–62. [Google Scholar]
- Rybicki, G.B.; Lightman, A.P. Radiative Processes in Astrophysics; John Wiley & Sons: Hoboken, NJ, USA, 1979. [Google Scholar]
- Rhoads, J.E. The dynamics and light curves of beamed gamma-ray burst afterglows. Astrophys. J. 1999, 525, 737. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, A.; Connaughton, V.; Briggs, M.S.; Burns, E. Estimating long GRB jet opening angles and rest-frame energetics. Astrophys. J. 2016, 818, 18. [Google Scholar] [CrossRef] [Green Version]
- Piran, T.; Halpern, J. Jets in gamma-ray bursts. Astrophys. J. 1999, 519, L17. [Google Scholar]
- Chevalier, R.A.; Li, Z.Y. Wind interaction models for gamma-ray burst afterglows: The case for two types of progenitors. Astrophys. J. 2000, 536, 195. [Google Scholar] [CrossRef] [Green Version]
- Lazzati, D.; Covino, S.; Gorosabel, J.; Rossi, E.; Ghisellini, G.; Rol, E.; Cerón, J.C.; Castro-Tirado, A.; Della Valle, M.; Fruchter, A.; et al. On the jet structure and magnetic field configuration of GRB 020813. Astron. Astrophys. 2004, 422, 121–128. [Google Scholar] [CrossRef]
- Farinelli, R.; Basak, R.; Amati, L.; Guidorzi, C.; Frontera, F. A numerical jet model for the prompt emission of gamma-ray bursts. Mon. Not. R. Astron. Soc. 2021, 501, 5723–5732. [Google Scholar] [CrossRef]
- Lazzati, D.; Perna, R. Jet–Cocoon Outflows from Neutron Star Mergers: Structure, Light Curves, and Fundamental Physics. Astrophys. J. 2019, 881, 89. [Google Scholar] [CrossRef]
- Salafia, O.S.; Ghisellini, G.; Pescalli, A.; Ghirlanda, G.; Nappo, F. Light curves and spectra from off-axis gamma-ray bursts. Mon. Not. R. Astron. Soc. 2016, 461, 3607–3619. [Google Scholar] [CrossRef] [Green Version]
- Lundman, C.; Vurm, I.; Beloborodov, A.M. Polarization of gamma-ray bursts in the dissipative photosphere model. Astrophys. J. 2018, 856, 145. [Google Scholar] [CrossRef] [Green Version]
- Cavallo, G.; Rees, M. A qualitative study of cosmic fireballs and γ-ray bursts. Mon. Not. R. Astron. Soc. 1978, 183, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Chhotray, A.; Lazzati, D. Dynamic Monte Carlo simulations of radiatively accelerated GRB fireballs. Mon. Not. R. Astron. Soc. 2018, 476, 2352–2365. [Google Scholar] [CrossRef] [Green Version]
- Norris, J.; Marani, G.; Bonnell, J. Connection between energy-dependent lags and peak luminosity in gamma-ray bursts. Astrophys. J. 2000, 534, 248. [Google Scholar] [CrossRef]
- Schaefer, B.E.; Deng, M.; Band, D.L. Redshifts and luminosities for 112 gamma-ray bursts. Astrophys. J. 2001, 563, L123. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Zhang, B.B.; Wang, F.R.; Wu, X.F.; Cheng, Y.H.; Zhang, X.; Yu, B.Y.; Xi, B.J.; Wang, X.; Feng, H.X.; et al. A new measurement of the spectral lag of gamma-ray bursts and its implications for spectral evolution behaviors. Astrophys. J. 2017, 844, 126. [Google Scholar] [CrossRef] [Green Version]
- Ukwatta, T.; Stamatikos, M.; Dhuga, K.; Sakamoto, T.; Barthelmy, S.; Eskandarian, A.; Gehrels, N.; Maximon, L.; Norris, J.; Parke, W. Spectral lags and the lag–luminosity relation: An investigation with Swift BAT gamma-ray bursts. Astrophys. J. 2010, 711, 1073. [Google Scholar] [CrossRef] [Green Version]
- Kawakubo, Y.; Sakamoto, T.; Yoshida, A.; Kazanas, D. Systematic Spectral Lag Analysis of Swift Known-GRBs. Adv. Astron. 2015, 2015, 341018. [Google Scholar] [CrossRef] [Green Version]
- Ukwatta, T.; Dhuga, K.; Stamatikos, M.; Dermer, C.; Sakamoto, T.; Sonbas, E.; Parke, W.; Maximon, L.; Linnemann, J.; Bhat, P.; et al. The lag–luminosity relation in the GRB source frame: An investigation with Swift BAT bursts. Mon. Not. R. Astron. Soc. 2012, 419, 614–623. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Schaefer, B.E. Estimating redshifts for long gamma-ray bursts. Astrophys. J. 2009, 707, 387. [Google Scholar] [CrossRef] [Green Version]
- Reichart, D.E.; Lamb, D.Q.; Fenimore, E.E.; Ramirez-Ruiz, E.; Cline, T.L.; Hurley, K. A Possible Cepheid-like Luminosity Estimator for the Long Gamma-Ray Bursts. Astrophys. J. 2001, 552, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Reichart, D.E.; Nysewander, M.C. GRB Variability-Luminosity Correlation Confirmed. arXiv 2005, arXiv:2005.8111. [Google Scholar]
- Guidorzi, C.; Frontera, F.; Montanari, E.; Rossi, F.; Amati, L.; Gomboc, A.; Mundell, C. The slope of the gamma-ray burst variability/peak luminosity correlation. Mon. Not. R. Astron. Soc. 2006, 371, 843–851. [Google Scholar] [CrossRef]
- D’agostini, G. Bayesian Reasoning in Data Analysis: A Critical Introduction; World Scientific: Singapore, 2003. [Google Scholar]
- Ramirez-Ruiz, E.; Lloyd-Ronning, N.M. Beam models for gamma-ray bursts sources: Outflow structure, kinematics and emission mechanisms. New Astron. 2002, 7, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Ronning, N.M.; Ramirez-Ruiz, E. On the spectral energy dependence of gamma-ray burst variability. Astrophys. J. 2002, 576, 101. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Ryde, F.; MacFadyen, A. Luminosity and variability of collimated gamma-ray bursts. Astrophys. J. 2002, 577, 302. [Google Scholar] [CrossRef]
- Rossi, E.; Lazzati, D.; Rees, M.J. Afterglow light curves, viewing angle and the jet structure of γ-ray bursts. Mon. Not. R. Astron. Soc. 2002, 332, 945–950. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Meszaros, P. Gamma-ray burst beaming: A universal configuration with a standard energy reservoir? Astrophys. J. 2002, 571, 876. [Google Scholar] [CrossRef] [Green Version]
- Salmonson, J.D.; Galama, T.J. Discovery of a tight correlation between pulse LAG/luminosity and jet-break times: A connection between gamma-ray bursts and afterglow properties. Astrophys. J. 2002, 569, 682. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, B.B.; Virgili, F.J.; Liang, E.W.; Kann, D.A.; Wu, X.F.; Proga, D.; Lv, H.J.; Toma, K.; Meszaros, P.; et al. Discerning the physical origins of cosmological gamma-ray bursts based on multiple observational criteria: The cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and some short/hard GRBs. Astrophys. J. 2009, 703, 1696. [Google Scholar] [CrossRef] [Green Version]
- Ioka, K.; Nakamura, T. Peak luminosity-spectral lag relation caused by the viewing angle of the collimated gamma-ray bursts. Astrophys. J. 2001, 554, L163. [Google Scholar] [CrossRef]
- Uhm, Z.L.; Zhang, B. Toward an understanding of GRB prompt emission mechanism. I. the origin of spectral lags. Astrophys. J. 2016, 825, 97. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.G.; Liu, K.X.; Shao, L.; Li, H.Z. Interpreting the spectral lags of single-pulsed gamma-ray bursts via the photosphere in the jet model. Mon. Not. R. Astron. Soc. Lett. 2021, 505, L26–L30. [Google Scholar] [CrossRef]
- Parsotan, T.; Lazzati, D. Photospheric Prompt Emission From Long Gamma Ray Burst Simulations-II Spectropolarimetry. arXiv 2021, arXiv:2108.11412. [Google Scholar] [CrossRef]
- Mallozzi, R.S.; Paciesas, W.S.; Pendleton, G.N.; Briggs, M.S.; Preece, R.D.; Meegan, C.A.; Fishman, G.J. The νFν peak energy distributions of gamma-ray bursts observed by BATSE. AIP Conf. Proc. 1996, 384, 204–208. [Google Scholar] [CrossRef]
- Ghirlanda, G.; Ghisellini, G.; Nava, L.; Burlon, D. Spectral evolution of Fermi/GBM short gamma-ray bursts. Mon. Not. R. Astron. Soc. Lett. 2011, 410, L47–L51. [Google Scholar] [CrossRef] [Green Version]
- Brainerd, J. The cosmological signatures and flux distribution of gamma-ray bursts with a broad luminosity distribution. Astrophys. J. 1997, 487, 96. [Google Scholar] [CrossRef] [Green Version]
- Amati, L. The Ep,i-Eiso correlation in gamma-ray bursts: Updated observational status, re-analysis and main implications. Mon. Not. R. Astron. Soc. 2006, 372, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Nava, L.; Salvaterra, R.; Ghirlanda, G.; Ghisellini, G.; Campana, S.; Covino, S.; Cusumano, G.; D’Avanzo, P.; D’Elia, V.; Fugazza, D.; et al. A complete sample of bright Swift long gamma-ray bursts: Testing the spectral-energy correlations. Mon. Not. R. Astron. Soc. 2012, 421, 1256. [Google Scholar] [CrossRef] [Green Version]
- Amati, L.; Della Valle, M. Measuring Cosmological Parameters with Gamma Ray Bursts. Int. J. Mod. Phys. 2013, 22, 1330028. [Google Scholar] [CrossRef] [Green Version]
- Tsvetkova, A.; Frederiks, D.; Golenetskii, S.; Lysenko, A.; Oleynik, P.; Pal’shin, V.; Svinkin, D.; Ulanov, M.; Cline, T.; Hurley, K.; et al. The Konus-Wind Catalog of Gamma-Ray Bursts with Known Redshifts. I. Bursts Detected in the Triggered Mode. Astrophys. J. 2017, 850, 161. [Google Scholar] [CrossRef] [Green Version]
- Zaninoni, E.; Bernardini, M.G.; Margutti, R.; Amati, L. Update on the GRB universal scaling EX,iso-Eγ,iso-Epk with 10 years of Swift data. Mon. Not. R. Astron. Soc. 2016, 455, 1375–1384. [Google Scholar] [CrossRef] [Green Version]
- Yonetoku, D.; Murakami, T.; Tsutsui, R.; Nakamura, T.; Morihara, Y.; Takahashi, K. Possible Origins of Dispersion of the Peak Energy-Brightness Correlations of Gamma-Ray Bursts. Publ. Astron. Soc. Jpn. 2010, 62, 1495. [Google Scholar] [CrossRef] [Green Version]
- Nakar, E.; Piran, T. Outliers to the peak energy-isotropic energy relation in gamma-ray bursts. Mon. Not. R. Astron. Soc. 2005, 360, L73–L76. [Google Scholar] [CrossRef] [Green Version]
- Band, D.L.; Preece, R.D. Testing the Gamma-Ray Burst Energy Relationships. Astrophys. J. 2005, 627, 319–323. [Google Scholar] [CrossRef] [Green Version]
- Butler, N.R.; Kocevski, D.; Bloom, J.S.; Curtis, J.L. A Complete Catalog of Swift Gamma-Ray Burst Spectra and Durations: Demise of a Physical Origin for Pre-Swift High-Energy Correlations. Astrophys. J. 2007, 671, 656–677. [Google Scholar] [CrossRef] [Green Version]
- Kocevski, D. On the Origin of High-energy Correlations in Gamma-Ray Bursts. Astrophys. J. 2012, 747, 146. [Google Scholar] [CrossRef]
- Bosnjak, Z.; Celotti, A.; Longo, F.; Barbiellini, G. Energetics-spectral correlations versus the BATSE gamma-ray bursts population. Mon. Not. R. Astron. Soc. 2008, 384, 599–604. [Google Scholar] [CrossRef] [Green Version]
- Ghirlanda, G.; Nava, L.; Ghisellini, G.; Firmani, C.; Cabrera, J.I. The Epeak-Eiso plane of long gamma-ray bursts and selection effects. Mon. Not. R. Astron. Soc. 2008, 387, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Nava, L.; Ghirlanda, G.; Ghisellini, G.; Celotti, A. Fermi/GBM and BATSE gamma-ray bursts: Comparison of the spectral properties. Mon. Not. R. Astron. Soc. 2011, 415, 3153–3162. [Google Scholar] [CrossRef] [Green Version]
- Heussaff, V.; Atteia, J.L.; Zolnierowski, Y. The Epeak - Eiso relation revisited with Fermi GRBs. Resolving a long-standing debate? A&A 2013, 557, A100. [Google Scholar] [CrossRef] [Green Version]
- Dainotti, M.G.; Amati, L. Gamma-ray Burst Prompt Correlations: Selection and Instrumental Effects. Publ. Astron. Soc. Pac. 2018, 130, 051001. [Google Scholar] [CrossRef] [Green Version]
- Golenetskii, S.V.; Mazets, E.P.; Aptekar, R.L.; Ilyinskii, V.N. Correlation between luminosity and temperature in γ-ray burst sources. Nature 1983, 306, 451–453. [Google Scholar] [CrossRef]
- Firmani, C.; Cabrera, J.I.; Avila-Reese, V.; Ghisellini, G.; Ghirlanda, G.; Nava, L.; Bosnjak, Z. Time-resolved spectral correlations of long-duration γ-ray bursts. Mon. Not. R. Astron. Soc. 2009, 393, 1209–1218. [Google Scholar] [CrossRef] [Green Version]
- Ohno, M.; Ioka, K.; Yamaoka, K.; Tashiro, M.; Fukazawa, Y.; Nakagawa, Y.E. Time-Evolution of Peak Energy and Luminosity Relation within Pulses for GRB 061007: Probing Fireball Dynamics. Publ. Astron. Soc. Jpn. 2009, 61, 201. [Google Scholar] [CrossRef] [Green Version]
- Ghirlanda, G.; Nava, L.; Ghisellini, G. Spectral-luminosity relation within individual Fermi gamma rays bursts. Astron. Astrophys. 2010, 511, A43. [Google Scholar] [CrossRef] [Green Version]
- Ghirlanda, G.; Ghisellini, G.; Nava, L. Short and long gamma-ray bursts: Same emission mechanism? Mon. Not. R. Astron. Soc. Lett. 2011, 418, L109–L113. [Google Scholar] [CrossRef] [Green Version]
- Frontera, F.; Amati, L.; Guidorzi, C.; Landi, R.; in’t Zand, J. Broadband Time-resolved E p,i-L iso Correlation in Gamma-Ray Bursts. Astrophys. J. 2012, 754, 138. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T.; Lamb, D.Q.; Kawai, N.; Yoshida, A.; Graziani, C.; Fenimore, E.E.; Donaghy, T.Q.; Matsuoka, M.; Suzuki, M.; Ricker, G.; et al. Global Characteristics of X-Ray Flashes and X-Ray-Rich Gamma-Ray Bursts Observed by HETE-2. Astrophys. J. 2005, 629, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Lamb, D.Q.; Donaghy, T.Q.; Graziani, C. A Unified Jet Model of X-Ray Flashes, X-Ray-rich Gamma-Ray Bursts, and Gamma-Ray Bursts. I. Power-Law-shaped Universal and Top-Hat-shaped Variable Opening Angle Jet Models. Astrophys. J. 2005, 620, 355–378. [Google Scholar] [CrossRef]
- Sakamoto, T.; Hullinger, D.; Sato, G.; Yamazaki, R.; Barbier, L.; Barthelmy, S.D.; Cummings, J.R.; Fenimore, E.E.; Gehrels, N.; Krimm, H.A.; et al. Global Properties of X-Ray Flashes and X-Ray-Rich Gamma-Ray Bursts Observed by Swift. Astrophys. J. 2008, 679, 570–586. [Google Scholar] [CrossRef] [Green Version]
- Gendre, B.; Stratta, G.; Atteia, J.L.; Basa, S.; Boër, M.; Coward, D.M.; Cutini, S.; D’Elia, V.; Howell, E.J.; Klotz, A.; et al. The Ultra-long Gamma-ray Burst 111209A: The Collapse of a Blue Supergiant? Astrophys. J. 2013, 766, 30. [Google Scholar] [CrossRef]
- Peng, F.k.; Hu, Y.D.; Xi, S.Q.; Wang, X.G.; Lu, R.J.; Liang, E.W.; Zhang, B. GRB 121027A: Long-lasting, energetic X-ray flares and clues to radiation mechanism and progenitor star. arXiv 2013, arXiv:1302.4876. [Google Scholar]
- Nava, L.; Ghirlanda, G.; Ghisellini, G.; Firmani, C. Peak energy of the prompt emission of long gamma-ray bursts versus their fluence and peak flux. Mon. Not. R. Astron. Soc. 2008, 391, 639–652. [Google Scholar] [CrossRef] [Green Version]
- D’Elia, V.; Campana, S.; D’Aì, A.; De Pasquale, M.; Emery, S.W.K.; Frederiks, D.D.; Lien, A.; Melandri, A.; Page, K.L.; Starling, R.L.C.; et al. GRB 171205A/SN 2017iuk: A local low-luminosity gamma-ray burst. Astron. Astrophys. 2018, 619, A66. [Google Scholar] [CrossRef] [Green Version]
- Virgili, F.J.; Liang, E.W.; Zhang, B. Low-luminosity gamma-ray bursts as a distinct GRB population: A firmer case from multiple criteria constraints. Mon. Not. R. Astron. Soc. 2009, 392, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Zhang, B.; Li, Z. Extragalactic High-energy Transients: Event Rate Densities and Luminosity Functions. Astrophys. J. 2015, 812, 33. [Google Scholar] [CrossRef] [Green Version]
- Ghirlanda, G.; Nava, L.; Ghisellini, G.; Celotti, A.; Firmani, C. Short versus long gamma-ray bursts: Spectra, energetics, and luminosities. Astron. Astrophys. 2009, 496, 585–595. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Chen, D.Y.; Huang, Y.F. Correlation between Peak Energy and Peak Luminosity in Short Gamma-Ray Bursts. Astrophys. J. 2012, 755, 55. [Google Scholar] [CrossRef] [Green Version]
- Tsutsui, R.; Yonetoku, D.; Nakamura, T.; Takahashi, K.; Morihara, Y. Possible existence of the Ep-Lp and Ep-Eiso correlations for short gamma-ray bursts with a factor 5-100 dimmer than those for long gamma-ray bursts. Mon. Not. R. Astron. Soc. 2013, 431, 1398–1404. [Google Scholar] [CrossRef] [Green Version]
- D’Avanzo, P.; Salvaterra, R.; Bernardini, M.G.; Nava, L.; Campana, S.; Covino, S.; D’Elia, V.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; et al. A complete sample of bright Swift short gamma-ray bursts. Mon. Not. R. Astron. Soc. 2014, 442, 2342–2356. [Google Scholar] [CrossRef] [Green Version]
- Ahumada, T.; Singer, L.P.; Anand, S.; Coughlin, M.W.; Kasliwal, M.M.; Ryan, G.; Andreoni, I.; Cenko, S.B.; Fremling, C.; Kumar, H.; et al. Discovery and confirmation of the shortest gamma-ray burst from a collapsar. Nat. Astron. 2021, 5, 917–927. [Google Scholar] [CrossRef]
- Svinkin, D.; Frederiks, D.; Ridnaia, A.; Tsvetkova, A.; Konus-Wind Team. GRB 200826A: Further analysis of the Konus-Wind data and classification. GRB Coord. Netw. 2020, 28301, 1. [Google Scholar]
- Wang, H.; Zhang, F.W.; Wang, Y.Z.; Shen, Z.Q.; Liang, Y.F.; Li, X.; Liao, N.H.; Jin, Z.P.; Yuan, Q.; Zou, Y.C.; et al. The GW170817/GRB 170817A/AT 2017gfo Association: Some Implications for Physics and Astrophysics. Astrophys. J. Lett. 2017, 851, L18. [Google Scholar] [CrossRef]
- Pozanenko, A.S.; Barkov, M.V.; Minaev, P.Y.; Volnova, A.A.; Mazaeva, E.D.; Moskvitin, A.S.; Krugov, M.A.; Samodurov, V.A.; Loznikov, V.M.; Lyutikov, M. GRB 170817A Associated with GW170817: Multi-frequency Observations and Modeling of Prompt Gamma-Ray Emission. Astrophys. J. Lett. 2018, 852, L30. [Google Scholar] [CrossRef]
- Zhang, B.B.; Zhang, B.; Sun, H.; Lei, W.H.; Gao, H.; Li, Y.; Shao, L.; Zhao, Y.; Hu, Y.D.; Lü, H.J.; et al. A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor. Nat. Commun. 2018, 9, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakar, E. The electromagnetic counterparts of compact binary mergers. Phys. Rep. 2020, 886, 1–84. [Google Scholar] [CrossRef]
- Zhang, B.; Mészáros, P. An Analysis of Gamma-Ray Burst Spectral Break Models. Astrophys. J. 2002, 581, 1236–1247. [Google Scholar] [CrossRef] [Green Version]
- Mochkovitch, R.; Nava, L. The Ep-Eiso relation and the internal shock model. Astron. Astrophys. 2015, 577, A31. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, R.; Ioka, K.; Nakamura, T. Peak Energy-Isotropic Energy Relation in the Off-Axis Gamma-Ray Burst Model. Astrophys. J. Lett. 2004, 606, L33–L36. [Google Scholar] [CrossRef] [Green Version]
- Ioka, K.; Nakamura, T. Can an off-axis gamma-ray burst jet in GW170817 explain all the electromagnetic counterparts? Prog. Theor. Exp. Phys. 2018, 2018, 043E02. [Google Scholar] [CrossRef] [Green Version]
- Eichler, D.; Levinson, A. An Interpretation of the hνpeak-Eiso Correlation for Gamma-Ray Bursts. Astrophys. J. Lett. 2004, 614, L13–L16. [Google Scholar] [CrossRef] [Green Version]
- Levinson, A.; Eichler, D. The Difference between the Amati and Ghirlanda Relations. Astrophys. J. Lett. 2005, 629, L13–L16. [Google Scholar] [CrossRef] [Green Version]
- Toma, K.; Yamazaki, R.; Nakamura, T. Ep-Eiso Correlation in a Multiple Subjet Model of Gamma-ray Bursts. Astrophys. J. 2005, 635, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Graziani, C.; Lamb, D.Q.; Donaghy, T.Q. Gamma-Ray Burst Jet Profiles And Their Signatures. In Gamma-ray Bursts in the Swift Era; Holt, S.S., Gehrels, N., Nousek, J.A., Eds.; American Institute of Physics Conference Series; American Institute of Physics: College Park, MD, USA, 2006; Volume 836, pp. 117–120. [Google Scholar] [CrossRef] [Green Version]
- Donaghy, T.Q. The Importance of Off-Jet Relativistic Kinematics in Gamma-Ray Burst Jet Models. Astrophys. J. 2006, 645, 436–449. [Google Scholar] [CrossRef] [Green Version]
- Salafia, O.S.; Ghisellini, G.; Pescalli, A.; Ghirlanda, G.; Nappo, F. Structure of gamma-ray burst jets: Intrinsic versus apparent properties. Mon. Not. R. Astron. Soc. 2015, 450, 3549–3558. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.; Mészáros, P.; Rees, M.J. Thermalization in Relativistic Outflows and the Correlation between Spectral Hardness and Apparent Luminosity in Gamma-Ray Bursts. Astrophys. J. 2007, 666, 1012–1023. [Google Scholar] [CrossRef] [Green Version]
- Goodman, J. Are gamma-ray bursts optically thick? Astrophys. J. 1986, 308, L47–L50. [Google Scholar] [CrossRef]
- Paczynski, B. Gamma-ray bursters at cosmological distances. Astrophys. J. Lett. 1986, 308, L43–L46. [Google Scholar] [CrossRef]
- Pe’er, A.; Mészáros, P.; Rees, M.J. The Observable Effects of a Photospheric Component on GRB and XRF Prompt Emission Spectrum. Astrophys. J. 2006, 642, 995–1003. [Google Scholar] [CrossRef]
- Giannios, D.; Spruit, H.C. Spectral and timing properties of a dissipative γ-ray burst photosphere. Astron. Astrophys. 2007, 469, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vurm, I.; Beloborodov, A.M. Radiative Transfer Models for Gamma-Ray Bursts. Astrophys. J. 2016, 831, 175. [Google Scholar] [CrossRef] [Green Version]
- Giannios, D. The peak energy of dissipative gamma-ray burst photospheres. Mon. Not. R. Astron. Soc. 2012, 422, 3092–3098. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.Z.; Wei, D.M.; Zhang, F.W.; Zhang, B.B. The Photospheric Radiation Model for the Prompt Emission of Gamma-Ray Bursts: Interpreting Four Observed Correlations. Astrophys. J. Lett. 2012, 755, L6. [Google Scholar] [CrossRef] [Green Version]
- Lazzati, D.; Morsony, B.J.; Begelman, M.C. Very High Efficiency Photospheric Emission in Long-Duration γ-Ray Bursts. Astrophys. J. Lett. 2009, 700, L47. [Google Scholar] [CrossRef] [Green Version]
- Lazzati, D.; Morsony, B.J.; Begelman, M.C. High-efficiency Photospheric Emission of Long-duration Gamma-ray Burst Jets: The Effect of the Viewing Angle. Astrophys. J. 2011, 732, 34. [Google Scholar] [CrossRef] [Green Version]
- Mizuta, A.; Nagataki, S.; Aoi, J. Thermal Radiation from Gamma-ray Burst Jets. Astrophys. J. 2011, 732, 26. [Google Scholar] [CrossRef]
- Nagakura, H.; Ito, H.; Kiuchi, K.; Yamada, S. Jet Propagations, Breakouts, and Photospheric Emissions in Collapsing Massive Progenitors of Long-duration Gamma-ray Bursts. Astrophys. J. 2011, 731, 80. [Google Scholar] [CrossRef]
- Gottlieb, O.; Levinson, A.; Nakar, E. High efficiency photospheric emission entailed by formation of a collimation shock in gamma-ray bursts. Mon. Not. R. Astron. Soc. 2019, 488, 1416–1426. [Google Scholar] [CrossRef]
- López-Cámara, D.; Morsony, B.J.; Lazzati, D. Photospheric emission from long-duration gamma-ray bursts powered by variable engines. Mon. Not. R. Astron. Soc. 2014, 442, 2202–2207. [Google Scholar] [CrossRef] [Green Version]
- Lazzati, D. Monte Carlo Radiation Transfer Simulations of Photospheric Emission in Long-duration Gamma-ray Bursts. Astrophys. J. 2016, 829, 76. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Just, O.; Takei, Y.; Nagataki, S. A Global Numerical Model of the Prompt Emission in Short Gamma-ray Bursts. Astrophys. J. 2021, 918, 59. [Google Scholar] [CrossRef]
- Ito, H.; Matsumoto, J.; Nagataki, S.; Warren, D.C.; Barkov, M.V. Photospheric Emission from Collapsar Jets in 3D Relativistic Hydrodynamics. Astrophys. J. Lett. 2015, 814, L29. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Matsumoto, J.; Nagataki, S.; Warren, D.C.; Barkov, M.V.; Yonetoku, D. The photospheric origin of the Yonetoku relation in gamma-ray bursts. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Laros, J.; Evans, W.; Fenimore, E.; Klebesadel, R.; Middleditch, J.; Barat, C.; Hurley, K.; Niel, M.; Vedrenne, G.; Nakano, G.; et al. Locations and time histories of five 1979 gamma-ray bursts. Astrophys. J. 1985, 290, 728–734. [Google Scholar] [CrossRef]
- Norris, J.; Share, G.; Messina, D.; Dennis, B.; Desai, U.; Cline, T.; Matz, S.; Chupp, E. Spectral evolution of pulse structures in gamma-ray bursts. Astrophys. J. 1986, 301, 213–219. [Google Scholar] [CrossRef]
- Kargatis, V.E.; Liang, E.P.; Hurley, K.C.; Barat, C.; Eveno, E.; Niel, M. Spectral evolution of gamma-ray bursts detected by the SIGNE experiment. 1: Correlation between intensity and spectral hardness. Astrophys. J. 1994, 422, 260–268. [Google Scholar] [CrossRef]
- Borgonovo, L.; Ryde, F. On the hardness-intensity correlation in gamma-ray burst pulses. Astrophys. J. 2001, 548, 770. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.J.; Wei, J.J.; Liang, E.W.; Zhang, B.B.; Lü, H.J.; Lü, L.Z.; Lei, W.H.; Zhang, B. A Comprehensive Analysis of Fermi Gamma-Ray Burst Data. II. E p Evolution Patterns and Implications for the Observed Spectrum-Luminosity Relations. Astrophys. J. 2012, 756, 112. [Google Scholar] [CrossRef] [Green Version]
- Burgess, J.M. The rest-frame Golenetskii correlation via a hierarchical Bayesian analysis. Mon. Not. R. Astron. Soc. 2017, 485, 1262–1277. [Google Scholar] [CrossRef] [Green Version]
- Bošnjak, Ž.; Daigne, F. Spectral evolution in gamma-ray bursts: Predictions of the internal shock model and comparison to observations. Astron. Astrophys. 2014, 568, A45. [Google Scholar] [CrossRef] [Green Version]
- Ghirlanda, G.; Ghisellini, G.; Lazzati, D. The collimation-corrected gamma-ray burst energies correlate with the peak energy of their νFν spectrum. Astrophys. J. 2004, 616, 331. [Google Scholar] [CrossRef]
- Nava, L.; Ghisellini, G.; Ghirlanda, G.; Tavecchio, F.; Firmani, C. On the interpretation of spectral-energy correlations in long gamma-ray bursts. Astron. Astrophys. 2006, 450, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Campana, S.; Guidorzi, C.; Tagliaferri, G.; Chincarini, G.; Moretti, A.; Rizzuto, D.; Romano, P. Are Swift gamma-ray bursts consistent with the Ghirlanda relation? Astron. Astrophys. 2007, 472, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Ghirlanda, G.; Nava, L.; Ghisellini, G.; Firmani, C. Confirming the γ-ray burst spectral-energy correlations in the era of multiple time breaks. Astron. Astrophys. 2007, 466, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.G.; Zhang, B.; Liang, E.W.; Lu, R.J.; Lin, D.B.; Li, J.; Li, L. Gamma-ray burst jet breaks revisited. Astrophys. J. 2018, 859, 160. [Google Scholar] [CrossRef]
- Liang, E.; Zhang, B. Model-independent multivariable gamma-ray burst luminosity indicator and its possible cosmological implications. Astrophys. J. 2005, 633, 611. [Google Scholar] [CrossRef] [Green Version]
- Ghirlanda, G.; Ghisellini, G.; Salvaterra, R.; Nava, L.; Burlon, D.; Tagliaferri, G.; Campana, S.; d’Avanzo, P.; Melandri, A. The faster the narrower: Characteristic bulk velocities and jet opening angles of gamma-ray bursts. Mon. Not. R. Astron. Soc. 2013, 428, 1410–1423. [Google Scholar] [CrossRef] [Green Version]
- Tchekhovskoy, A.; McKinney, J.C.; Narayan, R. Efficiency of magnetic to kinetic energy conversion in a monopole magnetosphere. Astrophys. J. 2009, 699, 1789. [Google Scholar] [CrossRef]
- Komissarov, S.S.; Vlahakis, N.; Königl, A. Rarefaction acceleration of ultrarelativistic magnetized jets in gamma-ray burst sources. Mon. Not. R. Astron. Soc. 2010, 407, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Rees, M.J.; Meszaros, P. Relativistic fireballs—Energy conversion and time-scales. Mon. Not. R. Astron. Soc. 1992, 258, 41. [Google Scholar] [CrossRef] [Green Version]
- Sari, R.; Piran, T. Predictions for the Very Early Afterglow and the Optical Flash. Astrophys. J. 1999, 520, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Piran, T.; Sari, R. Hydrodynamics of a Relativistic Fireball: The Complete Evolution. Astrophys. J. 1999, 513, 669–678. [Google Scholar] [CrossRef]
- Kobayashi, S.; Zhang, B. The Onset of Gamma-ray Burst Afterglow. Astrophys. J. 2007, 655, 973–979. [Google Scholar] [CrossRef]
- Ghirlanda, G.; Nappo, F.; Ghisellini, G.; Melandri, A.; Marcarini, G.; Nava, L.; Salafia, O.S.; Campana, S.; Salvaterra, R. Bulk Lorentz factors of gamma-ray bursts. Astron. Astrophys. 2018, 609, A112. [Google Scholar] [CrossRef] [Green Version]
- Woods, E.; Loeb, A. Empirical Constraints on Source Properties and Host Galaxies of Cosmological Gamma-Ray Bursts. Astrophys. J. 1995, 453, 583. [Google Scholar] [CrossRef]
- Lithwick, Y.; Sari, R. Lower Limits on Lorentz Factors in Gamma-Ray Bursts. Astrophys. J. 2001, 555, 540–545. [Google Scholar] [CrossRef] [Green Version]
- Ghirlanda, G.; Nava, L.; Ghisellini, G.; Celotti, A.; Burlon, D.; Covino, S.; Melandri, A. Gamma-ray bursts in the comoving frame. Mon. Not. R. Astron. Soc. 2012, 420, 483–494. [Google Scholar] [CrossRef] [Green Version]
- Nappo, F.; Ghisellini, G.; Ghirlanda, G.; Melandri, A.; Nava, L.; Burlon, D. Afterglows from precursors in gamma-ray bursts. Application to the optical afterglow of GRB 091024. Mon. Not. R. Astron. Soc. 2014, 445, 1625–1635. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Kobayashi, S.; Mészáros, P. Gamma-Ray Burst Early Optical Afterglows: Implications for the Initial Lorentz Factor and the Central Engine. Astrophys. J. 2003, 595, 950–954. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Qin, Y.; Du, M.; Yi, S.X.; Tang, Y.K. Constraining the Circumburst Medium of Gamma-Ray Bursts with X-Ray Afterglows. Astrophys. J. 2022, 925, 54. [Google Scholar] [CrossRef]
- Fukushima, T.; To, S.; Asano, K.; Fujita, Y. Temporal Evolution of the Gamma-ray Burst Afterglow Spectrum for an Observer: GeV-TeV Synchrotron Self-Compton Light Curve. Astrophys. J. 2017, 844, 92. [Google Scholar] [CrossRef] [Green Version]
- Racusin, J.L.; Karpov, S.V.; Sokolowski, M.; Granot, J.; Wu, X.F.; Pal’shin, V.; Covino, S.; van der Horst, A.J.; Oates, S.R.; Schady, P.; et al. Broadband observations of the naked-eye γ-ray burst GRB 080319B. Nature 2008, 455, 183–188. [Google Scholar] [CrossRef]
- Molinari, E.; Vergani, S.D.; Malesani, D.; Covino, S.; D’Avanzo, P.; Chincarini, G.; Zerbi, F.M.; Antonelli, L.A.; Conconi, P.; Testa, V.; et al. REM observations of GRB 060418 and GRB 060607A: The onset of the afterglow and the initial fireball Lorentz factor determination. Astron. Astrophys. 2007, 469, L13–L16. [Google Scholar] [CrossRef] [Green Version]
- Xue, R.R.; Fan, Y.Z.; Wei, D.M. The initial Lorentz factors of fireballs inferred from the early X-ray data of SWIFT GRBs. Astron. Astrophys. 2009, 498, 671–676. [Google Scholar] [CrossRef]
- Melandri, A.; Kobayashi, S.; Mundell, C.G.; Guidorzi, C.; de Ugarte Postigo, A.; Pooley, G.; Yoshida, M.; Bersier, D.; Castro-Tirado, A.J.; Jelínek, M.; et al. GRB 090313 and the Origin of Optical Peaks in Gamma-ray Burst Light Curves: Implications for Lorentz Factors and Radio Flares. Astrophys. J. 2010, 723, 1331–1342. [Google Scholar] [CrossRef]
- Ghisellini, G.; Ghirlanda, G.; Nava, L.; Celotti, A. GeV emission from gamma-ray bursts: A radiative fireball? Mon. Not. R. Astron. Soc. 2010, 403, 926–937. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Barniol Duran, R. External forward shock origin of high-energy emission for three gamma-ray bursts detected by Fermi. Mon. Not. R. Astron. Soc. 2010, 409, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Ghirlanda, G.; Ghisellini, G.; Nava, L. The onset of the GeV afterglow of GRB 090510. Astron. Astrophys. 2010, 510, L7. [Google Scholar] [CrossRef]
- Liang, E.W.; Yi, S.X.; Zhang, J.; Lü, H.J.; Zhang, B.B.; Zhang, B. Constraining Gamma-ray Burst Initial Lorentz Factor with the Afterglow Onset Feature and Discovery of a Tight Γ0-Eγ,iso Correlation. Astrophys. J. 2010, 725, 2209–2224. [Google Scholar] [CrossRef] [Green Version]
- Lü, J.; Zou, Y.C.; Lei, W.H.; Zhang, B.; Wu, Q.; Wang, D.X.; Liang, E.W.; Lü, H.J. Lorentz-factor-Isotropic-luminosity/Energy Correlations of Gamma-Ray Bursts and Their Interpretation. Astrophys. J. 2012, 751, 49. [Google Scholar] [CrossRef] [Green Version]
- Liang, E.W.; Li, L.; Gao, H.; Zhang, B.; Liang, Y.F.; Wu, X.F.; Yi, S.X.; Dai, Z.G.; Tang, Q.W.; Chen, J.M.; et al. A Comprehensive Study of Gamma-Ray Burst Optical Emission. II. Afterglow Onset and Late Re-brightening Components. Astrophys. J. 2013, 774, 13. [Google Scholar] [CrossRef]
- Lei, W.H.; Zhang, B.; Liang, E.W. Hyperaccreting Black Hole as Gamma-Ray Burst Central Engine. I. Baryon Loading in Gamma-Ray Burst Jets. Astrophys. J. 2013, 765, 125. [Google Scholar] [CrossRef]
- Cochrane, R.; Hayward, C.; Anglés-Alcázar, D.; Lotz, J.; Parsotan, T.; Ma, X.; Kereš, D.; Feldmann, R.; Faucher-Giguere, C.; Hopkins, P. Predictions for the spatial distribution of the dust continuum emission in star-forming galaxies. Mon. Not. R. Astron. Soc. 2019, 488, 1779–1789. [Google Scholar] [CrossRef]
- Parsotan, T.; Cochrane, R.; Hayward, C.; Angles-Alcazar, D.; Feldmann, R.; Faucher-Giguere, C.A.; Wellons, S.; Hopkins, P. Realistic mock observations of the sizes and stellar mass surface densities of massive galaxies in FIRE-2 zoom-in simulations. Mon. Not. R. Astron. Soc. 2021, 501, 1591–1602. [Google Scholar] [CrossRef]
- Hayes, F.; Heng, I.S.; Veitch, J.; Williams, D. Comparing Short Gamma-Ray Burst Jet Structure Models. Astrophys. J. 2020, 891, 124. [Google Scholar] [CrossRef]
- Beniamini, P.; Petropoulou, M.; Barniol Duran, R.; Giannios, D. A lesson from GW170817: Most neutron star mergers result in tightly collimated successful GRB jets. Mon. Not. R. Astron. Soc. 2019, 483, 840–851. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. The delay time of gravitational wave—gamma-ray burst associations. Front. Phys. 2019, 14, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kimura, S.S. Neutrinos from Gamma-ray Bursts. arXiv 2022, arXiv:2202.06480. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parsotan, T.; Ito, H. GRB Prompt Emission: Observed Correlations and Their Interpretations. Universe 2022, 8, 310. https://doi.org/10.3390/universe8060310
Parsotan T, Ito H. GRB Prompt Emission: Observed Correlations and Their Interpretations. Universe. 2022; 8(6):310. https://doi.org/10.3390/universe8060310
Chicago/Turabian StyleParsotan, Tyler, and Hirotaka Ito. 2022. "GRB Prompt Emission: Observed Correlations and Their Interpretations" Universe 8, no. 6: 310. https://doi.org/10.3390/universe8060310
APA StyleParsotan, T., & Ito, H. (2022). GRB Prompt Emission: Observed Correlations and Their Interpretations. Universe, 8(6), 310. https://doi.org/10.3390/universe8060310