Shape Invariant Potentials in Supersymmetric Quantum Cosmology
Abstract
:1. Introduction
2. Supersymmetric Quantum Mechanics
2.1. Hamiltonian Formulation of Supersymmetric Quantum Mechanics
2.2. Shape Invariance and Solvable Potentials
3. SUSY Quantum Cosmology
3.1. A Case Study: Classical Setting
3.2. Quantization
3.3. Supersymmetric Quantization
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | In [37], the excited wave functions have also been studied. More concretely, instead of the choice of a nonsingular superpotential that is based on the ground state wave function , a generalized procedure was presented to construct all possible superpotentials. |
2 | Cf. next subsection, concretely about Equation (28). |
3 | Throughout this paper we work in natural units where . |
4 | Adler–Deser–Misner (ADM); see [56] for more details. |
5 | |
6 | “Ah, but a man’s reach should exceed his grasp, Or what’s a heaven for?”, Robert Browning (in ‘Andrea del Sarto’ l. 97 (1855)). |
References
- Cooper, F.; Ginocchio, J.N.; Wipf, A. Supersymmetry, operator transformations and exactly solvable potentials. J. Phys. A 1989, 22, 3707–3716. [Google Scholar] [CrossRef]
- Gangopadhyaya, A.; Mallow, J.V.; Sukhatme, U.P. Shape invariance and its connection to potential algebra. In Supersymmetry and Integrable Models; Aratyn, H., Imbo, T.D., Keung, W.Y., Sukhatme, U., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 502, pp. 341–350. [Google Scholar] [CrossRef] [Green Version]
- Balantekin, A.B. Algebraic approach to shape invariance. Phys. Rev. A 1998, 57, 4188–4191. [Google Scholar] [CrossRef] [Green Version]
- Gangopadhyaya, A.; Mallow, J.V.; Sukhatme, U.P. Broken supersymmetric shape invariant systems and their potential algebras. Phys. Lett. A 2001, 283, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Chen, Z.D.; Xuan, P.C. Exactly solvable potentials of the Klein Gordon equation with the supersymmetry method. Phys. Lett. A 2006, 352, 317–320. [Google Scholar] [CrossRef]
- Khare, A.; Bhaduri, R.K. Supersymmetry, shape invariance and exactly solvable noncentral potentials. Am. J. Phys. 1994, 62, 1008–1014. [Google Scholar] [CrossRef] [Green Version]
- Quesne, C. Deformed Shape Invariant Superpotentials in Quantum Mechanics and Expansions in Powers of ℏ. Symmetry 2020, 12, 1853. [Google Scholar] [CrossRef]
- Oikonomou, V.K. A relation between Z3-graded symmetry and shape invariant supersymmetric systems. J. Phys. A 2014, 47, 435304. [Google Scholar] [CrossRef] [Green Version]
- Bazeia, D.; Das, A. Supersymmetry, shape invariance and the Legendre equations. Phys. Lett. B 2012, 715, 256–259. [Google Scholar] [CrossRef]
- Stahlhofen, A. Remarks on the equivalence between the shape-invariance condition and the factorisation condition. J. Phys. A 1989, 22, 1053–1058. [Google Scholar] [CrossRef]
- Jafarizadeh, M.A.; Fakhri, H. Supersymmetry and shape invariance in differential equations of mathematical physics. Phys. Lett. A 1997, 230, 164–170. [Google Scholar] [CrossRef]
- Amani, A.; Ghorbanpour, H. Supersymmetry Approach and Shape Invariance for Pseudo-harmonic Potential. Acta Phys. Pol. B 2012, 43, 1795–1803. [Google Scholar] [CrossRef]
- Fathi, M.; Jalalzadeh, S.; Moniz, P.V. Classical Universe emerging from quantum cosmology without horizon and flatness problems. Eur. Phys. J. C 2016, 76, 527. [Google Scholar] [CrossRef] [Green Version]
- Jalalzadeh, S.; Rostami, T.; Moniz, P.V. On the relation between boundary proposals and hidden symmetries of the extended pre-big bang quantum cosmology. Eur. Phys. J. C 2015, 75, 38. [Google Scholar] [CrossRef] [Green Version]
- Rostami, T.; Jalalzadeh, S.; Moniz, P.V. Quantum cosmological intertwining: Factor ordering and boundary conditions from hidden symmetries. Phys. Rev. D 2015, 92, 023526. [Google Scholar] [CrossRef] [Green Version]
- Jalalzadeh, S.; Moniz, P.V. Dirac observables and boundary proposals in quantum cosmology. Phys. Rev. D 2014, 89, 083504. [Google Scholar] [CrossRef] [Green Version]
- Jalalzadeh, S.; Rostami, T.; Moniz, P.V. Quantum cosmology: From hidden symmetries towards a new (supersymmetric) perspective. Int. J. Mod. Phys. D 2016, 25, 1630009. [Google Scholar] [CrossRef]
- Moniz, P.V. Quantum Cosmology—The Supersymmetric Perspective—Vol. 1; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 803. [Google Scholar] [CrossRef] [Green Version]
- Moniz, P.V. Quantum Cosmology—The Supersymmetric Perspective—Vol. 2; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 804. [Google Scholar] [CrossRef] [Green Version]
- Moniz, P.V. Origin of structure in supersymmetric quantum cosmology. Phys. Rev. D 1998, 57, R7071. [Google Scholar] [CrossRef]
- Kiefer, C.; Lück, T.; Moniz, P.V. Semiclassical approximation to supersymmetric quantum gravity. Phys. Rev. D 2005, 72, 045006. [Google Scholar] [CrossRef] [Green Version]
- Cordero, R.; Granados, V.D.; Mota, R.D. Novel Complete Non-Compact Symmetries for the Wheeler–DeWitt Equation in a Wormhole Scalar Model and Axion-Dilaton String Cosmology. Class. Quant. Grav. 2011, 28, 185002. [Google Scholar] [CrossRef]
- Cordero, R.; Mota, R.D. New exact supersymmetric wave functions for a massless scalar field and axion–dilaton string cosmology in a FRWL metric. Eur. Phys. J. Plus 2020, 135, 78. [Google Scholar] [CrossRef] [Green Version]
- Díaz, J.S.G.; Reyes, M.A.; Mora, C.V.; Pozo, E.C. Supersymmetric Quantum Mechanics: Two Factorization Schemes and Quasi-Exactly Solvable Potentials. In Panorama of Contemporary Quantum Mechanics-Concepts and Applications; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Bhaduri, R.K.; Sakhr, J.; Sprung, D.W.L.; Dutt, R.; Suzuki, A. Shape invariant potentials in SUSY quantum mechanics and periodic orbit theory. J. Phys. A 2005, 38, L183–L189. [Google Scholar] [CrossRef] [Green Version]
- Bougie, J.; Gangopadhyaya, A.; Mallow, J.V. Method for generating additive shape-invariant potentials from an Euler equation. J. Phys. A 2011, 44, 275307. [Google Scholar] [CrossRef]
- Filho, E.D.; Ribeiro, M.A.C. Generalized Ladder Operators for Shape-invariant Potentials. Phys. Scripta 2001, 64, 548–552. [Google Scholar] [CrossRef] [Green Version]
- Gangopadhyaya, A.; Mallow, J.V.; Rasinariu, C.; Bougie, J. Exactness of SWKB for shape invariant potentials. Phys. Lett. A 2020, 384, 126722. [Google Scholar] [CrossRef]
- Bougie, J.; Gangopadhyaya, A.; Mallow, J.; Rasinariu, C. Supersymmetric Quantum Mechanics and Solvable Models. Symmetry 2012, 4, 452–473. [Google Scholar] [CrossRef] [Green Version]
- Cariñena, J.F.; Ramos, A. Shape-invariant potentials depending on n parameters transformed by translation. J. Phys. A Math. Gen. 2000, 33, 3467–3481. [Google Scholar] [CrossRef] [Green Version]
- Su, W.C. Shape invariant potentials in second-order supersymmetric quantum mechanics. J. Phys. Math. 2011, 3, 1–12. [Google Scholar] [CrossRef]
- Dong, S.H. Factorization Method in Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef] [Green Version]
- Nasuda, Y.; Sawado, N. SWKB Quantization Condition for Conditionally Exactly Solvable Systems and the Residual Corrections. arXiv 2021, arXiv:2108.12567. [Google Scholar]
- Gangopadhyaya, A.; Mallow, J.V.; Rasinariu, C. Supersymmetric Quantum Mechanics: An Introduction; World Scientific: Singapore, 2017. [Google Scholar] [CrossRef]
- Cooper, F.; Ginocchio, J.N.; Khare, A. Relationship Between Supersymmetry and Solvable Potentials. Phys. Rev. D 1987, 36, 2458–2473. [Google Scholar] [CrossRef] [PubMed]
- Dutt, R.; Khare, A.; Sukhatme, U.P. Supersymmetry, shape invariance, and exactly solvable potentials. Am. J. Phys. 1988, 56, 163–168. [Google Scholar] [CrossRef]
- Cooper, F.; Khare, A.; Sukhatme, U. Supersymmetry and quantum mechanics. Phys. Rept. 1995, 251, 267–385. [Google Scholar] [CrossRef] [Green Version]
- Nieto, M.M. Relationship Between Supersymmetry and the Inverse Method in Quantum Mechanics. Phys. Lett. B 1984, 145, 208–210. [Google Scholar] [CrossRef]
- Pursey, D.L. Isometric operators, isospectral Hamiltonians, and supersymmetric quantum mechanics. Phys. Rev. D 1986, 33, 2267–2279. [Google Scholar] [CrossRef] [PubMed]
- Gel’fand, I.M.; Levitan, B.M. On the determination of a differential equation from its spectral function. Izv. Akad. Nauk SSSR Ser. Mat. 1951, 15, 309–360. [Google Scholar]
- Abraham, P.B.; Moses, H.E. Changes in potentials due to changes in the point spectrum: Anharmonic oscillators with exact solutions. Phys. Rev. A 1980, 22, 1333–1340. [Google Scholar] [CrossRef]
- Kac, V.G. A sketch of Lie superalgebra theory. Comm. Math. Phys. 1977, 53, 31–64. [Google Scholar] [CrossRef]
- Gendenshtein, L.E. Derivation of Exact Spectra of the Schrodinger Equation by Means of Supersymmetry. JETP Lett. 1983, 38, 356–359. [Google Scholar]
- Schrödinger, E. A Method of Determining Quantum-Mechanical Eigenvalues and Eigenfunctions. Proc. R. Ir. Acad. A Math. Phys. Sci. 1940, 46, 9–16. [Google Scholar]
- Infeld, L.; Hull, T.E. The Factorization Method. Rev. Mod. Phys. 1951, 23, 21–68. [Google Scholar] [CrossRef]
- Khare, A. Supersymmetry in quantum mechanics. Pramana-J. Phys. 1997, 49, 41–64. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger, E. Further Studies on Solving Eigenvalue Problems by Factorization. Proc. R. Ir. Acad., A Math. phys. sci. 1940, 46, 183–206. [Google Scholar]
- Darboux, G. On a proposition relative to linear equations. C. R. Acad. Sci. Paris 1882, 94, 1456–1459. [Google Scholar]
- Luban, M.; Pursey, D.L. New Schrödinger equations for old: Inequivalence of the Darboux and Abraham-Moses constructions. Phys. Rev. D 1986, 33, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Arancibia, A.; Plyushchay, M.S.; Nieto, L.-M. Exotic supersymmetry of the kink-antikink crystal, and the infinite period limit. Phys. Rev. D 2016, 83, 065025. [Google Scholar] [CrossRef] [Green Version]
- Sonnenschein, J.; Tsulaia, M. A Note on Shape Invariant Potentials for Discretized Hamiltonians arXiv 2022, arXiv. arXiv 2022, arXiv:2205.10100. [Google Scholar]
- Cariñena, J.F.; Plyushchay, M.S. Ground-state isolation and discrete flows in a rationally extended quantum harmonic oscillator. Phys. Rev. D 2016, 94, 105022. [Google Scholar] [CrossRef] [Green Version]
- Cariñena, J.F.; Inzunza, L.; Plyushchay, M.S. Rational deformations of conformal mechanics. Phys. Rev. D 2018, 98, 026017. [Google Scholar] [CrossRef] [Green Version]
- Arancibia, A.; Plyushchay, M.S. Chiral asymmetry in propagation of soliton defects in crystalline backgrounds. Phys. Rev. D 2015, 92, 105009. [Google Scholar] [CrossRef] [Green Version]
- Fukui, T.; Aizawa, N. Shape-invariant potentials and an associated coherent state. Phys. Lett. A 1993, 180, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Jalalzadeh, S.; Moniz, P.V. Challenging Routes in Quantum Cosmology; World Scientific: Singapore, 2022. [Google Scholar] [CrossRef]
- Rasouli, S.; Saba, N.; Farhoudi, M.; Marto, J.; Moniz, P. Inflationary universe in deformed phase space scenario. Ann. Phys. 2018, 393, 288–307. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, S.; Pacheco, R.; Sakellariadou, M.; Moniz, P. Late time cosmic acceleration in modified Sáez–Ballester theory. Phys. Dark Univ. 2020, 27, 100446. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, S.M.M. Noncommutativity, Saez-Ballester Theory and Kinetic Inflation. Universe 2022, 8, 165. [Google Scholar] [CrossRef]
- Rasouli, S.; Farhoudi, M.; Khosravi, N. Horizon problem remediation via deformed phase space. Gen. Rel. Grav. 2011, 43, 2895–2910. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, S.M.M.; Moniz, P.V. Noncommutative minisuperspace, gravity-driven acceleration, and kinetic inflation. Phys. Rev. D 2014, 90, 083533. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, S.; Ziaie, A.; Jalalzadeh, S.; Moniz, P. Non-singular Brans–Dicke collapse in deformed phase space. Ann. Phys. 2016, 375, 154–178. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, S.M.M.; Vargas Moniz, P. Gravity-Driven Acceleration and Kinetic Inflation in Noncommutative Brans-Dicke Setting. Odessa Astron. Pub. 2016, 29, 19. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, S.; Marto, J.; Moniz, P. Kinetic inflation in deformed phase space Brans–Dicke cosmology. Phys. Dark Univ. 2019, 24, 100269. [Google Scholar] [CrossRef] [Green Version]
- Dereli, T.; Tucker, R.W. Signature dynamics in general relativity. Class. Quant. Grav. 1993, 10, 365–374. [Google Scholar] [CrossRef]
- Dereli, T.; Onder, M.; Tucker, R.W. Signature transitions in quantum cosmology. Class. Quant. Grav. 1993, 10, 1425–1434. [Google Scholar] [CrossRef]
- Jalalzadeh, S.; Ahmadi, F.; Sepangi, H.R. Multidimensional classical and quantum cosmology: Exact solutions, signature transition and stabilization. J. High Energy Phys. 2003, 2003, 012. [Google Scholar] [CrossRef] [Green Version]
- Khosravi, N.; Jalalzadeh, S.; Sepangi, H.R. Quantum noncommutative multidimensional cosmology. Gen. Rel. Grav. 2007, 39, 899–911. [Google Scholar] [CrossRef] [Green Version]
- Pedram, P.; Jalalzadeh, S. Quantum cosmology with varying speed of light: Canonical approach. Phys. Lett. B 2008, 660, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bina, A.; Atazadeh, K.; Jalalzadeh, S. Noncommutativity, generalized uncertainty principle and FRW cosmology. Int. J. Theor. Phys. 2008, 47, 1354–1362. [Google Scholar] [CrossRef] [Green Version]
- Jalalzadeh, S.; Vakili, B. Quantization of the interior Schwarzschild black hole. Int. J. Theor. Phys. 2012, 51, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Khosravi, N.; Jalalzadeh, S.; Sepangi, H.R. Non-commutative multi-dimensional cosmology. J. High Energy Phys. 2006, 2006, 134. [Google Scholar] [CrossRef] [Green Version]
- Vakili, B.; Pedram, P.; Jalalzadeh, S. Late time acceleration in a deformed phase space model of dilaton cosmology. Phys. Lett. B 2010, 687, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Darabi, F. Large scale—Small scale duality and cosmological constant. Phys. Lett. A 1999, 259, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Darabi, F.; Rastkar, A. A quantum cosmology and discontinuous signature changing classical solutions. Gen. Rel. Grav. 2006, 38, 1355–1366. [Google Scholar] [CrossRef] [Green Version]
- Jalalzadeh, S.; Rashki, M.; Abarghouei Nejad, S. Classical universe arising from quantum cosmology. Phys. Dark Univ. 2020, 30, 100741. [Google Scholar] [CrossRef]
- Kastrup, H.A. A new look at the quantum mechanics of the harmonic oscillator. Ann. Phys. 2007, 519, 439–528. [Google Scholar] [CrossRef]
- Kumar, R.; Malik, R.P. Supersymmetric Oscillator: Novel Symmetries. EPL 2012, 98, 11002. [Google Scholar] [CrossRef]
- D’Eath, P.D. Supersymmetric Quantum Cosmology; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar] [CrossRef]
- Moniz, P.V. Supersymmetric quantum cosmology: Shaken, not stirred. Int. J. Mod. Phys. A 1996, 11, 4321–4382. [Google Scholar] [CrossRef] [Green Version]
- Moniz, P.V. Quantum Cosmology: Meeting SUSY. In Progress in Mathematical Relativity, Gravitation and Cosmology; García-Parrado, A., Mena, F.C., Moura, F., Vaz, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 117–125. [Google Scholar] [CrossRef]
- García-Compeán, H.; Obregón, O.; Ramírez, C. Topics in Supersymmetric and Noncommutative Quantum Cosmology. Universe 2021, 7, 434. [Google Scholar] [CrossRef]
- Moniz, P.V. Supersymmetric quantum cosmology: A ‘Socratic’ guide. Gen. Rel. Grav. 2014, 46, 1618. [Google Scholar] [CrossRef]
- López, J.; Obregón, O. Supersymmetric quantum matrix cosmology. Class. quant. grav. 2015, 32, 235014. [Google Scholar] [CrossRef]
- Obregon, O.; Ramirez, C. Dirac-like formulation of quantum supersymmetric cosmology. Phys. Rev. D 1998, 57, 1015. [Google Scholar] [CrossRef]
- Bene, J.; Graham, R. Supersymmetric homogeneous quantum cosmologies coupled to a scalar field. Phys. Rev. D 1994, 49, 799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csordas, A.; Graham, R. Supersymmetric minisuperspace with nonvanishing fermion number. Phys. Rev. Lett. 1995, 74, 4129. [Google Scholar] [CrossRef] [Green Version]
- Kleinschmidt, A.; Koehn, M.; Nicolai, H. Supersymmetric quantum cosmological billiards. Phys. Rev. D 2009, 80, 061701. [Google Scholar] [CrossRef] [Green Version]
- Macías, A.; Mielke, E.W.; Socorro, J. Supersymmetric quantum cosmology for Bianchi class A models. Int. J. Mod. Phys. D 1998, 7, 701–712. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Spindel, P. Quantum supersymmetric cosmology and its hidden Kac–Moody structure. Class. Quant. Grav. 2013, 30, 162001. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, C. Quantum Gravity; International Series of Monographs on Physics; Clarendon: Oxford, UK, 2004; Volume 124. [Google Scholar] [CrossRef]
- Esposito, G. Quantum Gravity, Quantum Cosmology and Lorentzian Geometries; Lecture Notes in Physics Monographs; Springer: Berlin/Heidelberg, Germany, 2009; Volume 12. [Google Scholar] [CrossRef]
- Calcagni, G. Classical and Quantum Cosmology; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Bojowald, M. Quantum Cosmology: A Fundamental Description of the Universe; Lecture Notes in Physics; Springer: New York, NY, USA, 2011; Volume 835. [Google Scholar] [CrossRef]
- Lidsey, J.E. Quantum cosmology of generalized two-dimensional dilaton-gravity models. Phys. Rev. D 1995, 51, 6829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lidsey, J.E.; Moniz, P.V. Supersymmetric quantization of anisotropic scalar-tensor cosmologies. Class. Quant. Grav. 2000, 17, 4823. [Google Scholar] [CrossRef]
- Graham, R. Supersymmetric Bianchi type IX cosmology. Phys. Rev. Lett. 1991, 67, 1381. [Google Scholar] [CrossRef]
- Lidsey, J.E. Scale factor duality and hidden supersymmetry in scalar-tensor cosmology. Phys. Rev. D 1995, 52, R5407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkach, V.; Rosales, J.; Obregón, O. Supersymmetric action for Bianchi type models. Class. Quant. Grav. 1996, 13, 2349. [Google Scholar] [CrossRef]
- Obregón, O.; Rosales, J.; Tkach, V. Superfield description of the FRW universe. Phys. Rev. D 1996, 53, R1750. [Google Scholar] [CrossRef]
- Witten, E. Dynamical breaking of supersymmetry. Nucl. Phys. B 1981, 188, 513–554. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalalzadeh, S.; Rasouli, S.M.M.; Moniz, P. Shape Invariant Potentials in Supersymmetric Quantum Cosmology. Universe 2022, 8, 316. https://doi.org/10.3390/universe8060316
Jalalzadeh S, Rasouli SMM, Moniz P. Shape Invariant Potentials in Supersymmetric Quantum Cosmology. Universe. 2022; 8(6):316. https://doi.org/10.3390/universe8060316
Chicago/Turabian StyleJalalzadeh, Shahram, Seyed Meraj M. Rasouli, and Paulo Moniz. 2022. "Shape Invariant Potentials in Supersymmetric Quantum Cosmology" Universe 8, no. 6: 316. https://doi.org/10.3390/universe8060316
APA StyleJalalzadeh, S., Rasouli, S. M. M., & Moniz, P. (2022). Shape Invariant Potentials in Supersymmetric Quantum Cosmology. Universe, 8(6), 316. https://doi.org/10.3390/universe8060316