Significance of Charge on the Dynamics of Hyperbolically Distributed Fluids
Abstract
:1. Introduction
2. Basic Formalism
3. Einstein-Maxwell and Conservation Equation
4. Kinematical Variables, Mass Function and Collapsing Velocity
5. Conformal Tensor and Complexity Factor
6. Transport Equation
7. Quasi- Homologous Constraint
8. Stellar Models
8.1. Vanishing Dissipation
8.1.1. Isotropic Pressure and Conformal Flatness
8.1.2. Geodesic Solutions
8.2. Dissipative Case with
8.2.1. Y Is a Separable Function
8.2.2.
8.3. Constant Shear Scalar
9. Discussion and Final Remarks
- Due to the fact that any causal transport equation is formed on the notion that the fluid is close to thermal equilibrium, i.e., . Hence, Equation (27) indicates that is inevitably negative with the restriction that along with while keeping in mind that E is a regular function and the mass of the fluid distribution cannot be negative.
- The charged fluid is unable to occupy the cental region. This indicates the presence of cavity over there.
- The temperature gradient is required to maintain the system in thermal equilibrium [67]. Equation (45) shows that if then the gravitational force will be repulsive in nature and the temperature gradient will be positive in this case to keep the system in thermal equilibrium.
- The quasi-homologous condition implies the disappearance of in the non-dissipative situation.
- The condition is useful for developing alternative models and can give insight about the impact of charge on the physical properties of astrophysical objects.
- The fluid become less dense and the tangential pressure decreases in the presence of charge as one can verify it from Equations (91), (94), (99), (102), (107) and (110).
- The system become massive and more radial pressure exerts on it in the presence of charge as one can witness it from Equations (93), (95), (101), (103), (109) and (111).
- The temperature and the heat flux remain unchanged in the presence of charge as one can observe it from Equations (92), (96), (100), (104), (108) and (112).
- All the results obtained in this manuscript will be reduced in GR on substituting .
Author Contributions
Funding
Conflicts of Interest
References
- Wambsganss, J. Gravitational lensing in astronomy. Living Rev. Relativ. 1998, 1, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartelmann, M. Gravitational Lensing. Class. Quantum Grav. 2010, 27, 233001. [Google Scholar] [CrossRef] [Green Version]
- Li, S.S.; Mao, S.; Zhao, Y.; Lu, Y. Gravitational lensing of gravitational waves: A statistical perspective. Mon. Not. R. Astron. Soc. 2018, 476, 2220. [Google Scholar] [CrossRef]
- Cahill, M.E.; McVittie, G.C. Spherical Symmetry and Mass-Energy in General Relativity. I. General Theory. J. Math. Phys. 1970, 11, 1382. [Google Scholar] [CrossRef]
- Dunham, D. Hyperbolic symmetry. In Symmetry; Elsevier: Amsterdam, The Netherlands, 1986; p. 139. [Google Scholar]
- Einstein, A. The field equations of gravitation. Sess. Phys. Math Cl. 1915, 25, 844. [Google Scholar]
- Hawking, S.W. Black holes and thermodynamics. Phys. Rev. D 1976, 13, 191. [Google Scholar] [CrossRef]
- Raine, D.J.; Thomas, E.G. Black holes: An introduction Black Holes: An Introduction; Imperial College Press: London, UK, 2010. [Google Scholar]
- Khlopov, M.Y. Primordial black holes. Res. Astron. Astrophys. 2010, 10, 495. [Google Scholar] [CrossRef] [Green Version]
- Mazur, P.O.; Mottola, E. Gravitational vacuum condensate stars. Proc. Natl. Acad. Sci. USA 2004, 101, 9545. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.; Sengupta, R.; Nimesh, H. Gravastar: An alternative to black hole. Int. J. Mod. Phys. D 2020, 29, 2030004. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.Z.; Asad, H. Gravastars in f(R,T,RμνTμν) gravity. Phys. Dark Universe 2020, 28, 100527. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.; Asad, H. Electromagnetic effects on cylindrical gravastar-like strings in f(R,T,RσηTση) gravity. Int. J. Geom. Methods Mod. Phys. 2022, 19, 2250070. [Google Scholar] [CrossRef]
- Olmo, G.J.; Rubiera-Garcia, D. Nonsingular Black Holes in f(R) Theories. Universe 2015, 1, 173. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. Stellar structure models in modified theories of gravity: Lessons and challenges. Phys. Rep. 2020, 876, 1. [Google Scholar] [CrossRef]
- Schwarzschild, K. U ber das Gravitationsfeld einer Kugel aus inkompressibler Flu ssigkeit nach der Einsteinschen Theorie (On the gravitational field of a ball of incompressible fluid following Einstein’s theory). In Meeting Reports of the Royal Prussian Academy of Sciences; Royal Prussian Academy of Sciences: Berlin, Germany, 1916; p. 189. [Google Scholar]
- Reissner, H. On the self-gravity of the electric field according to Einstein’s theory. Ann. Phys 1916, 355, 106. [Google Scholar] [CrossRef] [Green Version]
- Nordstrom, G. On the energy of the gravitation field in Einstein’s theory. Koninkl. Ned. Akad. Wetenschap. Afdel. Natuurk. Amst. 1918, 26, 1201. [Google Scholar]
- Kerr, R.P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 1963, 11, 237. [Google Scholar] [CrossRef]
- Newman, E.T.; Couch, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. Metric of a rotating, charged mass. J. Math. Phys. 1965, 6, 918. [Google Scholar] [CrossRef]
- Harrison, B.K. Exact three-variable solutions of the field equations of general relativity. Phys. Rev. 1959, 116, 1285. [Google Scholar] [CrossRef]
- Ellis, G.R. Dynamics of pressure-free matter in general relativity. J. Math. Phys. 1967, 8, 1171. [Google Scholar] [CrossRef]
- Herrera, L.; Pavón, D. Hyperbolic theories of dissipation: Why and when do we need them? Phys. Stat. Mech. Appl. 2002, 307, 121. [Google Scholar] [CrossRef] [Green Version]
- Rizzi, L.; Cacciatori, S.L.; Gorini, V.; Kamenshchik, A.; Piattella, O.F. Dark matter effects in vacuum spacetime. Phys. Rev. D 2010, 82, 027301. [Google Scholar] [CrossRef] [Green Version]
- Kamenshchik, A.Y.; Pozdeeva, E.O.; Starobinsky, A.; Tronconi, A.; Vardanyan, T.; Venturi, G.; Vernov, S.Y. Duality between static spherically or hyperbolically symmetric solutions and cosmological solutions in scalar-tensor gravity. Phys. Rev. D 2018, 98, 124028. [Google Scholar] [CrossRef] [Green Version]
- Maciel, A.; Le Delliou, M.; Mimoso, J.P. New perspectives on the TOV equilibrium from a dual null approach. Class. Quantum Grav. 2020, 37, 125005. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J.; Witten, L. Geodesics of the hyperbolically symmetric black hole. Phys. Rev. D 2020, 101, 064071. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Ospino, J. Hyperbolically symmetric static fluids: A general study. Phys. Rev. D 2021, 103, 024037. [Google Scholar] [CrossRef]
- Yousaf, Z. Spatially hyperbolic gravitating sources in Λ -dominated era. Universe 2022, 8, 131. [Google Scholar] [CrossRef]
- Nashed, G.G. Schwarzschild solution in extended teleparallel gravity. EPL 2014, 105, 10001. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G.G. Brane world black holes in teleparallel theory equivalent to general relativity and their Killing vectors, energy, momentum and angular momentum. Chin. Phys. B 2010, 19, 020401. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G. Rotating charged black hole spacetimes in quadratic f(R) gravitational theories. Int. J. Mod. Phys. D 2018, 27, 1850074. [Google Scholar] [CrossRef]
- Elizalde, E.; Nashed, G.; Nojiri, S.; Odintsov, S.D. Spherically symmetric black holes with electric and magnetic charge in extended gravity: Physical properties, causal structure, and stability analysis in Einsteins and Jordans frames. Eur. Phys. J. C 2020, 80, 1. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G.; Saridakis, E.N. Rotating AdS black holes in Maxwell-f(T) gravity. Class. Quant. Grav. 2019, 36, 135005. [Google Scholar] [CrossRef] [Green Version]
- El Hanafy, W.; Nashed, G. Exact teleparallel gravity of binary black holes. Astrophys. Space Sci. 2016, 361, 1. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Santos, N.O. Dynamics of dissipative gravitational collapse. Dynamics of dissipative gravitational collapse. Phys. Rev. D 2004, 70, 084004. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L. Physical causes of energy density inhomogenization and stability of energy density homogeneity in relativistic self-gravitating fluids. Int. J. Mod. Phys. D 2011, 20, 1689–1703. [Google Scholar] [CrossRef] [Green Version]
- Mitra, A. Why gravitational contraction must be accompanied by emission of radiation in both Newtonian and Einstein gravity. Phys. Rev. D 2006, 74, 024010. [Google Scholar] [CrossRef] [Green Version]
- Gaudin, M.; Gorini, V.; Kamenshchik, A.; Moschella, U.; Pasquier, V. Gravity of a static massless scalar field and a limiting Schwarzschild-like geometry. Int. J. Mod. Phys. 2006, 15, 1387. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Ospino, J. Dynamics of hyperbolically symmetric fluids. Symmetry 2021, 13, 1568. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Hyperbolically Symmetric Versions of Lemaitre Tolman Bondi Spacetimes. Entropy 2021, 23, 1219. [Google Scholar] [CrossRef]
- Oikonomou, V.K. Universal inflationary attractors implications on static neutron stars. Class. Quantum Grav. 2021, 38, 175005. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Neutron stars phenomenology with scalar tensor inflationary attractors. Phys. Dark Universe 2021, 32, 100805. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Capozziello, S.; Odintsov, S.D.; Oikonomou, V.K. Novel stellar astrophysics from extended gravity. EPL (Europhys. Lett.) 2021, 134, 59001. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Capozziello, S.; Odintsov, S.D.; Oikonomou, V.K. Maximum baryon masses for static neutron stars in f(R) gravity. EPL (Europhys. Lett.) 2022, 136, 59001. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Neutron stars in scalar tensor gravity with quartic order scalar potential. Ann. Phys. 2022, 505, 168839. [Google Scholar] [CrossRef]
- Awad, A.; Nashed, G. Generalized teleparallel cosmology and initial singularity crossing. J. Cosmol. Astropart. Phys. 2017, 2017, 046. [Google Scholar] [CrossRef]
- Awad, A.; El Hanafy, W.; Nashed, G.; Odintsov, S.; Oikonomou, V. Constant-roll inflation in f(T) teleparallel gravity. J. Cosmol. Astropart. Phys. 2018, 2018, 026. [Google Scholar] [CrossRef] [Green Version]
- Shirafuji, T.; Nashed, G.G. Energy and momentum in the tetrad theory of gravitation. Prog. Theor. Exp. Phys. 1997, 98, 1355. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G.G. Charged axially symmetric solution, energy and angular momentum in tetrad theory of gravitation. Int. J. Mod. Phys. A 2006, 21, 3181. [Google Scholar] [CrossRef] [Green Version]
- Yousaf, Z.; Khlopov, M.Y.; Bhatti, M.Z.; Asad, H. Hyperbolically symmetric static charged cosmological fluid models. Mon. Not. R. Astron. Soc. 2022, 510, 4100. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.Z.; Asad, H. Hyperbolically symmetric sources in f(R,T) gravity. Ann. Phys. 2022, 437, 168753. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.Z.; Khlopov, M.; Asad, H. A comprehensive analysis of hyperbolical fluids in modified gravity. Entropy 2022, 24, 150. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.; Asad, H. Consequences of electric charge on anisotropic hyperbolically symmetric static spacetime. Phys. Scr. 2022, 97, 055304. [Google Scholar] [CrossRef]
- Malik, M.; Salahuddin, T.; Hussain, A.; Bilal, S. MHD flow of tangent hyperbolic fluid over a stretching cylinder: Using Keller box method. J. Magn. Magn. Mater. 2015, 395, 271. [Google Scholar] [CrossRef]
- Cao, L.M.; Wu, L.B. A Note on the Strong Hyperbolicity of f(R) Dynamical Shifts. arXiv 2021, arXiv:2112.07336. [Google Scholar]
- Misner, C.W.; Sharp, D.H. Relativistic equations for adiabatic, spherically symmetric gravitational collapse. Phys. Rev. 1964, 136, B571. [Google Scholar] [CrossRef]
- Wheeler, J.T. Weyl geometry. Gen. Relativ. Gravit. 2018, 50, 1. [Google Scholar] [CrossRef] [Green Version]
- Bel, L. Electromagnetic and gravitational inductions. Ann. Henri Poincare 1961, 17, 37. [Google Scholar]
- Herrera, L.; Ospino, J.; Di Prisco, A.; Fuenmayor, E.; Troconis, O. Structure and evolution of self-gravitating objects and the orthogonal splitting of the Riemann tensor. Phys. Rev. D 2009, 79, 064025. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Ospino, J.; Carot, J. Lemaitre-Tolman-Bondi dust spacetimes: Symmetry properties and some extensions to the dissipative case. Phys. Rev. D 2010, 82, 024021. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L. On the meaning of general covariance and the relevance of observers in general relativity. Int. J. Mod. Phys. D 2011, 20, 2773. [Google Scholar] [CrossRef] [Green Version]
- Yousaf, Z. Structure of spherically symmetric objects: A study based on structure scalars. Phys. Scr. 2022, 97, 025301. [Google Scholar] [CrossRef]
- Joseph, D.D.; Preziosi, L. Heat waves. Rev. Mod. Phys. 1989, 61, 41. [Google Scholar] [CrossRef]
- Müller, I. On the paradox of the heat conduction theory. Z. Phys. 1967, 198, 329. [Google Scholar] [CrossRef]
- Israel, W.; Stewart, J.M. Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 1979, 118, 341. [Google Scholar] [CrossRef]
- Tolman, R.C. On the weight of heat and thermal equilibrium in general relativity. Phys. Rev. 1930, 35, 904. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Prisco, A.D.; Ospino, J. Quasi-homologous evolution of self-gravitating systems with vanishing complexity factor. Eur. Phys. J. C 2020, 80, 1. [Google Scholar] [CrossRef]
- Herrera, L.; Santos, N.O.; Wang, A. Shearing expansion-free spherical anisotropic fluid evolution. Phys. Rev. D 2008, 78, 084026. [Google Scholar] [CrossRef] [Green Version]
- Yousaf, Z.; Bhatti, M.; Khan, S. Non-static charged complex structures in f(G,T2) gravity. Eur. Phys. J. Plus 2022, 137, 1. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.Z.; Ali, A. Electromagnetic field and quasi-homologous constraint for spherical fluids in f(R,T) gravity. Eur. Phys. J. Plus 2021, 136, 1013. [Google Scholar] [CrossRef]
- Bhatti, M.Z.; Yousaf, Z.; Tariq, Z. Influence of electromagnetic field on hyperbolically symmetric source. Eur. Phys. J. Plus 2021, 136, 857. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousaf, Z.; Nashed, G.G.L.; Bhatti, M.Z.; Asad, H. Significance of Charge on the Dynamics of Hyperbolically Distributed Fluids. Universe 2022, 8, 337. https://doi.org/10.3390/universe8060337
Yousaf Z, Nashed GGL, Bhatti MZ, Asad H. Significance of Charge on the Dynamics of Hyperbolically Distributed Fluids. Universe. 2022; 8(6):337. https://doi.org/10.3390/universe8060337
Chicago/Turabian StyleYousaf, Z., G. G. L. Nashed, M. Z. Bhatti, and H. Asad. 2022. "Significance of Charge on the Dynamics of Hyperbolically Distributed Fluids" Universe 8, no. 6: 337. https://doi.org/10.3390/universe8060337
APA StyleYousaf, Z., Nashed, G. G. L., Bhatti, M. Z., & Asad, H. (2022). Significance of Charge on the Dynamics of Hyperbolically Distributed Fluids. Universe, 8(6), 337. https://doi.org/10.3390/universe8060337