Consequences of the Improved Limits on the Tensor-to-Scalar Ratio from BICEP/Planck, and of Future CMB-S4 Measurements, for Inflationary Models
Abstract
:1. Introduction
2. Predictions for Inflationary Models
2.1. Polynomial Chaotic Inflation
2.2. Hilltop Inflation
2.3. Exponential Potential and Power-Law Inflation
2.4. Natural Inflation
2.5. Hybrid Natural Inflation
2.6. Higgs–Starobinsky Inflation
2.7. S-Dual Inflation
2.8. Hyperbolic Inflation
2.9. Supergravity-Motivated Inflation
2.10. M-Flation
2.11. Coleman–Weinberg Inflation
2.12. Kähler Moduli Inflation
2.13. Hybrid Inflation
2.14. Brane Inflation
2.15. Fast-Roll Inflation
2.16. Running Mass Inflation
2.17. k-Inflation
2.18. Dirac–Born–Infield (DBI) Inflation
2.19. Fluxbrane Inflation
2.20. Mutated Hilltop Inflation
2.21. Arctan Inflation
2.22. Inflation with a Fractional Potential
2.23. Twisted Inflation
2.24. Quintessential Inflation
2.25. Generalized Chaplygin Gas (GCG) Inflation
2.26. Axion Monodromy Inflation
2.27. Intermediate Inflation
2.28. Brane–Intermediate Inflation
2.29. Constant Rate of Roll Inflation
2.30. Fiber Inflation
2.31. Warm Inflation
2.31.1. Warm Polynomial Inflation
2.31.2. Warm Natural Inflation
2.32. Tachyon Inflation
2.32.1. Tachyon Inflation with Constant Value of
2.32.2. Tachyon Inflation with Constant Value of
2.32.3. Self-Dual Tachyon Inflation
2.32.4. Exponential Tachyon Inflation
2.32.5. Inverse Power-Law Tachyon Inflation
2.32.6. Tachyon-Intermediate Inflation
2.32.7. Tachyon-Warm Intermediate Brane Inflation
3. CMB-S4
4. Summary
5. Conclusions
Funding
Conflicts of Interest
References
- Grøn, Ø. Predictions of Spectral Parameters by Several Inflationary Universe Models in Light of the Planck Results. Universe 2018, 4, 15. [Google Scholar] [CrossRef]
- Ade, P.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation. Astron. Astrophys. 2014, 571, A30. [Google Scholar]
- Ade, P.; Aghanim, N.; Ahmed, Z.; Aikin, R.W.; Alexander, K.D.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barkats, D.; et al. Joint Analysis of BICEP2/Keck Array and Planck Data. Phys. Rev. Lett. 2015, 114, 101301. [Google Scholar] [CrossRef] [PubMed]
- Tristram, M.; Banday, A.J.; Górski, K.M.; Keskitalo, R.; Lawrence, C.R.; Andersen, K.J.; Wehus, I.K. Improved limits on the tensor-to-scalar ratio using BICEP and Planck. arXiv 2022, arXiv:2112.07961. [Google Scholar] [CrossRef]
- Martin, J.; Ringeval, C.; Vennin, V. Encyclopædia Inflationaris. Phys. Dark Univ. 2014, 5–6, 75–235. [Google Scholar] [CrossRef]
- Linde, A.D. Chaotic Inflation. Phys. Lett. 1983, 129, 177–181. [Google Scholar] [CrossRef]
- Boubekeur, L.; Lyth, D.H. Hilltop Inflation. J. Cosmol. Astropart. Phys. 2005, 2005, 010. [Google Scholar] [CrossRef]
- Dimopoulos, K. An analytic treatment of quartic hilltop inflation. Phys. Lett. 2020, 809, 135688. [Google Scholar] [CrossRef]
- Germán, G. Quartic hilltop inflation revisited. J. Cosmol. Astropart. Phys. 2021, 2021, 034. [Google Scholar] [CrossRef]
- Chiba, T.; Kohri, K. Consistency relations for large-field inflation. Prog. Theor. Exp. Phys. 2014, 2014, 93E01. [Google Scholar] [CrossRef]
- Chung, Y.; Lin, E. Topological inflation with large tensor-to-scalar-ratio. J. Cosmol. Astropart. Phys. 2014, 2014, 020. [Google Scholar] [CrossRef] [Green Version]
- Escudero, M.; Ramírez, H.; Boubekeur, L.; Giusarma, E.; Mena, O. The present and future of the most favoured inflationary models after Planck. J. Cosmol. Astropart. Phys. 2016, 2016, 020. [Google Scholar] [CrossRef]
- Geng, C.-Q.; Hossain, W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Quintessential inflation with canonical and noncanonical scalar fields and Planck 2015 results. Phys. Rev. 2015, 92, 023522. [Google Scholar] [CrossRef]
- Freese, K.; Frieman, J.A.; Olinto, A.V. Natural inflation with pseudo Nambu-Goldstone bosons. Phys. Rev. Lett. 1990, 65, 3233. [Google Scholar] [CrossRef] [PubMed]
- Freese, K.; Kinney, W.H. On Natural Inflation. Phys. Rev. 2004, 70, 083512. [Google Scholar] [CrossRef]
- Freese, K.; Kinney, W.H. Natural Inflation: Consistency with Cosmic Microwave Background Observations of Planck and BICEP. Cosmol. Astropart. Phys. 2015, 2015, 044. [Google Scholar] [CrossRef]
- Ross, G.G.; Germán, G. Hybrid natural inflation from non-Abelian discrete symmetry. Phys. Lett. 2010, 684, 199–204. [Google Scholar] [CrossRef]
- Carrillo-González, M.; German, G.; Herrera-Aguilar, A.; Hidalgo, J.C.; Sussman, R. Testing hybrid natural inflation with BICEP. Phys. Lett. 2014, 734, 345–349. [Google Scholar] [CrossRef]
- Hebecker, A.; Kraus, S.C.; Westphal, A. Evading the Lyth bound in Hybrid Natural Inflation. Phys. Rev. 2013, 88, 123506. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Carrillo-González, M.; Germán, G.; Herrera-Aguilar, A.; Hidalgo, J.C. Constraining Hybrid Natural Inflation with recent CMB data. J. Cosmol. Astropart. Phys. 2015, 2015, 039. [Google Scholar] [CrossRef]
- Ross, G.G.; Germán, G. Hybrid Natural Low Scale Inflation. Phys. Lett. 2010, 691, 117–120. [Google Scholar] [CrossRef]
- Germán, G.; Herrera-Aguilar, A.; Hidalgo, J.C.; Sussman, R.A. Canonical single field slow-roll inflation with a non-monotonic tensor-to-scalar ratio. J. Cosmol. Astropart. Phys. 2016, 2016, 025. [Google Scholar] [CrossRef]
- Bezrukov, F.; Shaposhnikov, M. The standard model Higgs boson as the Inflaton. Phys. Lett. 2008, 659, 703–706. [Google Scholar] [CrossRef]
- Bezrukov, F. The Higgs field as an inflaton. Class. Quantum Gravity 2013, 30, 214001. [Google Scholar] [CrossRef]
- Gorbunov, D.; Tokareva, A. R2-inflation with conformal SM Higgs field. J. Cosmol. Astropart. Phys. 2013, 2013, 021. [Google Scholar] [CrossRef]
- Zeynizadeh, S.; Akbarieh, A.R. Higgs inflation and general initial conditions. Eur. Phys. J. 2015, 75, 355. [Google Scholar] [CrossRef]
- Lyth, D.H.; Riotto, A. Particle Physics Models of Inflation and Cosmological Density Perturbation. Phys. Rep. 1999, 314, 1–146. [Google Scholar] [CrossRef]
- Drees, M.; Erfani, E. Running Spectral Index and Formation of Primordial Black Hole in Single Field Inflation Models. J. Cosmol. Astropart. Phys. 2012, 2012, 035. [Google Scholar] [CrossRef]
- Sebastiani, L.; Cognola, G.; Myrzakulov, R.; Odintsov, S.D.; Zerbini, S. Nearly Starobinsky inflation from modified gravity. Phys. Rev. 2014, 89, 023518. [Google Scholar] [CrossRef]
- Anchordoqui, L.A.; Barger, V.; Goldberg, H.; Huang, X.; Marfatia, D. S-dual inflation: BICEP 2 data without unlikeliness. Phys. Lett. 2014, 734, 134–136. [Google Scholar] [CrossRef]
- Basilakos, S.; Barrow, J.D. Hyperbolic inflation in the light of Planck. Phys. Rev. 2015, 91, 103517. [Google Scholar]
- Kallosh, R.; Linde, A.; Roest, D. Large Field Inflation and Double α-Attractors. J. High Energy Phys. 2014, 2014, 52. [Google Scholar] [CrossRef]
- Kallosh, R.A.; Linde, A. Planck, LHC, and a-attractors. Phys. Rev. 2015, 91, 083528. [Google Scholar]
- Ashoorioon, A.; Rezazadeh, K. Non-minimal M-flation. J. High Energy Phys. 2019, 7, 244. [Google Scholar] [CrossRef]
- Rehman, M.U.; Shafi, Q.; Wickman, J.R. GUT Inflation and Proton Decay after WMAP. Phys. Rev. 2008, 78, 123516. [Google Scholar]
- Bostan, N.; Güleryüz, Ö.; Şenoğuz, V.N. Inflationary Predictions of Double-Well, ColemanWeinberg, and Hilltop Potentials with Non-Minimal Coupling. JCAP05, 2018, 046. Available online: https://arxiv.org/abs/1802.04160 (accessed on 9 August 2022).
- Gong, J.O.; Shin, C.S. Natural Cliff Inflation. arXiv 2017, arXiv:1711.08270. [Google Scholar]
- Barenboim, G.; Chun, E.J.; Lee, H.M. Coleman-Weinberg inflation in light of Planck. Phys. Lett. 2014, 730, 81–88. [Google Scholar] [CrossRef]
- Conlon, J.P.; Quevedo, F. Kähler Moduli Inflation. J. High Energy Phys. 2006, 2006, 146. [Google Scholar] [CrossRef]
- Linde, A.D. Hybrid inflation. Phys. Rev. 1994, 49, 748–754. [Google Scholar] [CrossRef]
- Kodama, K.; Kohri, K.; Nakayama, K. On the Waterfall Behavior in Hybrid Inflation. Prog. Theor. Phys. 2011, 126, 311. [Google Scholar] [CrossRef]
- Maartens, R.; Wands, D.; Bassett, B.A.; Heard, I. Chaotic inflation on the brane. Phys. Rev. 2000, 62, 041301. [Google Scholar] [CrossRef]
- Galcagni, G. Slow roll parameters in braneworld cosmologies. Phys. Rev. 2004, 69, 103508. [Google Scholar] [CrossRef]
- Bennai, M.; Chakir, H.; Sakhi, Z. On Inflation Potentials in Randall-Sundrum Braneworld Model. Electron. J. Theor. Phys. 2006, 9, 84–93. [Google Scholar]
- Naciri, M.; Safsati, A.; Zarrouki, R.; Bennai, M. MSSM Braneworld Inflation. Adv. Stud. Theor. Phys. 2014, 8, 277–283. [Google Scholar] [CrossRef]
- Okada, N.; Okada, S. Simple brane-world inflationary models in light of BICEP2. arXiv 2014, arXiv:1407.3544. [Google Scholar]
- Maartens, R.; Koyama, K. Brane-World Gravity. Living Rev. Relativ. 2004, 13, 5. [Google Scholar] [CrossRef]
- Santos da Costa, S.; Menetti, M.; Neves, R.M.P.; Brito, F.A.; Silva, R.; Alcaniz, J. Brane inflation and the robustness of the Starobinsky inflationary model. Eur. Phys. J. Plus 2021, 136, 84. [Google Scholar] [CrossRef]
- Motohashi, H.; Starobinsky, A.A.; Yokoyama, J. Inflation with a constant rate of roll. J. Cosmol. Astropart. Phys. 2015, 2015, 018. [Google Scholar] [CrossRef]
- Covi, L.; Lyth, D.H.; Melchiorri, A. New constraints on the running-mass inflation model. Phys. Rev. 2003, 67, 043507. [Google Scholar] [CrossRef]
- Covi, L.; Lyth, D.H.; Melchiorri, A.; Odman, C.J. Running-mass inflation model and WMAP. Phys. Rev. 2004, 70, 123521. [Google Scholar] [CrossRef]
- Armendáriz-Picón, C.; Damour, T.; Mukhanov, V.F. k-inflation. Phys. Lett. 1999, 458, 209–218. [Google Scholar] [CrossRef]
- Garriga, J.; Mukhanov, V.F. Perturbations in k-inflation. Phys. Lett. 1999, 458, 219–225. [Google Scholar] [CrossRef]
- Li, S.; Liddle, A.R. Observational constraints on tachyon and DBI inflation. J. Cosmol. Astropart. Phys. 2014, 2014, 044. [Google Scholar] [CrossRef]
- Pal, B.K.; Pal, S.; Basu, B. Mutated Hilltop Inflation: A Natural Choice for the Early Universe. J. Cosmol. Astropart. Phys. 2010, 1001, 029. [Google Scholar] [CrossRef]
- Pal, B.K. Mutated hilltop inflation revisited. Eur. Phys. J. 2018, 78, 358. [Google Scholar] [CrossRef]
- Eshagli, M.; Zarei, M.; Riazi, N.; Riasatpour, A. A non-minimally coupled potential for inflation and dark energy after Planck 2015: A Comprehensive Study. J. Cosmol. Astropart. Phys. 2015, 2015, 037. [Google Scholar] [CrossRef]
- Maity, D. Minimal Higgs inflation. Nucl. Phys. 2017, 919, 560–568. [Google Scholar] [CrossRef]
- Davis, J.L.; Levi, T.S.; Van Raamsdonk, M.; Whyte, K.R.L. Twisted Inflation. J. Cosmol. Astropart. Phys. 2010, 2010, 032. [Google Scholar] [CrossRef]
- Martin, J.; Motohashi, H.; Suyama, T. Ultra Slow-Roll Inflation and the non-Gaussianity Consistency Relation. Phys. Rev. 2013, 87, 023514. [Google Scholar] [CrossRef]
- Hossain, M.W.; Myrzakulov, R.; Samu, M.; Saridakis, E.N. B mode polarization á la BICEP2 and relic gravity waves produced during quintessential inflation. Phys. Rev. 2014, 89, 123513. [Google Scholar]
- Bruck, C.; Dimopoulos, K.; Longden, C.; Owen, C. Gauss-Bonnet-coupled Quintessential Inflation. arXiv 2017, arXiv:1707.06839. [Google Scholar]
- Dimopoulos, K. Slow-roll versus ultra slow-roll inflation. Phys. Lett. 2017, 775, 262–265. [Google Scholar] [CrossRef]
- Agarwal, A.; Myrzakulov, R.; Sami, M.; Singh, N.K. Quintessential inflation in a thawing realization. Phys. Lett. 2017, 770, 200–208. [Google Scholar] [CrossRef]
- Dinda, B.R.; Kumar, S.; Sen, A.A. Inflationary generalized Chaplygin gas and dark energy in the light of the Planck and BICEP2 experiments. Phys. Rev. 2014, 90, 083515. [Google Scholar] [CrossRef]
- Kobayashi, T.; Seto, O.; Yamaguchi, Y. Axion monodromy inflation with sinusoidal corrections. Prog. Theor. Exp. Phys. 2014, 2014, 103E01. [Google Scholar] [CrossRef]
- Jin, W.; Brandenberger, R.; Heisenber, L. Axion monodromy inflation, trapping mechanisms and the swampland. Eur. Phys. J. Part. Fields 2021, 81, 162. [Google Scholar] [CrossRef]
- Gao, Q.; Gong, Y. Reconstruction of extended inflationary potentials for attractors. arXiv 2017, arXiv:1703.02220. [Google Scholar] [CrossRef]
- Cicoli, M.; Burgess, C.P.; Quevedo, F. Fibre inflation: Observable gravity waves from IIB string compactifications. J. Cosmol. Astropart. Phys. 2009, 2009, 013. [Google Scholar] [CrossRef]
- Burgess, C.; Cicoli, M.; De Alwis, S.; Quevedo, F. Robust Inflation from fibrous strings. J. Cosmol. Astropart. Phys. 2016, 2016, 032. [Google Scholar] [CrossRef]
- Cicoli, M.; Di Valentino, E. Fitting string inflation to real cosmological data: The fiber inflation case. Phys. Rev. 2020, 102, 043521-1. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Dutta, K.; Gangopadhyay, M.R.; Maharana, A.; Singh, K. Fiber inflation and precision CMB data. Phys. Rev. 2020, 102, 123531-1. [Google Scholar] [CrossRef]
- Berera, A. Warm Inflation. Phys. Rev. Lett. 1995, 75, 3218–3221. [Google Scholar] [CrossRef] [PubMed]
- Visinelli, L. Observational constraints on Monomial Warm Inflation. J. Cosmol. Astropart. Phys. 2016, 2016, 054. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Videla, N. Warm (l/4)/j4 inflationary universe model in light of Planck 2015 results. Eur. Phys. J. 2015, 75, 525. [Google Scholar] [CrossRef]
- Visinelli, L. Natural Warm Inflation. J. Cosmol. Astropart. Phys. 2011, 2011, 013. [Google Scholar] [CrossRef]
- Fei, Q.; Gong, Y.; Lin, J.; Yi, Z. The reconstruction of Tachyon inflationary potentials. J. Cosmol. Astropart. Phys. 2017, 2017, 018. [Google Scholar] [CrossRef]
- Steer, D.A.; Vernizzi, F. Tachyon inflation: Tests and comparison with single scalar field inflation. Phys. Rev. 2004, 70, 043527. [Google Scholar] [CrossRef]
- Rezazadeh, K.; Karami, K.; Hashemi, S. Tachyon inflation with steep potentials. Phys. Rev. 2017, 95, 103506. [Google Scholar] [CrossRef]
- Campo, S.; Herrera, R.; Toloza, A. Tachyon field in intermediate inflation. Phys. Rev. 2009, 79, 083507. [Google Scholar]
- Kamali, V.; Basilakos, S.; Mehrabi, A. Tachyon warm-intermediate inflation in the light of Planck data. Eur. Phys. J. 2016, 76, 525. [Google Scholar] [CrossRef]
- Mishra, S.S.; Sahni, V. Canonical and Non-canonical Inflation in the light of the recent BICEP/Keck results. arXiv preprint 2022, arXiv:2202.03467. Available online: https://arxiv.org/pdf/2202.03467 (accessed on 25 July 2022).
- Bamba, K.; Odintsov, S.D. Inflationary Cosmology in Modified Gravity Theories. Symmetry 2015, 7, 220–240. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, C.-Y.; Reyimuaji, Y. Modified gravity models for inflation: In conformity with observations. Phys. Rev. 2022, 105, 043514. [Google Scholar] [CrossRef]
Model | In Agreement with Observations | Falsified |
---|---|---|
Polynomial chaotic inflation | With and , this model predicts a negative value of r which is not permitted. | |
Hilltop inflation | Inflation with a quadratic hilltop potential predicts a very small value of r. A quartic hilltop model predicts and will be tested by CMB-S4. | |
Exponential potential | A modified model with is acceptable for . | A model with a simple exponential potential is ruled out. |
Natural inflation | Acceptable, but the observational data require the symmetry breaking energy to be much larger than the Planck energy. | |
Hybrid natural inflation | This model predicts , which may be tested by CMB-S4. | |
Higgs–Starobinsky inflation | This is a favored model. With the single input , it predicts and . The model will be tested by CMB-S4. | |
S-dual inflation Potential: . | Agreement with observational data requires . | |
Hyperbolic inflation | Acceptable, but the observational data require energy larger than the Planck energy. | |
Supergravity-motivated inflation | Acceptable, but again the observational data require energy larger than the Planck energy. | |
M-flation | A recent modified model called nonminimal M-flation can be in agreement with BICEP/Planck data. | The original M-flation model is falsified by the BICEP/Planck data. |
Coleman–Weinberg inflation | The model predicts a very small value of r. | |
Kähler moduli inflation | This too is a favored model. With the input , it predicts and . It will be tested by CMB-S4. | |
Hybrid inflation | There exist parameter values so that hybrid inflation agrees with the BICEP/Planck data. These models predict a very small value of r. | |
Brane inflation | A brane inflation model with a Starobinsky potential has parameter values so that it agrees with the BICEP/Planck data, but it requires energy larger than the Planck energy | Polynomial brane inflation is falsified by the BICEP/Planck data. |
Fast-roll inflation | For , this model predicts , which is falsified by the Planck/BICEP data. | |
Running mass inflation | Yes, but also this model needs a valid theory of phenomena above the Planck energy. | |
k-inflation | Same prediction as fast-roll inflation. | |
Dirac–Born–Infield inflation | With , this model predicts , which is too large according to the BICEP/Planck restrictions. | |
Fluxbrane inflation | This model leads to the relationship . gives , which is lower than that admitted to solve the horizon- and flatness problems. | |
Mutated hilltop inflation | This model predicts , which will be tested by CMB-S4. | |
Arctan inflation | In this model, . Hence, gives , which is a little smaller than that allowed by the Planck data. | |
Inflation with a fractional potential | With and , this model predicts , which will be tested by CMB-S4. | |
Twisted inflation | The tensor-to-scalar ratio has a very small value according to the twisted inflation model, so if CMB-S4 measures a nonvanishing value of r, this model will be ruled out. | |
Quintessential inflation | A version [60] of this model predicts and will be tested by CMB-S4. | The original version [58] and a version [61] are ruled out. |
Generalized Chaplygin gas inflation | Without very accurate fine-tuning, this model is not in accordance with observational data. | |
Axion monodromy inflation | For an initial/maximal inflation field ratio equal to 0.5 and , this model predicts that in accordance with the Planck/BICEP restrictions. This will be tested by CMB-S4. | |
Intermediate inflation | Same prediction as fast-roll inflation. | |
Brane-intermediate inflation | In order to fulfill the BICEP/Planck requirement, , the brane tension must fulfill . | |
Fiber inflation | With , fiber inflation predicts that . This will be tested by CMB-S4. | |
Warm inflation | In general, the warm inflation models come out better from a confrontation with observational data than the corresponding cold inflation models. Additionally, the warm inflation models give a more natural description of a transition to a radiation-dominated era at the end of the inflationary era than the cold inflation models. Some examples: In the case of warm polynomial inflation, the predicted values of and r depend upon assumptions on the temperature dependence of the dissipation coefficient . Warm polynomial inflation with : In the strong dissipative regime, this model predicts . With , this model predicts and a small value of r in agreement with the Planck/BICEP data. If CMB-S3 measures a nonvanishing value of r, this model will be falsified. The same is the case for warm natural inflation. | Warm polynomial inflation with constant value of predicts , giving for . This is lower than that permitted by the Planck/BICEP observations. Warm inflation with . In the weak dissipative regime, this model predicts , giving for , which is still too small. |
Tachyon inflation with constant value of | In this model, the relationship takes the form . Inserting the Planck value and gives . With , this was acceptable. However, the model is in trouble when confronted with the new restriction that . The CMB-S4 measurements will decide whether this model is acceptable. | |
Tachyon inflation with a constant value of | From the relationship for this model follows that gives . Hence, this model comes out with too many e-folds due to the new restriction on r. | |
Self-dual tachyon inflation | This model has the same trouble as the previous one. | |
Exponential tachyon inflation | This model predicts , which gives too large value for r. | |
Inverse power-law tachyon inflation | Same as the previous model. | |
Tachyon-intermediate inflation | Additionally, this model has the same problem as the two previous ones. | |
Tachyon warm intermediate brane inflation | Two models of this type were investigated. Both predict that in agreement with the Planck/BICEP data. Both will be further tested by CMB-S4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grøn, Ø.G. Consequences of the Improved Limits on the Tensor-to-Scalar Ratio from BICEP/Planck, and of Future CMB-S4 Measurements, for Inflationary Models. Universe 2022, 8, 440. https://doi.org/10.3390/universe8090440
Grøn ØG. Consequences of the Improved Limits on the Tensor-to-Scalar Ratio from BICEP/Planck, and of Future CMB-S4 Measurements, for Inflationary Models. Universe. 2022; 8(9):440. https://doi.org/10.3390/universe8090440
Chicago/Turabian StyleGrøn, Øyvind G. 2022. "Consequences of the Improved Limits on the Tensor-to-Scalar Ratio from BICEP/Planck, and of Future CMB-S4 Measurements, for Inflationary Models" Universe 8, no. 9: 440. https://doi.org/10.3390/universe8090440
APA StyleGrøn, Ø. G. (2022). Consequences of the Improved Limits on the Tensor-to-Scalar Ratio from BICEP/Planck, and of Future CMB-S4 Measurements, for Inflationary Models. Universe, 8(9), 440. https://doi.org/10.3390/universe8090440