The Lanczos Potential for Bianchi Spacetime
Abstract
:Contents | |
1. Introduction.......................................................................................................................................... | 1 |
2. The Lanczos Potential......................................................................................................................... | 2 |
3. Schwarzschild Spacetime.................................................................................................................. | 4 |
4. Vacuum Levi–Cevita Spacetime....................................................................................................... | 4 |
5. Non-Vacuum Levi–Cevita.................................................................................................................. | 6 |
6. Exponential Spacetime....................................................................................................................... | 8 |
7. The General Case................................................................................................................................. | 9 |
8. Cosmic Energetics.............................................................................................................................. | 12 |
9. Conclusions......................................................................................................................................... | 12 |
References................................................................................................................................................ | 13 |
1. Introduction
2. The Lanczos Potential
3. Schwarzschild Spacetime
4. Vacuum Levi–Cevita Spacetime
5. Non-Vacuum Levi–Cevita
6. Exponential Spacetime
7. The General Case
- Go for the general case but this has proved intractable so far;
- Consider if the equations are tractable for some examples in the Bianchi classification, which is left for now;
- See if known systems of pdes are compatible with (66);
- Choose A find f, see the next paragraph;
- Choose f as either a function of and/or t then find A, see the paragraph after next;
- Ignore, rather than exact solutions for f, qualitative properties, such as zeros and sign are what are important.
8. Cosmic Energetics
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lanczos, C. The splitting of the Riemann tensor. Rev. Mod. Phys. 1962, 34, 379. [Google Scholar] [CrossRef]
- Roberts, M.D. A New Gravitational Energy Tensor. Gen. Relativ. Gravit. 1988, 20, 775–792. [Google Scholar] [CrossRef]
- Barrow, J.D. Chaotic Behaviour in General Relativity. Phys. Rep. 1982, 85, 1–49. [Google Scholar] [CrossRef]
- Wainwright, J.; Ellis, G.F.R. Dynamical Systems in Cosmology; Cambridge University Press: Cambridge, UK, 1997; ISBN 0 521 55457 8. [Google Scholar]
- Bel, L. Les états de radiation et le problème de l’energie en relativité générale. Cah. Phys. 1962, 16, 59. [Google Scholar]
- Roberts, M.D. The Lanczos potential and Chern-Simons theory. Int. J. Mod. Phys. A 2020, 35, 2050006. [Google Scholar] [CrossRef]
- Maher, W.F.; Zund, J.D. A spinor approach to the Lanczos spin tensor. Il Nuovo Cimento 1968, 57A, 638–649. [Google Scholar] [CrossRef]
- O’Donnel, P. Introduction to 2-Spinors in General Relativity; World Scientific: Singapore, 2003; ISBN 9812383077. [Google Scholar]
- Zund, J.D. The theory of the Lanczos spinor. Ann. di Mat. Pura ed Appl. 1975, 109, 239–368. [Google Scholar] [CrossRef]
- Hawkind, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973; p. 95. ISBN 0 521 20016. [Google Scholar]
- Senovilla, J.M.M. Super-energy tensors. Class. Quantum Gravity 2000, 17, 2799. [Google Scholar] [CrossRef]
- Novello, M.; Velloso, A.L. The connection between general observers and Lanczos potential. Gen. Relativ. Gravit. 1987, 19, 1251–1265. [Google Scholar] [CrossRef]
- Cherubibi, C.; Bini, D.; Bruni, M.; Perjes, Z. Petrov classifiaction of perturbed spacetimes: The Kasner example. Class. Quantum Gravity 2004, 21, 4833–4843. [Google Scholar] [CrossRef]
- Brinis Udeschihi, E. A natural scalar field in the einstein gravitational theory. Gen. Relativ. Gravit. 1980, 12, 429–437. [Google Scholar] [CrossRef]
- Belinsky, V.A.; Khalatnikov, I.M.; Lifshitz, E.M. Oscillatory approach to a singular point in relativistic cosmology. Adv. Phys. 1970, 19, 525–573. [Google Scholar] [CrossRef]
- Fleig, P.; Belinski, V.A. BKL oscillations in 2 + 1 space-time dimension. arXiv 2018, arXiv:1811.05208. [Google Scholar]
- Penrose, R. General Relativity: An Einstein Centenary Survey; Hawking, S.W., Israel, W., Eds.; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Grøn, Ø.; Hervik, S. The Weyl curvature conjecture. arXiv 2002, arXiv:gr-qc/0205026. [Google Scholar]
- Tyron, E.P. Is the Universe a Quantum Fluctuation? Nature 1973, 246, 369–397. [Google Scholar]
- Roberts, M.D. The relative motion of membranes. Cent. Eur. J. Phys. Open Phys. 2010, 8, 915–919. [Google Scholar]
- Penrose, R. Quasilocal mass and angular momentum in general relavtity. Proc. R. Soc. 1982, A388, 53–63. [Google Scholar]
- Wand, M.-T.; Yau, S.-T. Quasi local mass in general relativity. Phys. Rev. Lett. 2009, 102, 021101. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberts, M.D. The Lanczos Potential for Bianchi Spacetime. Universe 2022, 8, 441. https://doi.org/10.3390/universe8090441
Roberts MD. The Lanczos Potential for Bianchi Spacetime. Universe. 2022; 8(9):441. https://doi.org/10.3390/universe8090441
Chicago/Turabian StyleRoberts, Mark D. 2022. "The Lanczos Potential for Bianchi Spacetime" Universe 8, no. 9: 441. https://doi.org/10.3390/universe8090441
APA StyleRoberts, M. D. (2022). The Lanczos Potential for Bianchi Spacetime. Universe, 8(9), 441. https://doi.org/10.3390/universe8090441