Gravitational Waves from Strange Star Core–Crust Oscillation
Abstract
:1. Introduction
2. Core–Crust Oscillation
3. Gravitational Wave Emission
3.1. Generalized Parallel Axis Theorem
3.2. Applied to the Core–Crust Oscillation
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | https://apps.et-gw.eu/tds/ql/?c=15418 (accessed on 28 May 2022). |
References
- Kokkotas, K.D.; Schmidt, B.G. Quasi-Normal Modes of Stars and Black Holes. Living Rev. Relativ. 1999, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- Kokkotas, K.D.; Apostolatos, T.A.; Andersson, N. The inverse problem for pulsating neutron stars: A ‘fingerprint analysis’ for the supranuclear equation of state. Mon. Not. R. Astron. Soc. 2001, 320, 307–315. [Google Scholar] [CrossRef]
- Yim, G.; Jones, D.I. Gravitational radiation back-reaction from f-modes on neutron stars. Mon. Not. R. Astron. Soc. 2022, 511, 1942–1960. [Google Scholar] [CrossRef]
- Kuan, H.J.; Krüger, C.J.; Suvorov, A.G.; Kokkotas, K.D. Constraining equation of state groups from g-mode asteroseismology. Mon. Not. R. Astron. Soc. 2022, 513, 4045–4056. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef]
- Guerra Chaves, A.; Hinderer, T. Probing the equation of state of neutron star matter with gravitational waves from binary inspirals in light of GW170817: A brief review. J. Phys. G Nucl. Phys. 2019, 46, 123002. [Google Scholar] [CrossRef]
- Andersson, N. A Gravitational-Wave Perspective on Neutron-Star Seismology. Universe 2021, 7, 97. [Google Scholar] [CrossRef]
- Bodmer, A.R. Collapsed Nuclei. Phys. Rev. D 1971, 4, 1601–1606. [Google Scholar] [CrossRef]
- Witten, E. Cosmic separation of phases. Phys. Rev. D 1984, 30, 272–285. [Google Scholar] [CrossRef]
- Farhi, E.; Jaffe, R.L. Strange matter. Phys. Rev. D 1984, 30, 2379–2390. [Google Scholar] [CrossRef]
- Terazawa, H. Super-Hypernuclei in the Quark-Shell Model. J. Phys. Soc. Jpn. 1989, 58, 3555. [Google Scholar] [CrossRef]
- Terazawa, H. Super-Hypernuclei in the Quark-Shell Model. II. J. Phys. Soc. Jpn. 1989, 58, 4388. [Google Scholar] [CrossRef]
- Terazawa, H. Super-Hypernuclei in the Quark-Shell Model. III. J. Phys. Soc. Jpn. 1990, 59, 1199. [Google Scholar] [CrossRef]
- Haensel, P.; Zdunik, J.L.; Schaefer, R. Strange quark stars. Astron. Astrophys. 1986, 160, 121–128. [Google Scholar]
- Alcock, C.; Farhi, E.; Olinto, A. Strange Stars. Astrophys. J. 1986, 310, 261. [Google Scholar] [CrossRef]
- Huang, Y.f.; Lu, T. On the Crust of a Strange Star. Chin. Phys. Lett. 1997, 14, 314–316. [Google Scholar] [CrossRef]
- Huang, Y.F.; Lu, T. Strange stars: How dense can their crust be? Astron. Astrophys. 1997, 325, 189–194. [Google Scholar]
- Stejner, M.; Madsen, J. Gaps below strange star crusts. Phys. Rev. D 2005, 72, 123005. [Google Scholar] [CrossRef]
- Frieman, J.A.; Olinto, A.V. Is the sub-millisecond pulsar strange? Nature 1989, 341, 633–635. [Google Scholar] [CrossRef]
- Pizzochero, P.M. Cooling of a strange star with crust. Phys. Rev. Lett. 1991, 66, 2425–2428. [Google Scholar] [CrossRef]
- Postnikov, S.; Prakash, M.; Lattimer, J.M. Tidal Love numbers of neutron and self-bound quark stars. Phys. Rev. D 2010, 82, 024016. [Google Scholar] [CrossRef]
- Huang, Y.F.; Yu, Y.B. Searching for Strange Quark Matter Objects in Exoplanets. Astrophys. J. 2017, 848, 115. [Google Scholar] [CrossRef] [Green Version]
- Kuerban, A.; Geng, J.J.; Huang, Y.F.; Zong, H.S.; Gong, H. Close-in Exoplanets as Candidates for Strange Quark Matter Objects. Astrophys. J. 2020, 890, 41. [Google Scholar] [CrossRef]
- Kurban, A.; Huang, Y.F.; Geng, J.J.; Zong, H.S. Searching for strange quark matter objects among white dwarfs. Phys. Lett. B 2022, 832, 137204. [Google Scholar] [CrossRef]
- Geng, J.J.; Huang, Y.F.; Lu, T. Coalescence of Strange-quark Planets with Strange Stars: A New Kind of Source for Gravitational Wave Bursts. Astrophys. J. 2015, 804, 21. [Google Scholar] [CrossRef]
- Kuerban, A.; Geng, J.J.; Huang, Y.F. GW emission from merging strange quark star-strange quark planet systems. In Xiamen-CUSTIPEN Workshop on the Equation of State of Dense Neutron-Rich Matter in the Era of Gravitational Wave Astronomy; American Institute of Physics Conference Series; AIP: Melville, NY, USA, 2019; Volume 2127, p. 020027. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Y.F.; Li, B. Searching For Strange Quark Planets. arXiv 2021, arXiv:2109.15161. [Google Scholar]
- Wang, X.; Kuerban, A.; Geng, J.J.; Xu, F.; Zhang, X.L.; Zuo, B.J.; Yuan, W.L.; Huang, Y.F. Tidal deformability of strange quark planets and strange dwarfs. Phys. Rev. D 2021, 104, 123028. [Google Scholar] [CrossRef]
- Yip, C.W.; Chu, M.C.; Leung, P.T. The Quadrupole Oscillations of Strange-Quark Stars. Astrophys. J. 1999, 513, 849–860. [Google Scholar] [CrossRef]
- Andersson, N.; Jones, D.I.; Kokkotas, K.D. Strange stars as persistent sources of gravitational waves. Mon. Not. R. Astron. Soc. 2002, 337, 1224–1232. [Google Scholar] [CrossRef]
- Chugunov, A.I. Seismic signatures of strange stars with crust. Mon. Not. R. Astron. Soc. 2006, 371, 363–368. [Google Scholar] [CrossRef]
- Staykov, K.V.; Doneva, D.D.; Yazadjiev, S.S.; Kokkotas, K.D. Gravitational wave asteroseismology of neutron and strange stars in R2 gravity. Phys. Rev. D 2015, 92, 043009. [Google Scholar] [CrossRef]
- Wang, Q.D.; Lu, T. The damping effects of the vibrations in the core of a neutron star. Phys. Lett. B 1984, 148, 211–214. [Google Scholar] [CrossRef]
- Tsang, D.; Read, J.S.; Hinderer, T.; Piro, A.L.; Bondarescu, R. Resonant Shattering of Neutron Star Crusts. Phys. Rev. Lett. 2012, 108, 011102. [Google Scholar] [CrossRef] [PubMed]
- Kutschera, M.; Jałocha, J.; Bratek, Ł.; Kubis, S.; Kędziorek, T. Oscillating Strange Quark Matter Objects Excited in Stellar Systems. Astrophys. J. 2020, 897, 168. [Google Scholar] [CrossRef]
- Zou, Z.C.; Huang, Y.F. Gravitational-wave Emission from a Primordial Black Hole Inspiraling inside a Compact Star: A Novel Probe for Dense Matter Equation of State. Astrophys. J. Lett. 2022, 928, L13. [Google Scholar] [CrossRef]
- Maggiore, M. Gravitational Waves: Volume 1: Theory and Experiments; Oxford University Press: Oxford, UK, 2007. [Google Scholar] [CrossRef]
- van den Broek, D.; Nelemans, G.; Dan, M.; Rosswog, S. On the point mass approximation to calculate the gravitational wave signal from white dwarf binaries. Mon. Not. R. Astron. Soc. 2012, 425, L24–L27. [Google Scholar] [CrossRef]
- Chau, W.Y. Finite Size Effect in Gravitational Radiation from Very Close Binary Systems. Astrophys. Lett. 1976, 17, 119. [Google Scholar]
- Nazin, S.N.; Postnov, K.A. Gravitational Radiation during Thorne-Zytkow object formation. Astron. Astrophys. 1995, 303, 789. [Google Scholar]
- Ginat, Y.B.; Glanz, H.; Perets, H.B.; Grishin, E.; Desjacques, V. Gravitational waves from in-spirals of compact objects in binary common-envelope evolution. Mon. Not. R. Astron. Soc. 2020, 493, 4861–4867. [Google Scholar] [CrossRef]
- Moore, C.J.; Cole, R.H.; Berry, C.P.L. Gravitational-wave sensitivity curves. Class. Quantum Gravity 2015, 32, 015014. [Google Scholar] [CrossRef]
- Zou, Z.C.; Zhou, X.L.; Huang, Y.F. The gravitational wave emission of double white dwarf coalescences. Res. Astron. Astrophys. 2020, 20, 137. [Google Scholar] [CrossRef]
- Jiménez, J.C.; Fraga, E.S. Radial oscillations of quark stars from perturbative QCD. Phys. Rev. D 2019, 100, 114041. [Google Scholar] [CrossRef]
- Geng, J.; Li, B.; Huang, Y. Repeating fast radio bursts from collapses of the crust of a strange star. Innovation 2021, 2, 100152. [Google Scholar] [CrossRef]
- Huang, Y.F.; Geng, J.J. Anti-glitch Induced by Collision of a Solid Body with the Magnetar 1E 2259+586. Astrophys. J. Lett. 2014, 782, L20. [Google Scholar] [CrossRef]
- Geng, J.J.; Huang, Y.F. Fast Radio Bursts: Collisions between Neutron Stars and Asteroids/Comets. Astrophys. J. 2015, 809, 24. [Google Scholar] [CrossRef]
- Zhang, Y.; Geng, J.J.; Huang, Y.F. Fast Radio Bursts from the Collapse of Strange Star Crusts. Astrophys. J. 2018, 858, 88. [Google Scholar] [CrossRef]
- Aggarwal, N.; Aguiar, O.D.; Bauswein, A.; Cella, G.; Clesse, S.; Cruise, A.M.; Domcke, V.; Figueroa, D.G.; Geraci, A.; Goryachev, M.; et al. Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies. Living Rev. Relativ. 2021, 24, 4. [Google Scholar] [CrossRef]
- Thomson, W. Dynamical Problems Regarding Elastic Spheroidal Shells and Spheroids of Incompressible Liquid. Philos. Trans. R. Soc. Lond. Ser. I 1863, 153, 583–616. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Z.-C.; Huang, Y.-F.; Zhang, X.-L. Gravitational Waves from Strange Star Core–Crust Oscillation. Universe 2022, 8, 442. https://doi.org/10.3390/universe8090442
Zou Z-C, Huang Y-F, Zhang X-L. Gravitational Waves from Strange Star Core–Crust Oscillation. Universe. 2022; 8(9):442. https://doi.org/10.3390/universe8090442
Chicago/Turabian StyleZou, Ze-Cheng, Yong-Feng Huang, and Xiao-Li Zhang. 2022. "Gravitational Waves from Strange Star Core–Crust Oscillation" Universe 8, no. 9: 442. https://doi.org/10.3390/universe8090442
APA StyleZou, Z. -C., Huang, Y. -F., & Zhang, X. -L. (2022). Gravitational Waves from Strange Star Core–Crust Oscillation. Universe, 8(9), 442. https://doi.org/10.3390/universe8090442