Effect of Some Modified Models of Gravity on the Radial Velocity of Binary Systems
Abstract
:1. Introduction
2. The Calculational Scheme
3. The Case of a Hooke-Type Acceleration
4. The Case of a Perturbing Acceleration
5. The Case of a Perturbing Acceleration
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | It should be stressed that most of the current research in the field of dark matter and dark energy is, actually, made within general relativity. Of course, there is the option of alternative theories of gravity, but it would be incorrect to look at them as a necessity from the point of view of dark matter and dark energy. |
2 | To date, according to the online database http://exoplanet.eu/ (accessed on 11 July 2022), about a thousand planets have been discovered with the RV method. |
3 | |
4 | can be expressed in terms of the measurable parameters and , where is the Hubble parameter and is the energy density of the Cosmological Constant normalized to the critical density. Their determinations from the measurements of the Cosmic Microwave Background (CMB) power spectra by the satellite Planck can be retrieved in [58]. |
5 | P. Kervella, private communication, 2022. |
References
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Cota, J.; Galindo-Uribarri, S.; Smoot, G. A Brief History of Gravitational Waves. Universe 2016, 2, 22. [Google Scholar] [CrossRef]
- Cervantes-Cota, J.L.; Galindo-Uribarri, S.; Smoot, G.F. The Legacy of Einstein’s Eclipse, Gravitational Lensing. Universe 2019, 6, 9. [Google Scholar] [CrossRef]
- Dokuchaev, V.I.; Nazarova, N.O. Visible Shapes of Black Holes M87* and SgrA*. Universe 2020, 6, 154. [Google Scholar] [CrossRef]
- Wex, N.; Kramer, M. Gravity Tests with Radio Pulsars. Universe 2020, 6, 156. [Google Scholar] [CrossRef]
- Freeman, K.C. Galaxies, Globular Clusters, and Dark Matter. Annu. Rev. Astron. Astr. 2017, 55, 1–16. [Google Scholar] [CrossRef]
- Wechsler, R.H.; Tinker, J.L. The Connection Between Galaxies and Their Dark Matter Halos. Annu. Rev. Astron. Astr. 2018, 56, 435–487. [Google Scholar] [CrossRef]
- Kisslinger, L.S.; Das, D. A brief review of dark matter. Int. J. Mod. Phys. A 2019, 34, 1930013. [Google Scholar] [CrossRef]
- Frieman, J.A.; Turner, M.S.; Huterer, D. Dark energy and the accelerating universe. Annu. Rev. Astron. Astr. 2008, 46, 385–432. [Google Scholar] [CrossRef]
- Brax, P. What makes the Universe accelerate? A review on what dark energy could be and how to test it. Rep. Prog. Phys. 2018, 81, 016902. [Google Scholar] [CrossRef]
- Debono, I.; Smoot, G.F. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe 2016, 2, 23. [Google Scholar] [CrossRef]
- Lobo, F.S.N. The dark side of gravity: Modified theories of gravity. In Proceedings of the Dark Energy-Current Advances and Ideas; Research Signpost: Thiruvananthapuram, India, 2009; pp. 173–204. [Google Scholar]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Capozziello, S.; Harko, T.; Koivisto, T.; Lobo, F.; Olmo, G. Hybrid Metric-Palatini Gravity. Universe 2015, 1, 199–238. [Google Scholar] [CrossRef]
- Berti, E.; Barausse, E.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Stein, L.C.; Wex, N.; Yagi, K.; Baker, T.; et al. Testing General Relativity with Present and Future Astrophysical Observations. Class. Quant. Grav. 2015, 32, 243001. [Google Scholar] [CrossRef]
- Cai, Y.F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Bahamonde, S.; Said, J.L. Teleparallel Gravity: Foundations and Observational Constraints—Editorial. Universe 2021, 7, 269. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 115–146. [Google Scholar] [CrossRef]
- Seager, S. Exoplanets; University of Arizona Press: Tucson, AZ, USA, 2011. [Google Scholar]
- Deeg, H.J.; Belmonte, J.A. Handbook of Exoplanets; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef] [Green Version]
- Perryman, M. The Exoplanet Handbook, 2nd ed.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Fischer, D.A.; Anglada-Escude, G.; Arriagada, P.; Baluev, R.V.; Bean, J.L.; Bouchy, F.; Buchhave, L.A.; Carroll, T.; Chakraborty, A.; Crepp, J.R.; et al. State of the Field: Extreme Precision Radial Velocities. Publ. ASP 2016, 128, 066001. [Google Scholar] [CrossRef]
- Wright, J.T. Radial Velocities as an Exoplanet Discovery Method. In Proceedings of the Handbook of Exoplanets; Deeg, H.J., Belmonte, J.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; p. 4. [Google Scholar] [CrossRef]
- Gilbertson, C.; Ford, E.B.; Jones, D.E.; Stenning, D.C. Toward Extremely Precise Radial Velocities. II. A Tool for Using Multivariate Gaussian Processes to Model Stellar Activity. ApJ 2020, 905, 155. [Google Scholar] [CrossRef]
- Matsuo, T.; Greene, T.P.; Qezlou, M.; Bird, S.; Ichiki, K.; Fujii, Y.; Yamamuro, T. Densified Pupil Spectrograph as High-precision Radial Velocimetry: From Direct Measurement of the Universe’s Expansion History to Characterization of Nearby Habitable Planet Candidates. AJ 2022, 163, 63. [Google Scholar] [CrossRef]
- Ruggiero, M.L.; Iorio, L. Probing a rn modification of the Newtonian potential with exoplanets. JCAP 2020, 06, 042. [Google Scholar] [CrossRef]
- Close, L.M.; Richer, H.B.; Crabtree, D.R. A Complete Sample of Wide Binaries in the Solar Neighborhood. AJ 1990, 100, 1968. [Google Scholar] [CrossRef]
- Kervella, P.; Thévenin, F.; Lovis, C. Proxima’s orbit around α Centauri. A&A 2017, 598, L7. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. AJ 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. ApJ 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Carroll, S.M.; Press, W.H.; Turner, E.L. The cosmological constant. Annu. Rev. Astron. Astr. 1992, 30, 499–542. [Google Scholar] [CrossRef]
- Carroll, S.M. The Cosmological Constant. Living Rev. Relativ. 2001, 4, 1. [Google Scholar] [CrossRef]
- Peebles, P.J.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef]
- Padmanabhan, T. Cosmological constant-the weight of the vacuum. Phys. Rep. 2003, 380, 235–320. [Google Scholar] [CrossRef]
- Carroll, S.M. Spacetime and Geometry: An Introduction to General Relativity; Addison Wesley: San Francisco, CA, USA, 2004. [Google Scholar]
- Davis, T.; Griffen, B. Cosmological constant. Scholarpedia 2010, 5, 4473. [Google Scholar] [CrossRef]
- O’Raifeartaigh, C.; O’Keeffe, M.; Nahm, W.; Mitton, S. One hundred years of the cosmological constant: From “superfluous stunt” to dark energy. Eur. Phys. J. H 2018, 43, 73–117. [Google Scholar] [CrossRef]
- Rindler, W. Relativity: Special, General, and Cosmological; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Kerr, A.; Hauck, J.; Mashhoon, B. Standard clocks, orbital precession and the cosmological constant. Class. Quant. Grav. 2003, 20, 2727–2736. [Google Scholar] [CrossRef]
- Allemandi, G.; Francaviglia, M.; Ruggiero, M.L.; Tartaglia, A. Post-Newtonian parameters from alternative theories of gravity. Gen. Rel. Grav. 2005, 37, 1891–1904. [Google Scholar] [CrossRef]
- Allemandi, G.; Ruggiero, M.L. Constraining Alternative Theories of Gravity using Solar System Tests. Gen. Rel. Grav. 2007, 39, 1381. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified gravity as an alternative for ΛCDM cosmology. Helv. Phys. Acta 2007, 40, 6725–6732. [Google Scholar] [CrossRef]
- Dunsby, P.K.S.; Elizalde, E.; Goswami, R.; Odintsov, S.; Saez-Gomez, D. ΛCDM universe in f(R) gravity. Phys. Rev. D 2010, 82, 023519. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) Theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Non-Singular Modified Gravity Unifying Inflation with Late-Time Acceleration and Universality of Viscous Ratio Bound in F(R) Theory. Prog. Theor. Phys. Supp. 2011, 190, 155–178. [Google Scholar] [CrossRef]
- Capozziello, S.; de Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. The dark matter problem from f(R) gravity viewpoint. Ann. Phys. Berlin 2012, 524, 545–578. [Google Scholar] [CrossRef]
- de Martino, I.; De Laurentis, M.; Capozziello, S. Constraining f(R) gravity by the Large Scale Structure. Universe 2015, 1, 123. [Google Scholar] [CrossRef]
- Capozziello, S.; de Laurentis, M.; Luongo, O. Connecting early and late universe by f(R) gravity. Int. J. Mod. Phys. D 2015, 24, 1541002. [Google Scholar] [CrossRef]
- Iorio, L.; Ruggiero, M.L.; Radicella, N.; Saridakis, E.N. Constraining the Schwarzschild–de Sitter solution in models of modified gravity. Phys. Dark Univ. 2016, 13, 111–120. [Google Scholar] [CrossRef]
- Casotto, S. Position and velocity perturbations in the orbital frame in terms of classical element perturbations. Celest. Mech. Dyn. Astr. 1993, 55, 209–221. [Google Scholar] [CrossRef]
- Brumberg, V.A. Essential Relativistic Celestial Mechanics; Adam Hilger: Bristol, UK, 1991. [Google Scholar]
- Iorio, L. On the mean anomaly and the mean longitude in tests of post-Newtonian gravity. Eur. Phys. J. C 2019, 79, 816. [Google Scholar] [CrossRef]
- Adkins, G.S.; McDonnell, J. Orbital precession due to central-force perturbations. Phys. Rev. D 2007, 75, 082001. [Google Scholar] [CrossRef]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; et al. Planck 2015 results. XIII. Cosmological parameters. A&A 2016, 594, A13. [Google Scholar] [CrossRef]
- Pepe, F.; Cristiani, S.; Rebolo, R.; Santos, N.C.; Dekker, H.; Cabral, A.; Di Marcantonio, P.; Figueira, P.; Lo Curto, G.; Lovis, C.; et al. ESPRESSO at VLT. On-sky performance and first results. A&A 2021, 645, A96. [Google Scholar] [CrossRef]
- Wald, R. General Relativity; University of Chicago Press: Chicago, IL, USA, 2010. [Google Scholar]
- Iorio, L.; Saridakis, E.N. Solar system constraints on f(T) gravity. Mon. Not. Roy. Astron. Soc. 2012, 427, 1555. [Google Scholar] [CrossRef]
- Ruggiero, M.L.; Radicella, N. Weak-Field Spherically Symmetric Solutions in f(T) gravity. Phys. Rev. D 2015, 91, 104014. [Google Scholar] [CrossRef]
- Maeda, H.; Dadhich, N. Matter without matter: Novel Kaluza-Klein spacetime in Einstein-Gauss-Bonnet gravity. Phys. Rev. 2007, D75, 044007. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Chakraborty, S. Constraining some Horndeski gravity theories. Phys. Rev. 2017, D95, 044037. [Google Scholar] [CrossRef]
- Ali, A.F.; Khalil, M.M. Black Hole with Quantum Potential. Nucl. Phys. 2016, B909, 173–185. [Google Scholar] [CrossRef]
- Jusufi, K. Quantum effects on the deflection of light and the Gauss?Bonnet theorem. Int. J. Geom. Meth. Mod. Phys. 2017, 14, 1750137. [Google Scholar] [CrossRef]
- Bonanno, A.; Reuter, M. Renormalization group improved black hole space-times. Phys. Rev. 2000, D62, 043008. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P.; Zhou, S.Y. Black hole hair in generalized scalar-tensor gravity: An explicit example. Phys. Rev. 2014, D90, 124063. [Google Scholar] [CrossRef]
- Kanti, P.; Kleihaus, B.; Kunz, J. Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory. Phys. Rev. Lett. 2011, 107, 271101. [Google Scholar] [CrossRef]
- Kanti, P.; Kleihaus, B.; Kunz, J. Stable Lorentzian Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory. Phys. Rev. 2012, D85, 044007. [Google Scholar] [CrossRef]
- Chakraborty, S.; SenGupta, S. Strong gravitational lensing—A probe for extra dimensions and Kalb-Ramond field. JCAP 2017, 1707, 45. [Google Scholar] [CrossRef]
- Iorio, L.; Ruggiero, M.L. Constraining some r−n extra-potentials in modified gravity models with LAGEOS-type laser-ranged geodetic satellites. JCAP 2018, 10, 021. [Google Scholar] [CrossRef]
- Iorio, L. Model-independent constraints on r−3 extra-interactions from orbital motions. Ann. Phys. 2012, 524, 371–377. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iorio, L.; Ruggiero, M.L. Effect of Some Modified Models of Gravity on the Radial Velocity of Binary Systems. Universe 2022, 8, 443. https://doi.org/10.3390/universe8090443
Iorio L, Ruggiero ML. Effect of Some Modified Models of Gravity on the Radial Velocity of Binary Systems. Universe. 2022; 8(9):443. https://doi.org/10.3390/universe8090443
Chicago/Turabian StyleIorio, Lorenzo, and Matteo Luca Ruggiero. 2022. "Effect of Some Modified Models of Gravity on the Radial Velocity of Binary Systems" Universe 8, no. 9: 443. https://doi.org/10.3390/universe8090443
APA StyleIorio, L., & Ruggiero, M. L. (2022). Effect of Some Modified Models of Gravity on the Radial Velocity of Binary Systems. Universe, 8(9), 443. https://doi.org/10.3390/universe8090443