On Extra Top Yukawa Couplings of a Second Higgs Doublet
Abstract
:1. Introduction: Historical Development of Extra Top Yukawa Couplings
2. Two Sets of Dimension-4 Dynamical Operators
- CPV for EWBG calls for extra top Yukawa couplings, while first order phase transition calls for Higgs quartics. The latter, in turn, suggests sub-TeV exotic Higgs masses, as we shall see.
- For the electron EDM constraint, the diagonal extra electron Yukawa coupling needs to correlate with extra top Yukawa coupling that echoes the known Yukawa coupling pattern.
3. Driving EWBG and Facing eEDM: Extra tt, tc and ee Couplings
4. Crux of Production at Hadron Colliders: Extra tc Coupling
4.1. Top-Associated Neutral Higgs Production
4.2. Bottom-Associated Charged Higgs Production
4.3. Enter the tu Coupling
5. Turning to Flavor: Ratio of B to Muon+Neutrino vs. Tau+Neutrino
6. Prospects and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Weinberg, S. A Model of Leptons. Phys. Rev. Lett. 1967, 19, 1264. [Google Scholar] [CrossRef]
- Higgs, P.W. Broken symmetries, massless particles and gauge fields. Phys. Lett. 1964, 12, 132. [Google Scholar] [CrossRef]
- Brout, R.; Englert, F. Broken Symmetry and the Mass of Gauge Vector Mesons. Phys. Rev. Lett. 1964, 13, 321. [Google Scholar]
- Higgs, P.W. Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett. 1964, 13, 508. [Google Scholar] [CrossRef]
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. Review of particle physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Frühwirth, R.; Jeitler, M.; Krammer, N.; et al. Evidence for Higgs Boson Decay A Pair Muons. J. High Energy Phys. 2021, 1, 148. [Google Scholar] [CrossRef]
- Kobayashi, M.; Maskawa, T. CP Violation in the Renormalizable Theory of Weak Interaction. Prog. Theor. Phys. 1973, 49, 652. [Google Scholar] [CrossRef]
- Holdom, B.; Hou, W.S.; Hurth, T.; Mangano, M.L.; Sultansoy, S.; Unel, G. Four Statements about the Fourth Generation. PMC Phys. A 2009, 3, 4. [Google Scholar] [CrossRef]
- Hou, W.S. Source of CP Violation for the Baryon Asymmetry of the Universe. Chin. J. Phys. 2009, 47, 134. [Google Scholar] [CrossRef]
- Morrissey, D.E.; Ramsey-Musolf, M.J. Electroweak baryogenesis. New J. Phys. 2012, 14, 125003. [Google Scholar] [CrossRef]
- Mukhopadhyaya, B.; Nandi, S. Evading the top mass bound at the Tevatron: New signals for the top. Phys. Rev. Lett. 1991, 66, 285. [Google Scholar] [CrossRef]
- Hou, W.S. The Top quark cannot evade the tevatron mass bound via mixing with singlet quarks. Phys. Rev. Lett. 1992, 69, 3587. [Google Scholar] [CrossRef] [PubMed]
- del Aguila, F.; Aguilar-Saavedra, J.A.; Miquel, R. Constraints on Top Couplings in Models with Exotic Quarks. Phys. Rev. Lett. 1999, 82, 1628. [Google Scholar] [CrossRef]
- Djouadi, A.; Lenz, A. Sealing the fate of a fourth generation of fermions. Phys. Lett. B 2012, 715, 310. [Google Scholar] [CrossRef]
- Eberhardt, O.; Herbert, G.; Lacker, H.; Lenz, A.; Menzel, A.; Nierste, U.; Wiebusch, M. Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations. Phys. Rev. Lett. 2012, 109, 241802. [Google Scholar] [CrossRef] [PubMed]
- Dugan, M.J.; Georgi, H.; Kaplan, D.B. Anatomy of a composite higgs model. Nucl. Phys. B 1985, 254, 299. [Google Scholar] [CrossRef]
- Kaplan, D.B. Flavor at SSC energies: A new mechanism for dynamically generatedfermion masses. Nucl. Phys. B 1991, 365, 259. [Google Scholar] [CrossRef]
- Contino, R.; Da Rold, L.; Pomarol, A. Light custodians in natural composite Higgs models. Phys. Rev. D 2007, 75, 55014. [Google Scholar] [CrossRef]
- Contino, R.; Kramer, T.; Son, M.; Sundrum, R. Warped/composite phenomenology simplified. J. High Energy Phys. 2007, 5, 074. [Google Scholar] [CrossRef]
- Matsedonskyi, O.; Panico, G.; Wulzer, A. Light Top Partners for a Light Composite Higgs. J. High Energy Phys. 2013, 1, 164. [Google Scholar] [CrossRef]
- Aguilar-Saavedra, J.A.; Benbrik, R.; Heinemeyer, S.; Pérez-Victoria, M. Handbook of vectorlike quarks: Mixing and single production. Phys. Rev. D 2013, 88, 094010. [Google Scholar] [CrossRef]
- De Simone, A.; Matsedonskyi, O.; Rattazzi, R.; Wulzer, A. A First Top Partner Hunter’s Guide. J. High Energy Phys. 2013, 4, 004. [Google Scholar] [CrossRef] [Green Version]
- Branco, G.C.; Ferreira, P.M.; Lavoura, L.; Rebelo, M.N.; Sher, M.; Silva, J.P. Theory and phenomenology of two-Higgs-doublet models. Phys. Rept. 2012, 516, 1. [Google Scholar] [CrossRef]
- Glashow, S.L.; Weinberg, S. Natural Conservation Laws for Neutral Currents. Phys. Rev. D 1977, 15, 1958. [Google Scholar] [CrossRef]
- Hou, W.S. Tree level t→ch or h→tc¯ decays. Phys. Lett. B 1992, 296, 179. [Google Scholar] [CrossRef]
- Cheng, T.P.; Sher, M. Mass Matrix Ansatz and Flavor Nonconservation in Models with Multiple Higgs Doublets. Phys. Rev. D 1987, 35, 3484. [Google Scholar] [CrossRef]
- Hou, W.S. Is the top quark really heavier than the W boson? Phys. Rev. Lett. 1994, 72, 3945. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O.S.; Abramowicz, H.; et al. Search Top Quark Decays t→QHH→γγ Using ATLAS Detect. J. High Energy Phys. 2014, 6, 008. [Google Scholar] [CrossRef]
- Chen, K.F.; Hou, W.S.; Kao, C.; Kohda, M. When the Higgs meets the Top: Search for t→ch0 at the LHC Phys. Lett. B 2013, 725, 378. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; Abreu, H.; et al. Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at s=7 8 TeV. J. High Energy Phys. 2016, 8, 045. [Google Scholar] [CrossRef]
- Hou, W.S.; Kikuchi, M. Approximate Alignment in Two Higgs Doublet Model with Extra Yukawa Couplings. EPL 2018, 123, 11001. [Google Scholar] [CrossRef]
- Pomarol, A. The SM EFT & new physics. In Proceedings of the LHCP2021, Paris, France, 7–12 June 2021. [Google Scholar]
- Hou, W.S. Decadal Mission for the New Physics Higgs/Flavor Era. Chin. J. Phys. 2022, 77, 432–451. [Google Scholar] [CrossRef]
- Davidson, S.; Haber, H.E. Basis-independent methods for the two-Higgs-doublet model. Phys. Rev. D 2005, 72, 035004. [Google Scholar] [CrossRef]
- Botella, F.J.; Silva, J.P. Jarlskog-like invariants for theories with scalars and fermions. Phys. Rev. D 1995, 51, 3870. [Google Scholar] [CrossRef]
- Altunkaynak, B.; Hou, W.S.; Kao, C.; Kohda, M.; McCoy, B. Flavor Changing Heavy Higgs Interactions at the LHC. Phys. Lett. B 2015, 751, 135. [Google Scholar] [CrossRef]
- Hou, W.S.; Modak, T. Prospects for tZH and tZh production at the LHC. Phys. Rev. D 2020, 101, 035007. [Google Scholar] [CrossRef]
- Lin, S.W.; Unno, Y.; Hou, W.S.; Chang, P.; Adachi, I.; Aihara, H.; Akai, K.; Arinstein, K.; Aulchenko, V.; Aushev, T.; et al. Difference in direct charge-parity violation between charged and neutral B meson decays. Nature 2008, 452, 332–335. [Google Scholar] [PubMed]
- Fuyuto, K.; Hou, W.S.; Senaha, E. Electroweak baryogenesis driven by extra top Yukawa couplings. Phys. Lett. B 2018, 776, 402. [Google Scholar] [CrossRef]
- Modak, T.; Senaha, E. Electroweak baryogenesis via bottom transport. Phys. Rev. D 2019, 99, 115022. [Google Scholar] [CrossRef]
- Modak, T.; Senaha, E. Probing Electroweak Baryogenesis induced by extra bottom Yukawa coupling via EDMs and collider signatures. J. High Energy Phys. 2020, 11, 025. [Google Scholar] [CrossRef]
- Cline, J.M.; Laurent, B. Electroweak baryogenesis from light fermion sources: A critical study. Phys. Rev. D 2021, 104, 083507. [Google Scholar] [CrossRef]
- Kanemura, S.; Okada, Y.; Senaha, E. Electroweak baryogenesis and quantum corrections to the triple Higgs boson coupling. Phys. Lett. B 2005, 606, 361. [Google Scholar] [CrossRef] [Green Version]
- Reichert, M.; Eichhorn, A.; Gies, H.; Pawlowski, J.M.; Plehn, T.; Scherer, M.M. Probing baryogenesis through the Higgs boson self-coupling. Phys. Rev. D 2018, 97, 075008. [Google Scholar] [CrossRef]
- Baron, J.; Campbell, W.C.; DeMille, D.; Doyle, J.M.; Gabrielse, G.; Gurevich, Y.V.; Hess, P.W.; Hutzler, N.R.; Kirilov, E.; Kozyryev, I.; et al. Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron. Science 2014, 343, 269. [Google Scholar]
- Andreev, V.; Ang, D.G.; DeMille, D.; Doyle, J.M.; Gabrielse, G.; Haefner, J.; Hutzler, N.R.; Lasner, Z.; Meisenhelder, C.; O’Leary, B.R.; et al. Improved limit on the electric dipole moment of the electron. Nature 2018, 7727, 355. [Google Scholar]
- Fuyuto, K.; Hou, W.S.; Senaha, E. Cancellation mechanism for the electron electric dipole moment connected with the baryon asymmetry of the Universe. Phys. Rev. D 2020, 101, 011901. [Google Scholar] [CrossRef]
- Carena, M.; Liu, Z. Challenges and opportunities for heavy scalar searches in the tt¯ channel at the LHC. J. High Energy Phys. 2016, 11, 159. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Brandstetter, J.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Flechl, M.; et al. Search Heavy Higgs Bosons Decaying A Top Quark Pair Proton-Proton Collisions s= 13 TeV. J. High Energy Phys. 2020, 4, 171. [Google Scholar]
- Hou, W.S.; Jain, R.; Kao, C.; Kohda, M.; McCoy, B.; Soni, A. Flavor Changing Heavy Higgs Interactions with Leptons at Hadron Colliders. Phys. Lett. B 2019, 795, 371. [Google Scholar] [CrossRef]
- Hou, W.S.; Modak, T. Probing Top Changing Neutral Higgs Couplings at Colliders. Mod. Phys. Lett. A 2021, 36, 21300064. [Google Scholar] [CrossRef]
- Kohda, M.; Modak, T.; Hou, W.S. Searching for new scalar bosons via triple-top signature in cg→tS0→ttt¯. Phys. Lett. B 2018, 776, 379. [Google Scholar] [CrossRef]
- Ghosh, D.K.; Hou, W.S.; Modak, T. Sub-TeV H+ Boson Production as Probe of Extra Top Yukawa Couplings. Phys. Rev. Lett. 2020, 1256, 221801. [Google Scholar] [CrossRef] [PubMed]
- Barger, V.; Keung, W.Y.; Yencho, B. Triple-Top Signal of New Physics at the LHC. Phys. Lett. B 2010, 687, 70. [Google Scholar] [CrossRef]
- Frederix, R.; Pagani, D.; Zaro, M. Large NLO corrections in tt¯W± and tt¯tt¯ hadroproduction from supposedly subleading EW contributions. J. High Energy Phys. 2018, 2, 031. [Google Scholar] [CrossRef]
- Hou, W.S.; Kohda, M.; Modak, T. Implications of Four-Top and Top-Pair Studies on Triple-Top Production. Phys. Lett. B 2019, 798, 134953. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for flavor-changing neutral current interactions of the top quark and Higgs boson in final states with two photons in proton-proton collisions at s = 13 TeV. arXiv arXiv:2111.02219. 2021, arXiv:2111.02219.
- Hou, W.S.; Hsu, T.H.; Modak, T. Constraining the t→u flavor changing neutral Higgs coupling at the LHC. Phys. Rev. D 2020, 102, 055006. [Google Scholar] [CrossRef]
- Chang, P.; Chen, K.F.; Hou, W.S. Flavor Physics and CP Violation. Prog. Part. Nucl. Phys. 2017, 97, 261. [Google Scholar] [CrossRef]
- Hou, W.S. Enhanced charged Higgs boson effects in B-→τν¯, μν¯ and b→τν¯+X. Phys. Rev. D 1993, 48, 2342. [Google Scholar] [CrossRef]
- Hou, W.S.; Kohda, M.; Modak, T.; Wong, G.G. Enhanced B→μν¯ decay at tree level as probe of extra Yukawa couplings. Phys. Lett. B 2020, 800, 135105. [Google Scholar] [CrossRef]
- Crivellin, A.; Kokulu, A.; Greub, C. Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure. Phys. Rev. D 2013, 87, 094031. [Google Scholar] [CrossRef]
- Chen, C.H.; Nomura, T. Charged Higgs boson contribution to Bq-→ℓν¯ and B¯→(P,V)ℓν¯ in a generic two-Higgs doublet model. Phys. Rev. D 2018, 98, 095007. [Google Scholar] [CrossRef]
- Prim, M.T.; Bernlochner, F.U.; Goldenzweig, P.; Heck, M.; Adachi, I.; Adamczyk, K.; Aihara, H.; Al Said, S.; Asner, D.M.; Atmacan, H.; et al. Search B+→μ+νμB+→μ+N Incl. Tagging. Phys. Rev. D 2020, 101, 032007. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Brandstetter, J.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Flechl, M.; et al. Search Lepton Flavour Violating Decays A Neutral Heavy Higgs Boson μτ Eτ Proton-Proton Collisions s= 13 TeV. J. High Energy Phys. 2020, 3, 103. [Google Scholar]
- Hou, W.S.; Kumar, G. Muon Flavor Violation in Two Higgs Doublet Model with Extra Yukawa Couplings. Phys. Rev. D 2020, 102, 115017. [Google Scholar] [CrossRef]
- Chang, D.; Hou, W.S.; Keung, W.Y. Two loop contributions of flavor changing neutral Higgs bosons to μ→eγ. Phys. Rev. D 1993, 48, 217. [Google Scholar] [CrossRef]
- Abi, B.; Albahri, T.; Al-Kilani, S.; Allspach, D.; Alonzi, L.P.; Anastasi, A.; Anisenkov, A.; Azfar, F.; Badgley, K.; Baessler, S.; et al. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys. Rev. Lett. 2021, 126, 141801. [Google Scholar] [CrossRef]
- Hou, W.S.; Jain, R.; Kao, C.; Kumar, G.; Modak, T. Collider Prospects for Muon g-2 in General Two Higgs Doublet Model. Phys. Rev. D 2021, 104, 075036. [Google Scholar] [CrossRef]
- Assamagan, K.A.; Deandrea, A.; Delsart, P.A. Search for the lepton flavor violating decay A0/H0→τ±μ∓ at hadron colliders. Phys. Rev. D 2003, 67, 035001. [Google Scholar] [CrossRef]
- Davidson, S.; Grenier, G.J. Lepton flavour violating Higgs and τ→μγ. Phys. Rev. D 2010, 81, 095016. [Google Scholar] [CrossRef]
- Omura, Y.; Senaha, E.; Tobe, K. Lepton-flavor-violating Higgs decay h→μτ and muon anomalous magnetic moment in a general two Higgs doublet model. J. High Energy Phys. 2015, 5, 028. [Google Scholar] [CrossRef]
- Omura, Y.; Senaha, E.; Tobe, K. τ- and μ-physics in a general two Higgs doublet model with μ-τ flavor violation. Phys. Rev. D 2016, 94, 055019. [Google Scholar] [CrossRef]
- Iguro, S.; Tobe, K. R(D(*)) in a general two Higgs doublet model. Nucl. Phys. B 2017, 925, 560. [Google Scholar] [CrossRef]
- Iguro, S.; Omura, Y.; Takeuchi, M. Testing the 2HDM explanation of the muon g-2 anomaly at the LHC. J. High Energy Phys. 2019, 11, 130. [Google Scholar] [CrossRef]
- Uno, K.; Hayasaka, K.; Inami, K.; Adachi, I.; Aihara, H.; Asner, D.M.; Atmacan, H.; Aushev, T.; Ayad, R.; Babu, V.; et al. Search Lepton-Flavor Tau-Lepton Decays ℓγ Belle. J. High Energy Phys. 2021, 10, 19. [Google Scholar]
- Hou, W.S.; Kumar, G. Charged lepton flavor violation in light of muon g-2. Eur. Phys. J. C 2021, 81, 1132. [Google Scholar] [CrossRef]
- Hou, W.S.; Kumar, G.; Teunissen, S. Charged Lepton EDM with Extra Yukawa Couplings. J. High Energy Phys. 2022, 1, 092. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, G.W.-S. On Extra Top Yukawa Couplings of a Second Higgs Doublet. Universe 2022, 8, 475. https://doi.org/10.3390/universe8090475
Hou GW-S. On Extra Top Yukawa Couplings of a Second Higgs Doublet. Universe. 2022; 8(9):475. https://doi.org/10.3390/universe8090475
Chicago/Turabian StyleHou, George Wei-Shu. 2022. "On Extra Top Yukawa Couplings of a Second Higgs Doublet" Universe 8, no. 9: 475. https://doi.org/10.3390/universe8090475
APA StyleHou, G. W. -S. (2022). On Extra Top Yukawa Couplings of a Second Higgs Doublet. Universe, 8(9), 475. https://doi.org/10.3390/universe8090475