Dispersive Optical Solitons with Schrödinger–Hirota Equation by Laplace-Adomian Decomposition Approach
Abstract
:1. Introduction
2. Schrödinger–Hirota Equation
3. Bright and Dark Solitons for the Governing Equation (1)
3.1. Bright Solitons
3.2. Dark Solitons
4. The Laplace Transform Combined with the Adomian Decomposition Method
Convergence of the Algorithm
- (a)
- ,
- (b)
5. Numerical Simulations of Solitons for Equation (1)
5.1. Bright Highly Dispersive Optical Soliton
5.2. Dark Highly Dispersive Optical Soliton
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biswas, A.; Jawad, A.J.M.; Manrakhan, W.N.; Sarma, A.K.; Khan, K.R. Optical solitons and complexitons of the Schrödinger-Hirota equation. Opt. Laser Technol. 2012, 44, 2265–2269. [Google Scholar] [CrossRef]
- Khamis, A.K.; Lotfy, K.; El-Bary, A.A.; Mahdy, A.M.S.; Ahmed, M.H. Thermal-piezoelectric problem of a semiconductor medium during photo-thermal excitation. Waves Random Complex Media 2021, 31, 2499–2513. [Google Scholar] [CrossRef]
- Mahdy, A.M.S.; Lotfy, K.; Ismail, E.A.; El-Bary, A.; Ahmed, M.; El-Dahdouh, A.A. Analytical solutions of time-fractional heat order for a magneto-photothermal semiconductor medium with Thomson effects and initial stress. Results Phys. 2020, 18, 103174. [Google Scholar] [CrossRef]
- Koyunbakan, H. The transmutation method and Schrödinger equation with perturbed exactly solvable potential. J. Comput. Acoust. 2009, 17, 1–10. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Alshaery, A.A.; Hilal, E.M.; Manrakhan, W.N.; Savescu, M.; Biswas, A. Dispersive optical solitons with Schrödinger-Hirota equation. J. Nonlinear Opt. Phys. Mater. 2014, 23, 1450014. [Google Scholar] [CrossRef]
- Bernstein, I.; Zerrad, E.; Zhou, Q.; Biswas, A.; Melikechi, N. Dispersive optical solitons with Schrödinger-Hirota equation by traveling wave hypothesis. Optoelectron. Adv.-Mater.-Rapid Commun. 2015, 9, 792–797. [Google Scholar]
- Kaur, L.; Wazwaz, A.M. Bright-dark optical solitons for Schrödinger-Hirota equation withvariable coefficients. Optik 2019, 179, 479–484. [Google Scholar] [CrossRef]
- Huang, W.-T.; Zhou, C.-C.; Lü, X.; Wang, J.-P. Dispersive optical solitons for the Schrödinger-Hirota equation in optical fibers. Mod. Phys. Lett. B 2021, 35, 2150060. [Google Scholar] [CrossRef]
- Chowdury, A.; Ankiewicz, A.; Akhmediev, N. Moving breathers and breather-to-soliton conversions for the Hirota equation. Proc. R. Soc. A 2015, 471, 20150130. [Google Scholar] [CrossRef] [Green Version]
- Bakodah, H.O.; Banaja, M.A.; Alshaery, A.A.; Al Qarni, A.A. Numerical solution of dispersive optical solitons with Schrödinger-Hirota equation by improved Adomian decomposition method. Math. Probl. Eng. 2019, 2019, 2960912. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.; Yildirim, Y.; Yasar, E.; Zhou, Q.; Alshomrani, A.S.; Moshokoa, S.P.; Belic, M. Dispersive optical solitons with Schrödinger-Hirota model by trial equation method. Optik 2018, 162, 35–41. [Google Scholar] [CrossRef]
- Adomian, G.; Rach, R. On the solution of nonlinear differential equations with convolution product nonlinearities. J. Math. Anal. Appl. 1986, 114, 171–175. [Google Scholar] [CrossRef]
- Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Kluwer: Boston, MA, USA, 1994. [Google Scholar]
- Mohammed, A.S.H.F.; Bakodah, H.O. Numerical investigation of the Adomian-based methods with w-shaped optical solitons of Chen-Lee-Liu equation. Phys. Scr. 2021, 96, 035206. [Google Scholar] [CrossRef]
- Duan, J.-S. Convenient analytic recurrence algorithms for the Adomian polynomials. Appl. Math. Comput. 2011, 217, 6337–6348. [Google Scholar] [CrossRef]
- Cherruault, Y. Convergence of Adomian’s method. Kybernetes 1989, 18, 31–38. [Google Scholar] [CrossRef]
- Hosseini, M.M.; Nasabzadeh, H. On the convergence of Adomian decomposition method. Appl. Math. Comput. 2006, 182, 536–543. [Google Scholar] [CrossRef]
- Babolian, E.; Biazar, J. On the order of convergence of Adomian method. Appl. Math. Comput. 2002, 130, 383–387. [Google Scholar] [CrossRef]
Cases | a | c | N | |Max Error| | ||
---|---|---|---|---|---|---|
1 | 14 | |||||
2 | 14 | |||||
3 | 15 |
Cases | a | c | N | |Max Error| | ||
---|---|---|---|---|---|---|
4 | 14 | |||||
5 | 14 | |||||
6 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Gaxiola, O.; Biswas, A.; Moraru, L.; Moldovanu, S. Dispersive Optical Solitons with Schrödinger–Hirota Equation by Laplace-Adomian Decomposition Approach. Universe 2023, 9, 19. https://doi.org/10.3390/universe9010019
González-Gaxiola O, Biswas A, Moraru L, Moldovanu S. Dispersive Optical Solitons with Schrödinger–Hirota Equation by Laplace-Adomian Decomposition Approach. Universe. 2023; 9(1):19. https://doi.org/10.3390/universe9010019
Chicago/Turabian StyleGonzález-Gaxiola, O., Anjan Biswas, Luminita Moraru, and Simona Moldovanu. 2023. "Dispersive Optical Solitons with Schrödinger–Hirota Equation by Laplace-Adomian Decomposition Approach" Universe 9, no. 1: 19. https://doi.org/10.3390/universe9010019
APA StyleGonzález-Gaxiola, O., Biswas, A., Moraru, L., & Moldovanu, S. (2023). Dispersive Optical Solitons with Schrödinger–Hirota Equation by Laplace-Adomian Decomposition Approach. Universe, 9(1), 19. https://doi.org/10.3390/universe9010019