Optical Solitons and Conservation Laws for the Concatenation Model: Undetermined Coefficients and Multipliers Approach
Abstract
:1. Introduction
Governing Model
2. Undetermined Coefficients
2.1. Bright Soliton
2.2. Dark Soliton
2.3. Singular Soliton (Type-I)
2.4. Singular Soliton (Type-II)
3. Conservation Laws
- (a)
- conserved power density for and , viz.,
- (b)
- linear momentum density given by
- (c)
- Hamiltonian density given by,The conserved quantity are therefore, respectively, given as:
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Qarni, A.A.; Alshaery, A.A.; Bakodah, H.O. Optical solitons for the Lakshmanan–Porsezian–Daniel model by collective variable method. Results Opt. 2020, 1, 100017. [Google Scholar] [CrossRef]
- Ankiewicz, A.; Akhmediev, N. Higher–order integrable evolution equation and its soliton solutions. Phys. Lett. A 2014, 378, 358–361. [Google Scholar] [CrossRef]
- Ankiewicz, A.; Wang, Y.; Wabnitz, S.; Akhmediev, N. Extended nonlinear Schrödinger equation with higher–order odd and even terms and its rogue wave solutions. Phys. Rev. E 2014, 89, 012907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belyaeva, T.L.; Serkin, V.N. Wave–particle duality of solitons and solitonic analog of the Ramsauer–Townsend effect. Eur. Phys. J. D 2012, 66, 1–9. [Google Scholar] [CrossRef]
- Bayram, M. Optical bullets with Biswas–Milovic equation having Kerr and parabolic laws of nonlinearity. Optik 2022, 270, 170046. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Biswas, A.; Borodina, A.G.; Yildirim, Y.; Alshehri, H. Painleve analysis and optical solitons for a concatenated model. Optik 2022, 272, 170255. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Rational solutions of equations associated with the second Painleve equation. Regul. Chaotic Dyn. 2020, 25, 273–280. [Google Scholar]
- Kudryashov, N.A. Lax pairs for one of hierarchies similar to the first Painleve hierarchy. Appl. Math. Lett. 2021, 116, 107003. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Safonova, D.V. Painleve analysis and traveling wave solutions of the sixth order differential equation with non-local nonlinearity. Optik 2021, 244, 167586. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Safonova, D.V.; Biswas, A. Painleve analysis and a solution to the traveling wave reduction of the Radhakrishnan-Kundu-Lakshmanan equation. Regul. Chaotic Dyn. 2019, 24, 607–614. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Biswas, A. Optical solitons of nonlinear Schrödinger’s equation with arbitrary dual-power law parameters. Optik 2022, 252, 168497. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Safonova, D.V. Painleve analysis and exact solution to the traveling wave reductionof nonlinear differential equations for describing pulse in optical fiber. AIP Conf. Proc. 2022, 2425, 340007. [Google Scholar]
- Ozisik, M. Novel (2+1) and (3+1) forms of the Biswas–Milovic equation and optical soliton solutions via two efficient techniques. Optik 2022, 269, 169798. [Google Scholar] [CrossRef]
- Secer, A. Stochastic optical solitons with multiplicative white noise via Ito calculus. Optik 2022, 268, 169831. [Google Scholar] [CrossRef]
- Tang, L. Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation. Chaos Solitons Fractals 2022, 161, 112383. [Google Scholar] [CrossRef]
- Triki, H.; Sun, Y.; Zhou, Q.; Biswas, A.; Yildirim, Y.; Alshehri, H.M. Dark solitary pulses and moving fronts in an optical medium with the higher–order dispersive and nonlinear effects. Chaos Solitons Fractals 2022, 164, 112622. [Google Scholar] [CrossRef]
- Wang, M.-Y. Optical solitons with perturbed complex Ginzburg–Landau equation in Kerr and cubic–quintic–septic nonlinearity. Results Phys. 2022, 33, 105077. [Google Scholar] [CrossRef]
- Wazwaz, A.M.; Mehanna, M. Higher–order Sasa–Satsuma equation: Bright and dark optical solitons. Optik 2021, 243, 167421. [Google Scholar] [CrossRef]
- Yildirim, Y. Optical solitons with Biswas–Arshed equation by F–expansion method. Optik 2021, 227, 165788. [Google Scholar] [CrossRef]
- Zhou, Q. Influence of parameters of optical fibers on optical soliton interactions. Chin. Phys. Lett. 2022, 39, 010501. [Google Scholar] [CrossRef]
- Manton, N.; Sutcliffe, P. Topological Solitons; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Blinov, P.A.; Gani, T.V.; Malnev, A.A.; Gani, V.A.; Sherstyukov, V.B. Kinks in higher-order polynomial models. Chaos Solitons Fractals 2022, 165, 112805. [Google Scholar] [CrossRef]
- Lizunova, M.A.; Kager, J.; de Lange, S.; Wezel, J.V. Kinks and realistic impurity models in ϕ4–theory. Int. J. Mod. Phys. B 2022, 36, 2250042. [Google Scholar] [CrossRef]
- Khare, A.; Saxena, A. Superposed hyperbolic kink and pulse solutions of coupled ϕ4, NLS and mKdV equations. Int. J. Mod. Phys. B 2022, 36, 2250142. [Google Scholar] [CrossRef]
- Blinov, P.A.; Gani, T.V.; Gani, V.A. Deformations of kink tails. Ann. Phys. 2022, 437, 168739. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, A.; Vega-Guzman, J.; Kara, A.H.; Khan, S.; Triki, H.; González-Gaxiola, O.; Moraru, L.; Georgescu, P.L. Optical Solitons and Conservation Laws for the Concatenation Model: Undetermined Coefficients and Multipliers Approach. Universe 2023, 9, 15. https://doi.org/10.3390/universe9010015
Biswas A, Vega-Guzman J, Kara AH, Khan S, Triki H, González-Gaxiola O, Moraru L, Georgescu PL. Optical Solitons and Conservation Laws for the Concatenation Model: Undetermined Coefficients and Multipliers Approach. Universe. 2023; 9(1):15. https://doi.org/10.3390/universe9010015
Chicago/Turabian StyleBiswas, Anjan, Jose Vega-Guzman, Abdul H. Kara, Salam Khan, Houria Triki, O. González-Gaxiola, Luminita Moraru, and Puiu Lucian Georgescu. 2023. "Optical Solitons and Conservation Laws for the Concatenation Model: Undetermined Coefficients and Multipliers Approach" Universe 9, no. 1: 15. https://doi.org/10.3390/universe9010015
APA StyleBiswas, A., Vega-Guzman, J., Kara, A. H., Khan, S., Triki, H., González-Gaxiola, O., Moraru, L., & Georgescu, P. L. (2023). Optical Solitons and Conservation Laws for the Concatenation Model: Undetermined Coefficients and Multipliers Approach. Universe, 9(1), 15. https://doi.org/10.3390/universe9010015