Ricci Soliton and Certain Related Metrics on a Three-Dimensional Trans-Sasakian Manifold
Abstract
:1. Introduction
Physical Motivation
2. Preliminaries
3. Results
- 1.
- If is orthogonal to ξ, then the soliton is shrinking for , steady for , and expanding for .
- 2.
- If , then the covariant derivative of the potential vector field V in the direction of ξ is a constant multiple of ξ.
4. Example of a Three-Dimensional Trans-Sasakian Manifold Admitting Ricci Soliton
5. Conclusions
- (i)
- What will be the outcomes if we consider the structure functions and to satisfy ?
- (ii)
- Do the above results hold without assuming any restrictions on structure functions?
- (iii)
- How do the aforementioned outcomes differ for the ∗- Ricci soliton and the ∗-conformal -Ricci soliton?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamilton, R.S. The Ricci flow on surfaces. Contemp. Math. 1988, 71, 237–261. [Google Scholar]
- Perelman, G. The entropy formula for the Ricci flow and its geometric applications. arXiv 2002, arXiv:math.DG/0211159. [Google Scholar]
- Perelman, G. Ricci flow with surgery on three-manifolds. arXiv 2003, arXiv:math.DG/0303109. [Google Scholar]
- Perelman, G. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv 2003, arXiv:math.DG/0307245. [Google Scholar] [CrossRef]
- Sarkar, S.; Dey, S.; Chen, X. Certain results of conformal and ∗-conformal Ricci soliton on para-cosymplectic and para-Kenmotsu manifolds. Filomat 2021, 35, 5001–5015. [Google Scholar] [CrossRef]
- Fischer, A.E. An introduction to conformal Ricci flow. Class. Quantum Gravity 2004, 21, S171–S218. [Google Scholar] [CrossRef]
- Basu, N.; Bhattacharyya, A. Conformal Ricci soliton in Kenmotsu manifold. Glob. J. Adv. Res. Class. Mod. Geom. 2015, 4, 15–21. [Google Scholar]
- Kaimakamis, G.; Panagiotidou, K. ∗-Ricci solitons of real hypersurface in non-flat comlex space forms. J. Geom. Phys. 2014, 86, 408–413. [Google Scholar] [CrossRef]
- Tachibana, S. On almost-analytic vectors in almost Kählerian manifolds. Tohoku Math. J. 1959, 11, 247–265. [Google Scholar] [CrossRef]
- Hamada, T. Real hypersurfaces of complex space forms in terms of Ricci ∗-tensor. Tokyo J. Math. 2002, 25, 473–483. [Google Scholar] [CrossRef]
- Majhi, P.; Dey, D. ∗-Conformal Ricci soliton on a class of almost Kenmotsu manifolds. São Paulo J. Math. Sci. 2020, 15, 335–343. [Google Scholar]
- Chodosh, O.; Fong, F.T. Rotational symmetry of conical Kähler-Ricci solitons. Math. Ann. 2016, 364, 777–792. [Google Scholar] [CrossRef] [Green Version]
- Bagewadi, C.S.; Ingalahalli, G. Ricci solitons in Lorentzian α-Sasakian manifolds. Acta Math. Acad. Paedagog. Nyíregyháziensis 2012, 28, 59–68. [Google Scholar]
- Bagewadi, C.S.; Ingalahalli, G.; Ashoka, S.R. A Study on Ricci Solitons in Kenmotsu Manifolds. ISRN Geom. 2013, 2013, 412593. [Google Scholar] [CrossRef]
- Sharma, R. Certain results on K-contact and (κ,μ)-contact manifolds. J. Geom. 2008, 89, 138–147. [Google Scholar] [CrossRef]
- Nagaraja, H.G.; Premalatha, C.R. Ricci Solitons in f -Kenmotsu Manifolds and 3-Dimensional Trans-Sasakian Manifolds. Prog. Appl. Math. 2012, 3, 1–6. [Google Scholar]
- Cǎlin, C.; Crasmareanu, M. From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds. Bull. Malays. Math. Soc. Ser. 2 2010, 33, 361–368. [Google Scholar]
- He, C.; Zhu, M. The Ricci solitons on Sasakian manifolds. arXiv 2011, arXiv:1109.4407. [Google Scholar]
- Ingalahalli, G.; Bagewadi, C.S. Ricci solitons in α-Sasakian manifolds. ISRN Geom. 2012, 2012, 421384. [Google Scholar] [CrossRef]
- Wang, Y. Ricci solitons on 3-dimensional cosymplectic manifolds. Math. Slovaca 2017, 67, 979–984. [Google Scholar] [CrossRef]
- Pahan, S.; Bhattacharyya, A. Some Properties of Three Dimensional trans-Sasakian Manifolds with a Semi-Symmetric Metric Connection. Lobachevskii J. Math. 2016, 37, 177–184. [Google Scholar] [CrossRef]
- Dutta, T.; Basu, N.; Bhattacharyya, A. Almost conformal Ricci soliton on 3-dimensional trans-Sasakian manifold. Hacet. J. Math. Stat. 2016, 45, 1379–1392. [Google Scholar] [CrossRef]
- Ghosh, A.; Patra, D.S. ∗-Ricci soliton within the frame-work of Sasakian and (κ,μ)-contact manifold. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850120. [Google Scholar] [CrossRef]
- Dai, X.; Zhao, Y.; De, U.C. ∗-Ricci soliton on (κ,μ)′-almost Kenmotsu manifolds. Open Math. 2019, 17, 874–882. [Google Scholar] [CrossRef]
- Wang, Y. Contact 3-manifolds and ∗-Ricci soliton. Kodai Math. J. 2020, 43, 256–267. [Google Scholar] [CrossRef]
- Dey, D.; Majhi, P. ∗-Ricci solitons and ∗-gradient Ricci solitons on 3-dimensional trans-Sasakian man-ifolds. Commun. Korean Math. Soc. 2020, 35, 625–637. [Google Scholar]
- Dey, S.; Sarkar, S.; Bhattacharyya, A. ∗-η Ricci soliton and contact geometry. Ric. Mat. 2021. [Google Scholar] [CrossRef]
- Dey, S.; Uddin, S. Conformal η-Ricci almost solitons on Kenmotsu manifolds. Int. J. Geom. Methods Mod. Phys. 2022, 19, 2250121. [Google Scholar] [CrossRef]
- Dey, S.; Roy, S. ∗-η-Ricci Soliton within the framework of Sasakian manifold. J. Dyn. Syst. Geom. Theor. 2020, 18, 163–181. [Google Scholar] [CrossRef]
- Ganguly, D.; Dey, S.; Ali, A.; Bhattacharyya, A. Conformal Ricci soliton and Quasi-Yamabe soliton on generalized Sasakian space form. J. Geom. Phys. 2021, 169, 104339. [Google Scholar] [CrossRef]
- Roy, S.; Dey, S.; Bhattacharyya, A.; Hui, S.K. ∗-Conformal η-Ricci Soliton on Sasakian manifold. Asian-Eur. J. Math. 2022, 15, 2250035. [Google Scholar] [CrossRef]
- Yang, Z.C.; Li, Y.; Erdoǧdub, M.; Zhu, Y.S. Evolving evolutoids and pedaloids from viewpoints of envelope and singularity theory in Minkowski plane. J. Geom. Phys. 2022, 104513, 1–23. [Google Scholar] [CrossRef]
- Li, Y.; Ganguly, D.; Dey, S.; Bhattacharyya, A. Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds. AIMS Math. 2022, 7, 5408–5430. [Google Scholar] [CrossRef]
- Li, Y.; Dey, S.; Pahan, S.; Ali, A. Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on Paracontact geometry. Open Math. 2022, 20, 1–20. [Google Scholar] [CrossRef]
- Li, Y.; Abolarinwa, A.; Azami, S.; Ali, A. Yamabe constant evolution and monotonicity along the conformal Ricci flow. AIMS Math. 2022, 7, 12077–12090. [Google Scholar] [CrossRef]
- Li, Y.; Khatri, M.; Singh, J.P.; Chaubey, S.K. Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms. Axioms 2022, 11, 324. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Agrawal, R.P.; Ali, A. Reilly-type inequality for the ϕ-Laplace operator on semislant submanifolds of Sasakian space forms. J. Inequal. Appl. 2022, 1, 102. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Dey, S.; Roy, S.; Ali, A. General Relativistic Space-Time with η1-Einstein Metrics. Mathematics 2022, 10, 2530. [Google Scholar] [CrossRef]
- Li, Y.; Uçum, A.; İlarslan, K.; Camcı, Ç. A New Class of Bertrand Curves in Euclidean 4-Space. Symmetry 2022, 14, 1191. [Google Scholar] [CrossRef]
- Li, Y.; Şenyurt, S.; Özduran, A.; Canlı, D. The Characterizations of Parallel q-Equidistant Ruled Surfaces. Symmetry 2022, 14, 1879. [Google Scholar] [CrossRef]
- Li, Y.; Haseeb, A.; Ali, M. LP-Kenmotsu manifolds admitting η-Ricci solitons and spacetime. J. Math. 2022, 2022, 6605127. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Abdel-Baky, R.A. Timelike Circular Surfaces and Singularities in Minkowski 3-Space. Symmetry 2022, 14, 1914. [Google Scholar] [CrossRef]
- Li, Y.; Alluhaibi, N.; Abdel-Baky, R.A. One-Parameter Lorentzian Dual Spherical Movements and Invariants of the Axodes. Symmetry 2022, 14, 1930. [Google Scholar] [CrossRef]
- Li, Y.; Prasad, R.; Haseeb, A.; Kumar, S.; Kumar, S. A Study of Clairaut Semi-Invariant Riemannian Maps from Cosymplectic Manifolds. Axioms 2022, 11, 503. [Google Scholar] [CrossRef]
- Li, Y.; Nazra, S.H.; Abdel-Baky, R.A. Singularity Properties of Timelike Sweeping Surface in Minkowski 3-Space. Symmetry 2022, 14, 1996. [Google Scholar] [CrossRef]
- Li, Y.; Eren, K.; Ayvacı, K.H.; Ersoy, S. Simultaneous characterizations of partner ruled surfaces using Flc frame. AIMS Math. 2022, 7, 20213–20229. [Google Scholar] [CrossRef]
- Li, Y.; Gur, S.; Senyurt, S. The Darboux trihedrons of timelike surfaces in the Lorentzian 3-space. Int. J. Geom. Methods Mod. Phys. 2022, 1–35. [Google Scholar] [CrossRef]
- Li, Y.; Eren, K.; Ayvacı, K.H.; Ersoy, S. The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space. AIMS Math. 2023, 8, 2226–2239. [Google Scholar] [CrossRef]
- Li, Y.; Erdoğdu, M.; Yavuz, A. Differential Geometric Approach of Betchow-Da Rios Soliton Equation. Hacet. J. Math. Stat. 2022, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; Abdel-Salam, A.A.; Saad, M.K. Primitivoids of curves in Minkowski plane. AIMS Math. 2023, 8, 2386–2406. [Google Scholar] [CrossRef]
- Li, Y.; Erdoğdu, M.; Yavuz, A. Nonnull soliton surface associated with the Betchov-Da Rios equation. Rep. Math. Phys. 2022, 90, 241–255. [Google Scholar] [CrossRef]
- Li, Y.; Mondal, S.; Dey, S.; Bhattacharyya, A.; Ali, A. A Study of Conformal η-Einstein Solitons on Trans-Sasakian 3-Manifold. J. Nonlinear Math. Phy. 2022, 1–27. [Google Scholar] [CrossRef]
- Gür, S.; Şenyurt, S.; Grilli, L. The Dual Expression of Parallel Equidistant Ruled Surfaces in Euclidean 3-Space. Symmetry 2022, 14, 1062. [Google Scholar]
- Çalışkan, A.; Şenyurt, S. Curves and ruled surfaces according to alternative frame in dual space. Commun. Fac. Sci. Univ. 2020, 69, 684–698. [Google Scholar] [CrossRef]
- Çalışkan, A.; Şenyurt, S. The dual spatial quaternionic expression of ruled surfaces. Therm. Sci. 2019, 23, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Şenyurt, S.; Çalışkan, A. The quaternionic expression of ruled surfaces. Filomat 2018, 32, 5753–5766. [Google Scholar] [CrossRef] [Green Version]
- Şenyurt, S.; Gür, S. Spacelike surface geometry. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750118. [Google Scholar] [CrossRef]
- As, E.; Şenyurt, S. Some Characteristic Properties of Parallel-Equidistant Ruled Surfaces. Math. Probl. Eng. 2013, 2013, 587289. [Google Scholar] [CrossRef] [Green Version]
- Özcan, B.; Şenyurt, S. On Some Characterizations of Ruled Surface of a Closed Timelike Curve in Dual Lorentzian Space. Adv. Appl. Clifford Algebr. 2012, 22, 939–953. [Google Scholar]
- Antić, M.; Moruz, M.; Van, J. H-Umbilical Lagrangian Submanifolds of the Nearly Kähler × . Mathematics 2020, 8, 1427. [Google Scholar] [CrossRef]
- Antić, M.; Djordje, K. Non-Existence of Real Hypersurfaces with Parallel Structure Jacobi Operator in S6(1). Mathematics 2022, 10, 2271. [Google Scholar] [CrossRef]
- Antić, M. Characterization of Warped Product Lagrangian Submanifolds in . Results Math. 2022, 77, 1–15. [Google Scholar] [CrossRef]
- Antić, M.; Vrancken, L. Conformally flat, minimal, Lagrangian submanifolds in complex space forms. Sci. China Math. 2022, 65, 1641–1660. [Google Scholar] [CrossRef]
- Antić, M.; Hu, Z.; Moruz, M.; Vrancken, L. Surfaces of the nearly Kähler × preserved by the almost product structure. Math. Nachr. 2021, 294, 2286–2301. [Google Scholar] [CrossRef]
- Antić, M. A class of four-dimensional CR submanifolds in six dimensional nearly Kähler manifolds. Math. Slovaca 2018, 68, 1129–1140. [Google Scholar] [CrossRef]
- Antić, M. A class of four dimensional CR submanifolds of the sphere S6(1). J. Geom. Phys. 2016, 110, 78–89. [Google Scholar] [CrossRef]
- Ali, A.T. Non-lightlike constant angle ruled surfaces in Minkowski 3-space. J. Geom. Phys. 2020, 157, 103833. [Google Scholar] [CrossRef]
- Ali, A.T. A constant angle ruled surfaces. Int. J. Geom. 2018, 7, 69–80. [Google Scholar]
- Ali, A.T. Non-lightlike ruled surfaces with constant curvatures in Minkowski 3-space. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850068. [Google Scholar] [CrossRef]
- Ali, A.T.; Hamdoon, F.M. Surfaces foliated by ellipses with constant Gaussian curvature in Euclidean 3-space. Korean J. Math. 2017, 25, 537–554. [Google Scholar]
- Ali, A.T.; Abdel Aziz, H.S.; Sorour, A.H. On some geometric properties of quadric surfaces in Euclidean space. Honam Math. J. 2016, 38, 593–611. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.T.; Abdel Aziz, H.S.; Sorour, A.H. On curvatures and points of the translation surfaces in Euclidean 3-space. J. Egypt. Math. Soc. 2015, 23, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Jäntschi, L. Introducing Structural Symmetry and Asymmetry Implications in Development of Recent Pharmacy and Medicine. Symmetry 2022, 14, 1674. [Google Scholar] [CrossRef]
- Jäntschi, L. Binomial Distributed Data Confidence Interval Calculation: Formulas, Algorithms and Examples. Symmetry 2022, 14, 1104. [Google Scholar] [CrossRef]
- Jäntschi, L. Formulas, Algorithms and Examples for Binomial Distributed Data Confidence Interval Calculation: Excess Risk, Relative Risk and Odds Ratio. Mathematics 2021, 9, 2506. [Google Scholar] [CrossRef]
- Donatella, B.; Jäntschi, L. Comparison of Molecular Geometry Optimization Methods Based on Molecular Descriptors. Mathematics 2021, 9, 2855. [Google Scholar]
- Mihaela, T.; Jäntschi, L.; Doina, R. Figures of Graph Partitioning by Counting, Sequence and Layer Matrices. Mathematics 2021, 9, 1419. [Google Scholar]
- Kumar, S.; Kumar, D.; Sharma, J.R.; Jäntschi, L. A Family of Derivative Free Optimal Fourth Order Methods for Computing Multiple Roots. Symmetry 2020, 12, 1969. [Google Scholar] [CrossRef]
- Deepak, K.; Janak, R.; Jäntschi, L. A Novel Family of Efficient Weighted-Newton Multiple Root Iterations. Symmetry 2020, 12, 1494. [Google Scholar]
- Janak, R.; Sunil, K.; Jäntschi, L. On Derivative Free Multiple-Root Finders with Optimal Fourth Order Convergence. Mathematics 2020, 8, 1091. [Google Scholar]
- Jäntschi, L. Detecting Extreme Values with Order Statistics in Samples from Continuous Distributions. Mathematics 2020, 8, 216. [Google Scholar] [CrossRef] [Green Version]
- Deepak, K.; Janak, R.; Jäntschi, L. Convergence Analysis and Complex Geometry of an Efficient Derivative-Free Iterative Method. Mathematics 2019, 7, 919. [Google Scholar]
- Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Todorčević, V. Subharmonic behavior and quasiconformal mappings. Anal. Math. Phys. 2019, 9, 1211–1225. [Google Scholar] [CrossRef]
- Kojić, V.; Pavlović, M. Subharmonicity of |f|p for quasiregular harmonic functions, with applications. J. Math. Anal. Appl. 2008, 342, 742–746. [Google Scholar] [CrossRef] [Green Version]
- Kojić, V. Quasi-nearly subharmonic functions and conformal mappings. Filomat 2007, 21, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Manojlović, V.; Vuorinen, M. On quasiconformal maps with identity boundary values. Trans. Am. Math. Soc. 2011, 363, 2367–2479. [Google Scholar] [CrossRef] [Green Version]
- Manojlović, V. On bilipschicity of quasiconformal harmonic mappings. Novi Sad J. Math. 2015, 45, 105–109. [Google Scholar] [CrossRef]
- Manojlović, V. Bilipschitz mappings between sectors in planes and quasi-conformality. Funct. Anal. Approx. Comput. 2009, 1, 1–6. [Google Scholar]
- Manojlović, V. Bi-Lipschicity of quasiconformal harmonic mappings in the plane. Filomat 2009, 23, 85–89. [Google Scholar] [CrossRef]
- Manojlović, V. On conformally invariant extremal problems. Appl. Anal. Discret. Math. 2009, 3, 97–119. [Google Scholar] [CrossRef]
- Duggal, K.L. Almost Ricci solitons and physical applications. Int. Electron. J. Geom. 2017, 10, 1–10. [Google Scholar]
- Woolgar, E. Some applications of Ricci flow in physics. Can. J. Phys. 2008, 86, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds, 2nd ed.; Birkhäuser: Boston, MA, USA, 2010. [Google Scholar]
- Oubiña, J.A. New classes of almost contact metric structures. Publ. Math. 1985, 32, 187–193. [Google Scholar]
- Gray, A.; Hervella, L.M. The Sixteen Classes of Almost Hermitian Manifolds and Their Linear Invariance. Ann. Mat. Pura Appl. 1980, 123, 35–58. [Google Scholar] [CrossRef]
- Blair, D.E.; Oubiña, J.A. Conformal and Related Changes of Metric on the Product of Two Almost Contact Metric Manifolds. Publicacions Mat. 1990, 34, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Marrero, J.C. The local structure of trans-Sasakian manifolds. Ann. Mat. Pura Appl. (IV) 1992, 162, 77–86. [Google Scholar] [CrossRef]
- Yano, K. Integral Formulas in Riemannian Geometry; Marcel Dekker: New York, NY, USA, 1970. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Li, Y.; Sarkar, S.; Dey, S.; Bhattacharyya, A. Ricci Soliton and Certain Related Metrics on a Three-Dimensional Trans-Sasakian Manifold. Universe 2022, 8, 595. https://doi.org/10.3390/universe8110595
Chen Z, Li Y, Sarkar S, Dey S, Bhattacharyya A. Ricci Soliton and Certain Related Metrics on a Three-Dimensional Trans-Sasakian Manifold. Universe. 2022; 8(11):595. https://doi.org/10.3390/universe8110595
Chicago/Turabian StyleChen, Zhizhi, Yanlin Li, Sumanjit Sarkar, Santu Dey, and Arindam Bhattacharyya. 2022. "Ricci Soliton and Certain Related Metrics on a Three-Dimensional Trans-Sasakian Manifold" Universe 8, no. 11: 595. https://doi.org/10.3390/universe8110595
APA StyleChen, Z., Li, Y., Sarkar, S., Dey, S., & Bhattacharyya, A. (2022). Ricci Soliton and Certain Related Metrics on a Three-Dimensional Trans-Sasakian Manifold. Universe, 8(11), 595. https://doi.org/10.3390/universe8110595