Search for Manifestations of Spin–Torsion Coupling
Abstract
:1. Introduction
2. Gauge Theory of Gravitation
2.1. Interaction between Fermions and Axial Torsion
2.2. Interaction between the Electromagnetic Field and Axial Torsion
2.3. The Electromagnetic Source of an Axial Vector Field
2.4. Field Equations
3. Influence of Axial Torsion on Electromagnetic Wave
3.1. The Case of the Uniform External Axial Torsion Field
3.2. Rotation of the Polarization Plane
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Poincaré Gauge Gravity Dynamics
References
- Safronova, M.; Budker, D.; DeMille, D.; Kimball, D.F.J.; Derevianko, A.; Clark, C.W. Search for new physics with atoms and molecules. Rev. Mod. Phys. 2018, 90, 025008. [Google Scholar] [CrossRef] [Green Version]
- Cartan, É. On a generalization of the notion of Riemann curvature and spaces with torsion. In Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity; Bergmann, P.G., De Sabbata, V., Eds.; Plenum: New York, NY, USA, 1980; pp. 489–491. [Google Scholar] [CrossRef] [Green Version]
- Sciama, D.W. On the analogy between charge and spin in general relativity. In Recent Developments in General Relativity, Festschrift for Infeld; Pergamon Press: Oxford, UK; PWN: Warsaw, Poland, 1962; pp. 415–439. [Google Scholar]
- Kibble, T.W.B. Lorentz invariance and the gravitational field. J. Math. Phys. 1961, 2, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Trautman, A. Einstein–Cartan theory. In Encyclopedia of Mathematical Physics; Françoise, J.-P., Naber, G.L., Tsou, S.T., Eds.; Elsevier: Oxford, UK, 2006; pp. 189–195. [Google Scholar]
- Hehl, F.W.; von der Heyde, P.; Kerlick, G.D. General relativity with spin and torsion and its deviations from Einstein’s theory. Phys. Rev. D 1974, 10, 1066–1069. [Google Scholar] [CrossRef]
- Hehl, F.W.; Lemke, J.; Mielke, E.W. Two lectures on fermions and gravity. In Geometry and Theoretical Physics; Debrus, J., Hirshfeld, A.C., Eds.; Springer: Heidelberg, Germany, 1991; pp. 56–140. [Google Scholar]
- Yasskin, P.B.; Stoeger, W.R. Propagating equations for test bodies with spin and rotation in theories of gravity with torsion. Phys. Rev. D 1980, 21, 2081–2094. [Google Scholar] [CrossRef]
- Hehl, F.W.; Obukhov, Y.N.; Puetzfeld, D. On Poincaré gauge theory of gravity, its equations of motion, and Gravity Probe B. Phys. Lett. A 2013, 377, 1775–1781. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, Y.N.; Puetzfeld, D. Multipolar test body equations of motion in generalized gravity theories. In Fundamental Theories of Physics; Springer: Cham, Switzerland, 2015; Volume 179, pp. 67–119. [Google Scholar] [CrossRef]
- Hehl, F.W.; von der Heyde, P.; Kerlick, G.D.; Nester, J.M. General relativity with spin and torsion: Foundations and prospects. Rev. Mod. Phys. 1976, 48, 393–416. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, I.L. Physical aspects of the space-time torsion. Phys. Rept. 2002, 357, 113–213. [Google Scholar] [CrossRef] [Green Version]
- Ponomarev, V.N.; Barvinsky, A.O.; Obukhov, Y.N. Gauge Approach and Quantization Methods in Gravity Theory; Nauka: Moscow, Russia, 2017. [Google Scholar]
- Hehl, F.W. Spin and torsion in general relativity: I. Foundations. Gen. Relat. Grav. 1973, 4, 333–349. [Google Scholar] [CrossRef]
- Hehl, F.W. Spin and torsion in general relativity. II: Geometry and field equations. Gen. Relat. Grav. 1974, 5, 491–516. [Google Scholar] [CrossRef]
- Trautman, A. On the structure of the Einstein–Cartan equations. Symp. Math. 1973, 12, 139–160. [Google Scholar]
- Tiwari, R.N.; Ray, S. Static spherical charged dust electromagnetic mass models in Einstein–Cartan theory. Gen. Relat. Grav. 1997, 29, 683–690. [Google Scholar] [CrossRef]
- Ray, S. Static spherically symmetric electromagnetic mass models with charged dust sources in Einstein–Cartan theory: Lane-Emden models. Astropys. Space Sci. 2002, 280, 345–355. [Google Scholar] [CrossRef]
- Ray, S.; Bhadra, S. Classical electron model with negative energy density in Einstein–Cartan theory of gravitation. Int. J. Mod. Phys. D 2004, 13, 555–565. [Google Scholar] [CrossRef] [Green Version]
- Tseytlin, A.A. Poincaré and de Sitter gauge theories of gravity with propagating torsion. Phys. Rev. D 1982, 26, 3327–3341. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, Y.N.; Ponomariev, V.N.; Zhytnikov, V.V. Quadratic Poincaré gauge theory of gravity: A comparison with the general relativity theory. Gen. Relat. Grav. 1989, 21, 1107–1142. [Google Scholar] [CrossRef]
- Heckel, B.R.; Cramer, C.E.; Cook, T.S.; Adelberger, E.G.; Schlamminger, S.; Schmidt, U. New CP-violation and preferred-frame tests with polarized electrons. Phys. Rev. Lett. 2006, 97, 021603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heckel, B.R.; Adelberger, E.G.; Cramer, C.E.; Cook, T.S.; Schlamminger, S.; Schmidt, U. Preferred-frame and CP-violation tests with polarized electrons. Phys. Rev. D 2008, 78, 092006. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, Y.N.; Yakushin, I.V. Experimental restrictions on spin–spin interactions in gauge gravity. Int. J. Theor. Phys. 1992, 31, 1993–2001. [Google Scholar] [CrossRef]
- Yakushin, I.V. Contribution of torsion to the hyperfine splitting of the hydrogen atom. Sov. J. Nucl. Phys. 1992, 55, 418–420. [Google Scholar]
- Yakushin, I.V. On the contribution of vector torsion component to the effect of interaction of polarized photons. Moscow Univ. Phys. Bull. 1992, 47, 76–77. [Google Scholar]
- Lehnert, R.; Snow, W.M.; Yan, H. A first experimental limit on in-matter torsion from neutron spin rotation in liquid 4He. Phys. Lett. B 2014, 730, 353–356, Erratum in Phys. Lett. B 2015, 744, 11. [Google Scholar] [CrossRef]
- Lämmerzahl, C. Constraints on space-time torsion from Hughes-Drever experiments. Phys. Lett. A 1997, 228, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, Y.N.; Silenko, A.J.; Teryaev, O.V. Spin-torsion coupling and gravitational moments of Dirac fermions: Theory and experimental bounds. Phys. Rev. D 2014, 90, 124068. [Google Scholar] [CrossRef] [Green Version]
- Moody, J.E.; Wilczek, F. New macroscopic forces? Phys. Rev. D 1984, 30, 130–138. [Google Scholar] [CrossRef]
- Peccei, R.; Quinn, H. Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D 1977, 16, 1791–1797. [Google Scholar] [CrossRef]
- Gelmini, G.; Nussinov, S.; Yanagida, T. Does nature like Nambu-Goldstone bosons? Nucl. Phys. B 1983, 219, 31–40. [Google Scholar] [CrossRef]
- Carroll, S.M.; Field, G.B. Consequences of propagating torsion in connection-dynamic theories of gravity. Phys. Rev. D 1994, 50, 3867–3873. [Google Scholar] [CrossRef] [Green Version]
- Neville, D.E. Experimental bounds on the coupling strength of torsion potentials. Phys. Rev. D 1980, 21, 2075–2080. [Google Scholar] [CrossRef]
- Ansel’m, A.A. Possible new long-range interaction and methods for detecting it. JETP Lett. 1982, 36, 55–59. [Google Scholar]
- Asztalos, S.J.; Carosi, G.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hotz, M.; Rosenberg, L.J.; Rybka, G.; Hoskins, J.; Hwang, J.; et al. SQUID-based microwave cavity search for dark-matter axions. Phys. Rev. Lett. 2010, 104, 41301. [Google Scholar] [CrossRef] [Green Version]
- Robilliard, C.; Battesti, R.; Fouche, M.; Mauchain, J.; Sautivet, A.M.; Amiranoff, F.; Rizzo, C. No ’light shining through a wall’: Results from a photoregeneration experiment. Phys. Rev. Lett. 2007, 99, 190403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flambaum, V.V.; Tran Tan, H.B. Oscillating nuclear electric dipole moment induced by axion dark matter produces atomic and molecular electric dipole moments and nuclear spin rotation. Phys. Rev. D 2019, 100, 111301. [Google Scholar] [CrossRef]
- Garcon, A.; Aybas, D.; Blanchard, J.W.; Centers, G.; Figueroa, N.L.; Graham, P.W.; Kimball, D.F.J.; Rajendran, S.; Sendra, M.G.; Sushkov, A.O.; et al. The cosmic axion spin precession experiment (CASPEr): A dark-matter search with nuclear magnetic resonance. Quantum Sci. Technol. 2017, 3, 014008. [Google Scholar] [CrossRef] [Green Version]
- Georgi, H. Unparticle physics. Phys. Rev. Lett. 2007, 98, 221601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holdom, B. Two U(1)’s and ϵ charge shifts. Phys. Lett. B 1986, 166, 196–198. [Google Scholar] [CrossRef]
- Dobrescu, B.A.; Mocioiu, I. Spin-dependent macroscopic forces from new particle exchange. J. High Energy Phys. 2006, 11, 5. [Google Scholar] [CrossRef]
- Dobrescu, B.A. Massless gauge bosons other than the photon. Phys. Rev. Lett. 2005, 94, 151802. [Google Scholar] [CrossRef] [Green Version]
- Kotler, S.; Ozeri, R.; Kimball, D.F.J. Constraints on exotic dipole-dipole couplings between electrons at the micrometer scale. Phys. Rev. Lett. 2015, 115, 081801. [Google Scholar] [CrossRef] [Green Version]
- Rong, X.; Jiao, M.; Geng, J.; Zhang, B.; Xie, T.; Shi, F.; Duan, C.-K.; Cai, Y.-F.; Du, J. Constraints on a spin-dependent exotic interaction between electrons with single electron spin quantum sensors. Phys. Rev. Lett. 2018, 121, 080402. [Google Scholar] [CrossRef] [Green Version]
- Teissier, J.; Barfuss, A.; Appel, P.; Neu, E.; Maletinsky, P. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys. Rev. Lett. 2014, 113, 020503. [Google Scholar] [CrossRef] [Green Version]
- Ficek, F.; Kimball, D.F.J.; Kozlov, M.G.; Leefer, N.; Pustelny, S.; Budker, D. Constraints on exotic spin-dependent interactions between electrons from helium fine-structure spectroscopy. Phys. Rev. A 2017, 95, 032505. [Google Scholar] [CrossRef] [Green Version]
- Naik, P.C.; Pradhan, T. Long-ray interaction between spins. J. Phys. A Math. Gen. 1981, 14, 2795–2805. [Google Scholar] [CrossRef]
- Pradhan, T.; Malik, R.P.; Naik, P.C. The fifth interaction: Universal long range force between spins. Pramana-J. Phys. 1985, 24, 77–94. [Google Scholar] [CrossRef]
- Pradhan, T.; Lahiri, A. Finite quantum electrodynamics. Phys. Rev. D 1974, 10, 1872–1882. [Google Scholar] [CrossRef]
- Obukhov, Y.N.; Yakushin, I.V. On the experimental estimates of the axial torsion mass and coupling constants. In Modern Problems of Theoretical Physics. Festschrift for Professor D. Ivanenko; Pronin, P.I., Obukhov, Y.N., Eds.; World Scientific: Singapore, 1991; pp. 197–215. [Google Scholar]
- Hehl, F.W.; McCrea, J.D.; Mielke, E.W.; Ne’eman, Y. Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 1995, 258, 1–171. [Google Scholar] [CrossRef] [Green Version]
- Blagojević, M. Gravitation and Gauge Symmetries; Institute of Physics: Bristol, UK, 2002. [Google Scholar] [CrossRef]
- Blagojević, M.; Hehl, F.W. (Eds.) Gauge Theories of Gravitation: A Reader with Commentaries; Imperial College Press: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, Y.N. Poincaré gauge gravity: Selected topics. Int. J. Geom. Meth. Mod. Phys. 2006, 3, 95–137. [Google Scholar] [CrossRef]
- Obukhov, Y.N. Poincaré gauge gravity: An overview. Int. J. Geom. Meth. Mod. Phys. 2018, 15 (Suppl. S1), 1840005. [Google Scholar] [CrossRef] [Green Version]
- Obukhov, Y.N. Poincaré gauge gravity primer. In Modified and Quantum Gravity—From Theory to Experimental Searches on All Scales; Pfeifer, C., Lämmerzahl, C., Eds.; Springer: Cham, Switzerland, 2022; Chapter 3. [Google Scholar] [CrossRef]
- Vasilev, T.B.; Cembranos, J.A.R.; Valcarcel, J.G.; Martín-Moruno, P. Stability in quadratic torsion theories. Eur. Phys. J. C 2017, 77, 755. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, J.B.; Torralba, F.J.M. Revisiting the stability of quadratic Poincaré gauge gravity. Eur. Phys. J. C 2020, 80, 611. [Google Scholar] [CrossRef]
- Belyaev, A.S.; Shapiro, I.L.; do Vale, M.A.B. Torsion phenomenology at the CERN LHC. Phys. Rev. D 2007, 75, 034014. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.; Sarkar, U. Constraints on background torsion field from K-physics. Phys. Lett. B 1998, 433, 424–428. [Google Scholar] [CrossRef] [Green Version]
- Stueckelberg, E.C.G. Die Wechselwirkungskräfte in der Elektrodynamik und in der Feldtheorie der Kernkräfte. Teil II und III. Helv. Phys. Acta 1938, 11, 299–328. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Russell, N.; Tasson, J.D. Constraints on torsion from bounds on Lorentz violation. Phys. Rev. Lett. 2008, 100, 111102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostelecký, V.A.; Li, Z. Searches for beyond-Riemann gravity. Phys. Rev. D 2021, 104, 044054. [Google Scholar] [CrossRef]
- Carroll, S.M.; Field, G.B.; Jackiw, R. Limits on a Lorentz- and parity-violating modification of electrodynamics. Phys. Rev. D 1990, 41, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Itin, Y. Carroll-Field-Jackiw electrodynamics in the premetric framework. Phys. Rev. D 2004, 70, 025012. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, L. A discussion on the most general torsion-gravity with electrodynamics for Dirac spinor matter fields. Int. J. Geom. Meth. Mod. Phys. 2015, 12, 1550099. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, L. Fundamental theory of torsion gravity. Universe 2021, 7, 305. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trukhanova, M.I.; Andreev, P.; Obukhov, Y.N. Search for Manifestations of Spin–Torsion Coupling. Universe 2023, 9, 38. https://doi.org/10.3390/universe9010038
Trukhanova MI, Andreev P, Obukhov YN. Search for Manifestations of Spin–Torsion Coupling. Universe. 2023; 9(1):38. https://doi.org/10.3390/universe9010038
Chicago/Turabian StyleTrukhanova, Mariya Iv., Pavel Andreev, and Yuri N. Obukhov. 2023. "Search for Manifestations of Spin–Torsion Coupling" Universe 9, no. 1: 38. https://doi.org/10.3390/universe9010038
APA StyleTrukhanova, M. I., Andreev, P., & Obukhov, Y. N. (2023). Search for Manifestations of Spin–Torsion Coupling. Universe, 9(1), 38. https://doi.org/10.3390/universe9010038