Might the 2PN Perihelion Precession of Mercury Become Measurable in the Next Future?
Abstract
:1. Introduction
2. The 2PN Precession of the Pericenter
3. The 2PN Perihelion Precession of Mercury
4. Summary and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | |
2 | Here and in the following, the angular brackets denoting the orbital average are omitted. |
3 | It is calculated perturbatively in the usual way by evaluating the right hand side of the Gauss equation for [23], calculated with , onto a fixed Keplerian ellipse, and integrating it over a Keplerian orbital period. |
4 | It is obtained by keeping a and e fixed during the integration of the right hand side of the Gauss equation for , calculated with , over a Keplerian orbital period. |
5 | For a recent comparative study of Mercury’s perihelion advance induced by some classical dynamical effects, see [37]. |
6 | EPM stands for Ephemeris of Planets and the Moon. |
7 | See https://iaaras.ru/en/dept/ephemeris/epm/2017/ (accessed on 30 December 2022) for details. |
8 | Until now, the simpler model of the NASA Jet Propulsion Laboratory (JPL) was pre-applied to the normal points published by it; see https://ssd.jpl.nasa.gov/dat/planets/messenger.txt (accessed on 30 December 2022). |
9 | D. Pavlov, private communication to the present author, November 2022. |
10 | |
11 | The one due to the Sun’s Love number is much smaller, being, thus, of no concern. |
References
- Damour, T. The problem of motion in Newtonian and Einsteinian gravity. In Three Hundred Years of Gravitation; Hawking, S., Israel, W., Eds.; Cambridge University Press: Cambridge, UK, 1987; pp. 128–198. [Google Scholar]
- Asada, H.; Futamase, T. Chapter 2. Post–Newtonian Approximation: Its Foundation and Applications. Prog. Theor. Phys. Suppl. 1997, 128, 123–181. [Google Scholar] [CrossRef] [Green Version]
- Blanchet, L. On the Accuracy of the Post–Newtonian Approximation. In Proceedings of the 2001: A Relativistic Spacetime Odyssey; Ciufolini, I., Dominici, D., Lusanna, L., Eds.; World Scientific: Singapore, 2003; pp. 411–430. [Google Scholar] [CrossRef] [Green Version]
- Blanchet, L. Gravitational Radiation from Post–Newtonian Sources and Inspiralling Compact Binaries. Living Rev. Relativ. 2006, 9, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Futamase, T.; Itoh, Y. The Post–Newtonian Approximation for Relativistic Compact Binaries. Living Rev. Relativ. 2007, 10, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Will, C.M. Theory and Experiment in Gravitational Physics, 2nd ed.; Cabridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Will, C.M. On the unreasonable effectiveness of the post-Newtonian approximation in gravitational physics. Proc. Natl. Acad. Sci. USA 2011, 108, 5938–5945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, I.I.; Ash, M.E.; Smith, W.B. Icarus: Further Confirmation of the Relativistic Perihelion Precession. Phys. Rev. Lett. 1968, 20, 1517–1518. [Google Scholar] [CrossRef]
- Shapiro, I.I.; Pettengill, G.H.; Ash, M.E.; Ingalls, R.P.; Campbell, D.B.; Dyce, R.B. Mercury’s Perihelion Advance: Determination by Radar. Phys. Rev. Lett. 1972, 28, 1594–1597. [Google Scholar] [CrossRef]
- Shapiro, I.I.; Smith, W.B.; Ash, M.E.; Herrick, S. General Relativity and the Orbit of Icarus. Astron. J. 1971, 76, 588. [Google Scholar] [CrossRef]
- Shapiro, I.I. Solar system tests of general relativity: Recent results and present plans. In Proceedings of the General Relativity and Gravitation, 1989; Ashby, N., Bartlett, D.F., Wyss, W., Eds.; Cambridge University Press: Cambridge, UK, 1990; pp. 313–330. [Google Scholar]
- Lucchesi, D.M.; Peron, R. Accurate Measurement in the Field of the Earth of the General-Relativistic Precession of the LAGEOS II Pericenter and New Constraints on Non–Newtonian Gravity. Phys. Rev. Lett. 2010, 105, 231103. [Google Scholar] [CrossRef] [Green Version]
- Lucchesi, D.M.; Peron, R. LAGEOS II pericenter general relativistic precession (1993-2005): Error budget and constraints in gravitational physics. Phys. Rev. D 2014, 89, 082002. [Google Scholar] [CrossRef]
- Kramer, M.; Stairs, I.H.; Manchester, R.N.; McLaughlin, M.A.; Lyne, A.G.; Ferdman, R.D.; Burgay, M.; Lorimer, D.R.; Possenti, A.; D’Amico, N.; et al. Tests of General Relativity from Timing the Double Pulsar. Science 2006, 314, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.; Stairs, I.H.; Manchester, R.N.; Wex, N.; Deller, A.T.; Coles, W.A.; Ali, M.; Burgay, M.; Camilo, F.; Cognard, I.; et al. Strong-Field Gravity Tests with the Double Pulsar. Phys. Rev. X 2021, 11, 041050. [Google Scholar] [CrossRef]
- Gravity Collaboration; Abuter, R.; Amorim, A.; Bauböck, M.; Berger, J.P.; Bonnet, H.; Brandner, W.; Cardoso, V.; Clénet, Y.; de Zeeuw, P.T.; et al. Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 2020, 636, L5. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, G.; Wex, N. Second post-Newtonian motion of compact binaries. Phys. Lett. A 1993, 174, 196–205. [Google Scholar] [CrossRef]
- Wex, N. The second post-Newtonian motion of compact binary-star systems with spin. Class. Quantum Gravity 1995, 12, 983–1005. [Google Scholar] [CrossRef]
- Tucker, A.; Will, C.M. Pericenter advance in general relativity: Comparison of approaches at high post-Newtonian orders. Class. Quantum Gravity 2019, 36, 115001. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Schäfer, G. Higher-order relativistic periastron advances and binary pulsars. Nuovo Cimento B 1988, 101, 127–176. [Google Scholar] [CrossRef]
- Damour, T.; Deruelle, N. General relativistic celestial mechanics of binary systems. I. The post-Newtonian motion. Ann. De L’Institut Henri Poincaré Sect. A 1985, 43, 107–132. [Google Scholar]
- Iorio, L. On the 2PN Periastron Precession of the Double Pulsar PSR J0737-3039A/B. Universe 2021, 7, 443. [Google Scholar] [CrossRef]
- Kopeikin, S.M.; Efroimsky, M.; Kaplan, G. Relativistic Celestial Mechanics of the Solar System; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar] [CrossRef]
- Klioner, S.A.; Kopeikin, S.M. The Post-Keplerian Orbital Representations of the Relativistic Two-Body Problem. Astrophys. J. 1994, 427, 951. [Google Scholar] [CrossRef]
- Hu, H.; Kramer, M.; Wex, N.; Champion, D.J.; Kehl, M.S. Constraining the dense matter equation-of-state with radio pulsars. Mon. Not. R. Astron. Soc. 2020, 497, 3118–3130. [Google Scholar] [CrossRef]
- Burgay, M.; D’Amico, N.; Possenti, A.; Manchester, R.N.; Lyne, A.G.; Joshi, B.C.; McLaughlin, M.A.; Kramer, M.; Sarkissian, J.M.; Camilo, F.; et al. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature 2003, 426, 531–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyne, A.G.; Burgay, M.; Kramer, M.; Possenti, A.; Manchester, R.N.; Camilo, F.; McLaughlin, M.A.; Lorimer, D.R.; D’Amico, N.; Joshi, B.C.; et al. A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics. Science 2004, 303, 1153–1157. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.M. The second post-Newtonian light propagation and its astrometric measurement in the solar system. Int. J. Mod. Phys. D 2015, 24, 1550056. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Huang, T.Y. Second post-Newtonian approximation of Einstein-aether theory. Phys. Rev. D 2008, 77, 124049. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Ni, W.T.; Dong, P.; Huang, T.Y. Second post-Newtonian approximation of scalar-tensor theory of gravity. Adv. Space Res. 2009, 43, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.M.; Xie, Y. Two-post-Newtonian light propagation in the scalar-tensor theory: An N-point mass case. Phys. Rev. D 2012, 86, 044007. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.M. Two-post-Newtonian approximation of the scalar-tensor theory with an intermediate-range force for general matter. Sci. China Phys. Mech. Astron. 2015, 58, 1–8. [Google Scholar] [CrossRef]
- Deng, X.M. The second post-Newtonian light propagation and its astrometric measurement in the Solar System: Light time and frequency shift. Int. J. Mod. Phys. D 2016, 25, 1650082. [Google Scholar] [CrossRef]
- Iorio, L. Post–Newtonian direct and mixed orbital effects due to the oblateness of the central body. Int. J. Mod. Phys. D 2015, 24, 1550067. [Google Scholar] [CrossRef]
- Mioc, V.; Radu, E. Perturbations in the anomalistic period of artificial satellites caused by the direct solar radiation pressure. Astron. Nachrichten 1979, 300, 313–315. [Google Scholar] [CrossRef]
- Kopeikin, S.M.; Potapov, V.A. Relativistic shift of the periastron of a double pulsar in the post-post-Newtonian approximation of General Relativity. Astron. Rep. 1994, 38, 104–114. [Google Scholar]
- Pogossian, S.P. Comparative study of Mercury’s perihelion advance. Celest. Mech. Dyn. Astron. 2022, 134, 33. [Google Scholar] [CrossRef]
- Iorio, L. Calculation of the Uncertainties in the Planetary Precessions with the Recent EPM2017 Ephemerides and their Use in Fundamental Physics and Beyond. Astron. J. 2019, 157, 220. [Google Scholar] [CrossRef] [Green Version]
- Pitjeva, E.V.; Pitjev, N.P. Masses of the Main Asteroid Belt and the Kuiper Belt from the Motions of Planets and Spacecraft. Astron. Lett. 2018, 44, 554–566. [Google Scholar] [CrossRef] [Green Version]
- Aksim, D.; Pavlov, D. Improving the solar wind density model used in processing of spacecraft ranging observations. Mon. Not. R. Astron. Soc. 2022, 514, 3191–3201. [Google Scholar] [CrossRef]
- Benkhoff, J.; Murakami, G.; Baumjohann, W.; Besse, S.; Bunce, E.; Casale, M.; Cremosese, G.; Glassmeier, K.H.; Hayakawa, H.; Heyner, D.; et al. BepiColombo - Mission Overview and Science Goals. Space Sci. Rev. 2021, 217, 90. [Google Scholar] [CrossRef]
- Iess, L.; Asmar, S.W.; Cappuccio, P.; Cascioli, G.; De Marchi, F.; di Stefano, I.; Genova, A.; Ashby, N.; Barriot, J.P.; Bender, P.; et al. Gravity, Geodesy and Fundamental Physics with BepiColombo’s MORE Investigation. Space Sci. Rev. 2021, 217, 21. [Google Scholar] [CrossRef]
- van der Zwaard, R.; Dirkx, D. The Influence of Dynamic Solar Oblateness on Tracking Data Analysis from Past and Future Mercury Missions. Remote Sens. 2022, 14, 4139. [Google Scholar] [CrossRef]
- Love, A.E.H. Some Problems of Geodynamics; Cambridge University Press: Cambridge, UK, 1911. [Google Scholar]
- Kopal, Z. Close Binary Systems; Chapman & Hall: London, UK, 1959. [Google Scholar]
- Poisson, E.; Will, C.M. Gravity; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Konopliv, A.S.; Park, R.S.; Ermakov, A.I. The Mercury gravity field, orientation, love number, and ephemeris from the MESSENGER radiometric tracking data. Icarus 2020, 335, 113386. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iorio, L. Might the 2PN Perihelion Precession of Mercury Become Measurable in the Next Future? Universe 2023, 9, 37. https://doi.org/10.3390/universe9010037
Iorio L. Might the 2PN Perihelion Precession of Mercury Become Measurable in the Next Future? Universe. 2023; 9(1):37. https://doi.org/10.3390/universe9010037
Chicago/Turabian StyleIorio, Lorenzo. 2023. "Might the 2PN Perihelion Precession of Mercury Become Measurable in the Next Future?" Universe 9, no. 1: 37. https://doi.org/10.3390/universe9010037
APA StyleIorio, L. (2023). Might the 2PN Perihelion Precession of Mercury Become Measurable in the Next Future? Universe, 9(1), 37. https://doi.org/10.3390/universe9010037