Effect of Spin-Dependent Short-Range Correlations on Nuclear Matrix Elements for Neutrinoless Double Beta Decay of 48Ca
Abstract
:1. Introduction
2. The Decay Rate and NMEs for Decay
3. The Effects of Short-Range Correlations on Decay
3.1. The Jastrow Approach
3.2. Spin-Dependent Approach
4. The Closure Method of NME Calculation for Decay through the Channel
5. Results and Discussion
5.1. Dependence of NMEs on Coupled Spin-Parity () of Two Decaying Neutrons and Two Created Protons
5.2. Variation in NMEs for with the Cutoff Number of States () of Ca
5.3. Neutrino Momentum (q) and Radial (r) Distribution of NMEs
5.4. Variation in NMEs with Closure Energy
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agostini, M.; Benato, G.; Detwiler, J.A.; Menéndez, J.; Vissani, F. Toward the discovery of matter creation with neutrinoless ββ decay. Rev. Mod. Phys. 2023, 95, 025002. [Google Scholar] [CrossRef]
- Dolinski, M.J.; Poon, A.W.P.; Rodejohann, W. Neutrinoless Double-Beta Decay: Status and Prospects. Ann. Rev. Nucl. Part. Sci. 2019, 69, 219–251. [Google Scholar] [CrossRef]
- Vergados, J.D.; Ejiri, H.; Šimkovic, F. Neutrinoless double beta decay and neutrino mass. Int. J. Mod. Phys. E 2016, 25, 1630007. [Google Scholar] [CrossRef]
- Engel, J.; Menéndez, J. Status and future of nuclear matrix elements for neutrinoless double-beta decay: A review. Rep. Prog. Phys. 2017, 80, 046301. [Google Scholar] [CrossRef]
- Avignone, F.T.; Elliott, S.R.; Engel, J. Double beta decay, Majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 2008, 80, 481–516. [Google Scholar] [CrossRef]
- Furry, W.H. On Transition Probabilities in Double Beta-Disintegration. Phys. Rev. 1939, 56, 1184–1193. [Google Scholar] [CrossRef]
- Vergados, J.D.; Ejiri, H.; Šimkovic, F. Theory of neutrinoless double-beta decay. Rep. Prog. Phys. 2012, 75, 106301. [Google Scholar] [CrossRef] [PubMed]
- Majorana, E. Symmetric theory of electron and positron. Il Nuovo Cimento (1924–1942) 1937, 14, 171. [Google Scholar] [CrossRef]
- Racah, G. Sulla simmetria tra particelle e antiparticelle. Il Nuovo Cimento 1937, 14, 322. [Google Scholar] [CrossRef]
- Deppisch, F.F.; Hirsch, M.; Päs, H. Neutrinoless double-beta decay and physics beyond the standard model. J. Phys. G Nucl. Part. Phys. 2012, 39, 124007. [Google Scholar] [CrossRef]
- Schechter, J.; Valle, J.W. Neutrinoless double-β decay in SU (2)× U (1) theories. Phys. Rev. D 1982, 25, 2951. [Google Scholar] [CrossRef]
- Rodejohann, W. Neutrino-less double beta decay and particle physics. Int. J. Mod. Phys. E 2011, 20, 1833–1930. [Google Scholar] [CrossRef]
- Aker, M.; Beglarian, A.; Behrens, J.; Berlev, A.; Besserer, U.; Bieringer, B.; Block, F.; Bobien, S.; Bottcher, M.; Bornschein, B.; et al. Direct neutrino-mass measurement with sub-electronvolt sensitivity. Nat. Phys. 2022, 18, 160–166. [Google Scholar] [CrossRef]
- KamLAND-Zen Collaboration. Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen. Phys. Rev. Lett. 2023, 130, 051801. [Google Scholar] [CrossRef]
- Tomoda, T. Double beta decay. Rep. Prog. Phys. 1991, 54, 53. [Google Scholar] [CrossRef]
- Rodin, V.; Faessler, A.; Šimkovic, F.; Vogel, P. Assessment of uncertainties in QRPA 0νββ-decay nuclear matrix elements. Nucl. Phys. A 2006, 766, 107–131. [Google Scholar] [CrossRef]
- Šimkovic, F.; Pantis, G.; Vergados, J.D.; Faessler, A. Additional nucleon current contributions to neutrinoless double β decay. Phys. Rev. C 1999, 60, 055502. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Senjanović, G. Neutrino Mass and Spontaneous Parity Nonconservation. Phys. Rev. Lett. 1980, 44, 912–915. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Vergados, J.D. New Contribution to Neutrinoless Double Beta Decay in Gauge Models. Phys. Rev. Lett. 1981, 47, 1713–1716. [Google Scholar] [CrossRef]
- Mohapatra, R.N. New contributions to neutrinoless double-beta decay in supersymmetric theories. Phys. Rev. D 1986, 34, 3457–3461. [Google Scholar] [CrossRef]
- Vergados, J. Neutrinoless double β-decay without Majorana neutrinos in supersymmetric theories. Phys. Lett. B 1987, 184, 55–62. [Google Scholar] [CrossRef]
- Caurier, E.; Menéndez, J.; Nowacki, F.; Poves, A. Influence of Pairing on the Nuclear Matrix Elements of the Neutrinoless ββ Decays. Phys. Rev. Lett. 2008, 100, 052503. [Google Scholar] [CrossRef]
- Horoi, M.; Stoica, S. Shell model analysis of the neutrinoless double-β decay of 48Ca. Phys. Rev. C 2010, 81, 024321. [Google Scholar] [CrossRef]
- Sen’kov, R.A.; Horoi, M. Neutrinoless double-β decay of 48Ca in the shell model: Closure versus nonclosure approximation. Phys. Rev. C 2013, 88, 064312. [Google Scholar] [CrossRef]
- Brown, B.A.; Horoi, M.; Sen’kov, R.A. Nuclear Structure Aspects of Neutrinoless Double-β Decay. Phys. Rev. Lett. 2014, 113, 262501. [Google Scholar] [CrossRef]
- Iwata, Y.; Shimizu, N.; Otsuka, T.; Utsuno, Y.; Menéndez, J.; Honma, M.; Abe, T. Large-Scale Shell-Model Analysis of the Neutrinoless ββ Decay of 48Ca. Phys. Rev. Lett. 2016, 116, 112502. [Google Scholar] [CrossRef] [PubMed]
- Barea, J.; Iachello, F. Neutrinoless double-β decay in the microscopic interacting boson model. Phys. Rev. C 2009, 79, 044301. [Google Scholar] [CrossRef]
- Barea, J.; Kotila, J.; Iachello, F. Limits on Neutrino Masses from Neutrinoless Double-β Decay. Phys. Rev. Lett. 2012, 109, 042501. [Google Scholar] [CrossRef]
- Rodríguez, T.R.; Martínez-Pinedo, G. Energy Density Functional Study of Nuclear Matrix Elements for Neutrinoless ββ Decay. Phys. Rev. Lett. 2010, 105, 252503. [Google Scholar] [CrossRef]
- Song, L.S.; Yao, J.M.; Ring, P.; Meng, J. Relativistic description of nuclear matrix elements in neutrinoless double-β decay. Phys. Rev. C 2014, 90, 054309. [Google Scholar] [CrossRef]
- Yao, J.M.; Song, L.S.; Hagino, K.; Ring, P.; Meng, J. Systematic study of nuclear matrix elements in neutrinoless double-β decay with a beyond-mean-field covariant density functional theory. Phys. Rev. C 2015, 91, 024316. [Google Scholar] [CrossRef]
- Rath, P.K.; Chandra, R.; Chaturvedi, K.; Raina, P.K.; Hirsch, J.G. Uncertainties in nuclear transition matrix elements for neutrinoless ββ decay within the projected-Hartree-Fock-Bogoliubov model. Phys. Rev. C 2010, 82, 064310. [Google Scholar] [CrossRef]
- Pastore, S.; Carlson, J.; Cirigliano, V.; Dekens, W.; Mereghetti, E.; Wiringa, R.B. Neutrinoless double-β decay matrix elements in light nuclei. Phys. Rev. C 2018, 97, 014606. [Google Scholar] [CrossRef]
- Wang, X.B.; Hayes, A.; Carlson, J.; Dong, G.; Mereghetti, E.; Pastore, S.; Wiringa, R.B. Comparison between variational Monte Carlo and shell model calculations of neutrinoless double beta decay matrix elements in light nuclei. Phys. Lett. B 2019, 798, 134974. [Google Scholar] [CrossRef]
- Cirigliano, V.; Dekens, W.; de Vries, J.; Graesser, M.L.; Mereghetti, E.; Pastore, S.; Piarulli, M.; van Kolck, U.; Wiringa, R.B. Renormalized approach to neutrinoless double-β decay. Phys. Rev. C 2019, 100, 055504. [Google Scholar] [CrossRef]
- Sarkar, S.; Iwata, Y.; Raina, P.K. Nuclear matrix elements for the λ mechanism of 0νββ decay of 48Ca in the nuclear shell-model: Closure versus nonclosure approach. Phys. Rev. C 2020, 102, 034317. [Google Scholar] [CrossRef]
- Sarkar, S.; Kumar, P.; Jha, K.; Raina, P.K. Sensitivity of nuclear matrix elements of 0νββ of 48Ca to different components of the two-nucleon interaction. Phys. Rev. C 2020, 101, 014307. [Google Scholar] [CrossRef]
- Ahmed, F.; Horoi, M. Interference effects for 0νββ decay in the left-right symmetric model. Phys. Rev. C 2020, 101, 035504. [Google Scholar] [CrossRef]
- Horoi, M.; Neacsu, A. Shell model study of using an effective field theory for disentangling several contributions to neutrinoless double-β decay. Phys. Rev. C 2018, 98, 035502. [Google Scholar] [CrossRef]
- Horoi, M. Shell model analysis of competing contributions to the double-β decay of 48Ca. Phys. Rev. C 2013, 87, 014320. [Google Scholar] [CrossRef]
- Neacsu, A.; Stoica, S.; Horoi, M. Fast, efficient calculations of the two-body matrix elements of the transition operators for neutrinoless double-β decay. Phys. Rev. C 2012, 86, 067304. [Google Scholar] [CrossRef]
- Menendez, J.; Poves, A.; Caurier, E.; Nowacki, F. Disassembling the Nuclear Matrix Elements of the Neutrinoless beta beta Decay. Nucl. Phys. A 2009, 818, 139–151. [Google Scholar] [CrossRef]
- Šimkovic, F.; Faessler, A.; Müther, H.; Rodin, V.; Stauf, M. 0νββ-decay nuclear matrix elements with self-consistent short-range correlations. Phys. Rev. C 2009, 79, 055501. [Google Scholar] [CrossRef]
- Vogel, P. Nuclear structure and double beta decay. J. Phys. G Nucl. Part. Phys. 2012, 39, 124002. [Google Scholar] [CrossRef]
- Feldmeier, H.; Neff, T.; Roth, R.; Schnack, J. A unitary correlation operator method. Nucl. Phys. A 1998, 632, 61–95. [Google Scholar] [CrossRef]
- Neff, T.; Feldmeier, H. Tensor correlations in the unitary correlation operator method. Nucl. Phys. A 2003, 713, 311–371. [Google Scholar] [CrossRef]
- Roth, R.; Neff, T.; Hergert, H.; Feldmeier, H. Nuclear structure based on correlated realistic nucleon–nucleon potentials. Nucl. Phys. A 2004, 745, 3–33. [Google Scholar] [CrossRef]
- Benhar, O.; Biondi, R.; Speranza, E. Short-range correlation effects on the nuclear matrix element of neutrinoless double-β decay. Phys. Rev. C 2014, 90, 065504. [Google Scholar] [CrossRef]
- Kotila, J.; Iachello, F. Phase-space factors for double-β decay. Phys. Rev. C 2012, 85, 034316. [Google Scholar] [CrossRef]
- Speranza, E. Correlation Effects on the Nuclear Matrix Element of Neutrinoless Double β-Decay. Master’s Thesis, Sapienza University of Rome, Roma, Italy, December 2011. [Google Scholar]
- Valli, M. Shear Viscosity of Neutron Matter from Realistic Nucleon-Nucleon Interactions. Ph.D. Thesis, Sapienza University of Rome, Roma, Italy, 2007. [Google Scholar]
- Kortelainen, M.; Civitarese, O.; Suhonen, J.; Toivanen, J. Short-range correlations and neutrinoless double beta decay. Phys. Lett. B 2007, 647, 128–132. [Google Scholar] [CrossRef]
- Kortelainen, M.; Suhonen, J. Improved short-range correlations and 0νββ nuclear matrix elements of 76Ge and 82Se. Phys. Rev. C 2007, 75, 051303. [Google Scholar] [CrossRef]
- Weiss, R.; Soriano, P.; Lovato, A.; Menendez, J.; Wiringa, R.B. Neutrinoless double-β decay: Combining quantum Monte Carlo and the nuclear shell model with the generalized contact formalism. Phys. Rev. C 2022, 106, 065501. [Google Scholar] [CrossRef]
- Cirigliano, V.; Dekens, W.; de Vries, J.; Graesser, M.L.; Mereghetti, E.; Pastore, S.; van Kolck, U. New Leading Contribution to Neutrinoless Double-β Decay. Phys. Rev. Lett. 2018, 120, 202001. [Google Scholar] [CrossRef] [PubMed]
- Jokiniemi, L.; Soriano, P.; Menéndez, J. Impact of the leading-order short-range nuclear matrix element on the neutrinoless double-beta decay of medium-mass and heavy nuclei. Phys. Lett. B 2021, 823, 136720. [Google Scholar] [CrossRef]
- Shimizu, N.; Mizusaki, T.; Utsuno, Y.; Tsunoda, Y. Thick-Restart Block Lanczos Method for Large-Scale Shell-Model Calculations. Comput. Phys. Commun. 2019, 244, 372–384. [Google Scholar] [CrossRef]
- Caurier, E.; Nowacki, F.; Poves, A.; Sieja, K. Collectivity in the light xenon isotopes: A shell model study. Phys. Rev. C 2010, 82, 064304. [Google Scholar] [CrossRef]
- Menéndez, J. Neutrinoless ββ decay mediated by the exchange of light and heavy neutrinos: The role of nuclear structure correlations. J. Phys. G Nucl. Part. Phys. 2017, 45, 014003. [Google Scholar] [CrossRef]
- Šimkovic, F.; Faessler, A.; Rodin, V.; Vogel, P.; Engel, J. Anatomy of the 0νββ nuclear matrix elements. Phys. Rev. C 2008, 77, 045503. [Google Scholar] [CrossRef]
SRC Type | a | b | c |
---|---|---|---|
Miller–Spencer | 1.10 | 0.68 | 1.00 |
CD-Bonn | 1.52 | 1.88 | 0.46 |
AV18 | 1.59 | 1.45 | 0.92 |
Parameters for | Value | Parameters for | Value |
---|---|---|---|
1.00 | 0.04 | ||
0.92 | 1.39 | ||
2.56 | 2.92 | ||
0.33 | −5.97 | ||
0.57 | |||
−0.94 |
NME Type | SRC Type | NME Value |
---|---|---|
None | −0.215 | |
Miller–Spencer | −0.144 | |
CD-Bonn | −0.232 | |
AV18 | −0.213 | |
Spin-Dependent SRCs | −0.190 | |
None | 0.774 | |
Miller–Spencer | 0.540 | |
CD-Bonn | 0.806 | |
AV18 | 0.740 | |
Spin-Dependent SRCs | 0.674 | |
None | 0.873 | |
Miller–Spencer | 0.629 | |
CD-Bonn | 0.950 | |
AV18 | 0.872 | |
Spin-Dependent SRCs | 0.792 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkar, S.; Iwata, Y. Effect of Spin-Dependent Short-Range Correlations on Nuclear Matrix Elements for Neutrinoless Double Beta Decay of 48Ca. Universe 2023, 9, 444. https://doi.org/10.3390/universe9100444
Sarkar S, Iwata Y. Effect of Spin-Dependent Short-Range Correlations on Nuclear Matrix Elements for Neutrinoless Double Beta Decay of 48Ca. Universe. 2023; 9(10):444. https://doi.org/10.3390/universe9100444
Chicago/Turabian StyleSarkar, Shahariar, and Yoritaka Iwata. 2023. "Effect of Spin-Dependent Short-Range Correlations on Nuclear Matrix Elements for Neutrinoless Double Beta Decay of 48Ca" Universe 9, no. 10: 444. https://doi.org/10.3390/universe9100444
APA StyleSarkar, S., & Iwata, Y. (2023). Effect of Spin-Dependent Short-Range Correlations on Nuclear Matrix Elements for Neutrinoless Double Beta Decay of 48Ca. Universe, 9(10), 444. https://doi.org/10.3390/universe9100444