Silicon Photomultipliers for Neutrino Telescopes
Abstract
:1. Introduction
2. Neutrino Telescope Detection Principle
3. State-of-the-Art Detection Node for Neutrino Astronomy
4. SiPMs as Detector Elements in Neutrino Telescope DOMs: Advantages and Disadvantages
- Their sensitivity ranges from ultraviolet to near infrared, ideal for Cherenkov light;
- Unlike PMTs, SiPMs do not require a high voltage supply exceeding 100 V; nonetheless, their gains are comparable to traditional PMTs (105–106);
- They are immune to electromagnetic fields;
- The compactness can be scaled up as required and has a relatively lower cost than PMTs [47];
- They are stable to temperature variations;
- Benefiting from solid-state technology, SiPMs cannot be damaged by stray light;
5. Challenges Ahead for the Acquisition System
5.1. Acquisition Resolution
5.2. Synchronisation
5.3. Filtering
6. Possible Architectures
6.1. A Hybrid DOM Architecture with PMTs and SiPMs
6.2. A DOM Architecture Composed Only of SiPMs
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. The IceCube Neutrino Observatory: Instrumentation and Online Systems. J. Instrum. 2017, 12, P03012. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Auffenberg, J.; et al. Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science 2013, 342, 1242856. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T.C.; et al. Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data. Phys. Rev. Lett. 2014, 113, 101101. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data. Phys. Rev. Lett. 2020, 124, 051103. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alameddine, J.M.; Alispach, C.; Alves, A.A.; Amin, N.M.; et al. Evidence for neutrino emission from the nearby active galaxy NGC 1068. Science 2022, 378, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Ageron, M.; Agular, J.A.; Al Samarai, I.; Albert, A.; Ameli, F.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; et al. ANTARES: The first undersea neutrino telescope. Nucl. Instrum. Meth. A 2011, 656, 11–38. [Google Scholar] [CrossRef]
- Adrian-Martinez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.; André, M.; Androulakis, G.; Anghinolfi, M.; et al. Letter of intent for KM3NeT 2.0. J. Phys. G 2016, 43, 084001. [Google Scholar] [CrossRef]
- Agostini, M.; Böhmer, M.; Bosma, J.; Clark, K.; Danninger, M.; Fruck, C.; Gernhäuser, R.; Gärtner, A.; Grant, D.; Henningsen, F.; et al. The Pacific Ocean Neutrino Experiment. Nat. Astron. 2020, 4, 913–915. [Google Scholar] [CrossRef]
- Ye, Z.P.; Hu, F.; Tian, W.; Chang, Q.C.; Chang, Y.L.; Cheng, Z.S.; Gao, J.; Ge, T.; Gong, G.H.; Guo, J.; et al. Proposal for a neutrino telescope in South China Sea. arXiv 2022, arXiv:2207.04519. [Google Scholar]
- Fang, K.; Kotera, K.; Miller, M.C.; Murase, K.; Oikonomou, F. Identifying Ultrahigh-Energy Cosmic-Ray Accelerators with Future Ultrahigh-Energy Neutrino Detectors. J. Cosmol. Astropart. Phys. 2016, 12, 17. [Google Scholar] [CrossRef] [Green Version]
- Otte, A.N. SiPM’s a very brief review. In Proceedings of the International Conference on New Photo-Detectors 2016, Moscow, Russia, 6–9 July 2015; p. 1. [Google Scholar] [CrossRef] [Green Version]
- Acerbi, F.; Gundacker, S. Understanding and simulating SiPMs. Nucl. Instrum. Meth. A 2019, 926, 16–35. [Google Scholar] [CrossRef]
- Saveliev, V. Silicon Photomultiplier—New Era of Photon Detection. In Advances in Optical and Photonic Devices; Kim, K.Y., Ed.; IntechOpen: Rijeka, Croatia, 2010; Chapter 14. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Li, Z.; Xu, D. Exploring a PMT+SiPM hybrid optical module for next generation neutrino telescopes. In Proceedings of the 37th International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 18 March 2022. [Google Scholar] [CrossRef]
- Norris, R.P. Discovering the Unexpected in Astronomical Survey Data. Publ. Astron. Soc. Aust. 2017, 34, e007. [Google Scholar] [CrossRef] [Green Version]
- Markov, M.A. On high energy neutrino physics. In Proceedings of the 10th International Conference on High Energy Physics, Rochester, NY, USA, 25 August–1 September 1960; pp. 578–581. [Google Scholar]
- Hazen, E.S.; Alexander, C.M.; Anderson, E.W.; Aoki, T.; Berns, H.G.; Berson, U.; Bosetti, P.C.; Bolesta, P.E.; Boynton, P.E. The DUMAND-II digitizer. In Proceedings of the 23rd International Cosmic Ray Conference, Calgary, AB, Canada, 19–30 July 1993. [Google Scholar]
- Aiello, S.; Albert, A.; Alves Garre, S.; Aly, Z.; Ameli, F.; André, M.; Androulakis, G.; Anghinolfi, M.; Anguita, M.; Gisela, A.; et al. Architecture and performance of the KM3NeT front-end firmware. J. Astron. Telesc. Instrum. Syst. 2021, 7, 016001. [Google Scholar] [CrossRef]
- Ameli, F.; Aiello, S.; Aloisio, A.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Avanzini, C.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; et al. The Data Acquisition and Transport Design for NEMO Phase 1. IEEE Trans. Nucl. Sci. 2008, 55, 233–240. [Google Scholar] [CrossRef]
- Klein, S.R. IceCube: A Cubic Kilometer Radiation Detector. IEEE Trans. Nucl. Sci. 2009, 56, 1141–1147. [Google Scholar] [CrossRef] [Green Version]
- Andres, E.; Askebjer, P.; Barwick, S.W.; Bay, R.; Bergström, L.; Biron, A.; Booth, J.; Bouchta, A.; Carius, S.; Carlson, M.; et al. The AMANDA neutrino telescope: Principle of operation and first results. Astropart. Phys. 2000, 13, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, J.A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A.C.; Astraatmadja, T.; Aubert, J.J.; et al. Performance of the front-end electronics of the ANTARES neutrino telescope. Nucl. Instrum. Meth. A 2010, 622, 59–73. [Google Scholar] [CrossRef] [Green Version]
- Aiello, S.; Albert, A.; Alshamsi, M.; Garre, S.A.; Aly, Z.; Ambrosone, A.; Ameli, F.; Andre, M.; Androulakis, G.; Anghinolfi, M.; et al. The KM3NeT multi-PMT optical module. J. Instrum. 2022, 17, P07038. [Google Scholar] [CrossRef]
- van Eeden, T.; Seneca, J.; Heijboer, A. High-energy reconstruction for single and double cascades using the KM3NeT detector. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021. [Google Scholar] [CrossRef]
- Bouwhuis, M. Time synchronization and time calibration in KM3NeT. In Proceedings of the 34th International Cosmic Ray Conference, The Hague, The Netherlands, 30 July–6 August 2015. [Google Scholar] [CrossRef] [Green Version]
- Coniglione, R.; Creusot, A.; Di Palma, I.; Guderian, D.; Hofestädt, J.; Riccobene, G.; Sánchez Losa, A. KM3NeT Time Calibration. In Proceedings of the 36th International Cosmic Ray Conference, Madison, WI, USA, 24 July–1 August 2019. [Google Scholar] [CrossRef]
- Jansweijer, P.P.M.; Peek, H.Z.; De Wolf, E. White Rabbit: Sub-nanosecond timing over Ethernet. Nucl. Instrum. Meth. A 2013, 725, 187–190. [Google Scholar] [CrossRef]
- Serrano, J.; Alvarez, P.; Cattin, M.; Garcia Cota, E.; Lewis, J.; Moreira, P.; Wlostowski, T.; Gaderer, G.; Loschmidt, P.; Dedic, J.; et al. White Rabbit Project. Proceedings of ICALEPCS2009, Kobe, Japan, 12–16 October 2009; pp. 93–95. [Google Scholar]
- Lipinski, M.; Wlostowski, T.; Serrano, J.; Alvarez, P. White rabbit: A PTP application for robust sub-nanosecond synchronization. In Proceedings of the 2011 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication, Munich, Germany, 12–16 September 2011; pp. 25–30. [Google Scholar]
- Calvo, D.; Real, D.; Carrió, F. Sub-nanosecond synchronization node for high-energy astrophysics: The KM3NeT White Rabbit Node. Nucl. Instrum. Meth. A 2020, 958, 162777. [Google Scholar] [CrossRef]
- Real, D.; Bozza, C.; Calvo, D.; Musico, P.; Jansweijer, P.; Colonges, S.; van Beveren, V.; Versari, F.; Chiarusi, T.; Carriò, F.; et al. KM3NeT acquisition: The new version of the Central Logic Board and its related Power Board, with highlights and evolution of the Control Unit. J. Instrum. 2020, 15, C03024. [Google Scholar] [CrossRef]
- Aiello, S.; Albert, A.; Alshamsi, M.; Garre, S.A.; Aly, Z.; Ambrosone, A.; Ameli, F.; Andre, M.; Androulakis, G.; Anghinolfi, M.; et al. Nanobeacon: A time calibration device for the KM3NeT neutrino telescope. Nucl. Instrum. Meth. A 2022, 1040, 167132. [Google Scholar] [CrossRef]
- Ageron, M.; Aguilar, J.A.; Albert, A.; Ameli, F.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, E.; Aslaniedes, E.; Aubert, J.J.; et al. The ANTARES Optical Beacon System. Nucl. Instrum. Meth. A 2007, 578, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Anvar, S. Data acquisition architecture studies for the KM3NeT deep sea neutrino telescope. In Proceedings of the 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference and 16th International Workshop on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors, Dresden, Germany, 19–25 October 2008; pp. 3558–3561. [Google Scholar] [CrossRef]
- Biagi, S.; Chiarusi, T.; Piattelli, P.; Real, D. The data acquisition system of the KM3NeT detector. In Proceedings of the 34th International Cosmic Ray Conference, The Hague, The Netherlands, 30 July–6 August 2015. [Google Scholar] [CrossRef] [Green Version]
- Pellegrino, C. The Trigger and Data Acquisition System (TriDAS) of the KM3NeT experiment. Nuovo Cim. C 2016, 39, 250. [Google Scholar] [CrossRef]
- Ishihara, A. The IceCube Upgrade—Design and Science Goals. In Proceedings of the 36th International Cosmic Ray Conference, Madison, WI, USA, 24 July–1 August 2019; p. 1031. [Google Scholar] [CrossRef]
- Classen, L.; Kossatz, M.; Kretzschmann, A.; Lindner, S.; Shuklin, D. The mDOM—A multi-PMT digital optical module for the IceCube-Gen2 neutrino telescope. In Proceedings of the 35th International Cosmic Ray Conference, Busan, Republic of Korea, 10–20 July 2017. [Google Scholar] [CrossRef]
- Classen, L.; Dorn, C.; Kappes, A.; Karg, T.; Kossatz, M.; Kretzschmann, A.; Ortjohann, H.W.; Reubelt, J.; Sulanke, K.H.; Weigel, R. A multi-PMT Optical Module for the IceCube Upgrade. In Proceedings of the 36th International Cosmic Ray Conference, Madison, WI, USA, 24 July–1 August 2019. [Google Scholar] [CrossRef]
- Anderson, T.; Classen, L.; Fienberg, A.T.; Mechbal, S.; Scheneider, J.; Sulanke, K.H.; Unland Elorrieta, M.A.; Wendt, C.; Abbasi, R.; Ackermann, M.; et al. Design and performance of the multi-PMT optical module for IceCube Upgrade. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021. [Google Scholar] [CrossRef]
- Aiello, S.; Ameli, F.; André, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Aublin, J.; Bagatelas, C.; Barbarino, G.; Baret, B.; et al. KM3NeT front-end and readout electronics system: Hardware, firmware and software. J. Astron. Telesc. Instrum. Syst. 2019, 5, 046001. [Google Scholar] [CrossRef] [Green Version]
- KETEK. Datasheet SiPM PM3325-WB-D0. Available online: https://www.ketek.net/wp-content/uploads/2018/12/KETEK-PM3325-WB-D0-Datasheet.pdf (accessed on 25 January 2023).
- Acerbi, F.; Ferri, A.; Gola, A.; Cazzanelli, M.; Pavesi, L.; Zorzi, N.; Piemonte, C. Characterization of Single-Photon Time Resolution: From Single SPAD to Silicon Photomultiplier. IEEE Trans. Nucl. Sci. 2014, 61, 2678–2686. [Google Scholar] [CrossRef]
- Ghassemi, A.; Sato, K.; Kobayashi, K. MMPC. 2008. Available online: https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/mppc_kapd9005e.pdf#page=27 (accessed on 25 January 2023).
- Donati, S. Avalanche Photodiode, SPAD, and SiPM. In Photodetectors: Devices, Circuits and Applications; IEEE: Piscataway, NJ, USA, 2021; pp. 175–220. [Google Scholar] [CrossRef]
- Sun, Y.; Maricic, J. SiPMs characterization and selection for the DUNE far detector photon detection system. J. Instrum. 2016, 11, C01078. [Google Scholar] [CrossRef] [Green Version]
- Yebras, J.; Antoranz, P.; Miranda, J. Single Photon Counting with Silicon Photomultipliers, shortening systems and incoherent illumination. J. Eur. Opt. Soc. Rapid Publ. 2012, 7, 12014. [Google Scholar] [CrossRef]
- Gola, A.; Acerbi, F.; Capasso, M.; Marcante, M.; Mazzi, A.; Paternoster, G.; Piemonte, C.; Regazzoni, V.; Zorzi, N. NUV-Sensitive Silicon Photomultiplier Technologies Developed at Fondazione Bruno Kessler. Sensors 2019, 19, 308. [Google Scholar] [CrossRef] [Green Version]
- Aiello, S.; Akrame, S.E.; Ameli, F.; Anasssontzis, E.G.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aublin, J.; et al. Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. J. Instrum. 2018, 13, P05035. [Google Scholar] [CrossRef] [Green Version]
- Acerbi, F.; Paternoster, G.; Gola, A. SiPM Overview: Status and Trends. Communication to the International Workshop on New Photon-Detectors. 2018. Available online: https://indico.ipmu.jp/event/166/contributions/2809/attachments/2133/2596/FBKAcerbi_-_SiPM_overview_v5a.pdf (accessed on 25 January 2023).
- Korpar, S. SiPMs-Technologies and Timing. FT4. 2019. Available online: https://indico.cern.ch/event/999817/contributions/4253051/attachments/2240249/3798094/TF4-Korpar.pdf (accessed on 25 January 2023).
- Ootani, W. Silicon Photomultiplier (SiPM) Status and Perspectives. 2015. Available online: https://indico.cern.ch/event/392833/contributions/1829473/attachments/785875/1077253/SiPMReview_OotaniRD51.pdf (accessed on 25 January 2023).
- Adrian-Martinez, S.; Ageron, M.; Aguilar, J.A.; Aharonian, F.; Aiello, S.; Albert, A.; Alexandri, M.; Ameli, F.; Anassontzis, E.; Androulakis, G.; et al. Expansion cone for the 3-inch PMTs of the KM3NeT optical modules. J. Instrum. 2013, 8, T03006. [Google Scholar] [CrossRef]
- Pavia, J.; Wolf, M.; Charbon, E. Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery. Opt. Express 2014, 22, 4202–4213. [Google Scholar] [CrossRef]
- Engelmann, E. Dark Count Rate of Silicon Photomultipliers: Metrological Characterization and Suppression; Cuvillier Verlag: Gottingen, Germany, 2018. [Google Scholar]
- Hamamatsu. SiPM S13360 Series Datasheet. 2022. Available online: https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/s13360_series_kapd1052e.pdf (accessed on 25 January 2023).
- OnSemi. SiPM C Series Datasheet. 2022. Available online: https://www.onsemi.com/pdf/datasheet/microc-series-d.pdf (accessed on 25 January 2023).
- Grupen, C.; Shwartz, B. Particle Detectors, 2nd ed.; Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar] [CrossRef]
- Kalisz, J. Review of methods for time interval measurements with picosecond resolution. Metrol. Metrol. 2004, 41, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Xilinx. Kintex Ultrascale Series FPGAs Data Sheet. 2020. Available online: https://docs.xilinx.com/v/u/en-US/ds892-kintex-ultrascale-data-sheet (accessed on 24 June 2023).
- Nutt, R. Digital Time Intervalometer. Rev. Sci. Instrum. 1968, 39, 1342–1345. [Google Scholar] [CrossRef]
- Wu, J.; Hansen, S.; Shi, Z. ADC and TDC implemented using FPGA. In Proceedings of the 2007 IEEE Nuclear Science Symposium and Medical Imaging Conference, Honolulu, HI, USA, 26 October–3 November 2007; Volume 1, pp. 281–286. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, B.; Wu, J.; Zaghloul, M. A high resolution time-to-digital converter on FPGA for Time-Correlated Single Photon Counting. In Proceedings of the 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), Boise, ID, USA, 5–8 August 2012; pp. 900–903. [Google Scholar] [CrossRef]
- Spencer, D.; Cole, J.; Drigert, M.; Aryaeinejad, R. A high-resolution, multi-stop, time-to-digital converter for nuclear time-of-flight measurements. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 556, 291–295. [Google Scholar] [CrossRef]
- Balla, A.; Mario Beretta, M.; Ciambrone, P.; Gatta, M.; Gonnella, F.; Iafolla, L.; Mascolo, M.; Messi, R.; Moricciani, D.; Riondino, D. The characterization and application of a low resource FPGA-based time to digital converter. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 739, 75–82. [Google Scholar] [CrossRef]
- Calvo, D.; Real, D. High resolution time to digital converter for the KM3NeT neutrino telescope. J. Instrum. 2015, 10, C01015. [Google Scholar] [CrossRef]
- Jayasinghe, D.; Ignjatovic, A.; Parameswaran, S. UCloD: Small Clock Delays to Mitigate Remote Power Analysis Attacks. IEEE Access 2021, 9, 108411–108425. [Google Scholar] [CrossRef]
- Qi, J.; Gong, H.; Liu, Y. On-Chip Real-Time Correction for a 20-ps Wave Union Time-To-Digital Converter (TDC) in a Field-Programmable Gate Array (FPGA). IEEE Trans. Nucl. Sci. 2012, 59, 1605–1610. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Yao, Q. A new realization of time-to-digital converters based on FPGA internal routing resources. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 1787–1795. [Google Scholar] [CrossRef] [PubMed]
- Xilinx. Kintex7 Series FPGAs Data Sheet. 2020. Available online: https://docs.xilinx.com/v/u/en-US/ds182_Kintex_7_Data_Sheet (accessed on 24 June 2023).
- Xilinx. XCKU5P Ultrascale+ Series FPGAs Data Sheet. Available online: https://datasheet.octopart.com/XCKU5P-2FFVB676I-Xilinx-datasheet-94062434.pdf (accessed on 24 June 2023).
- Bagley, P.; Craig, J.; Holford, A.; Jamieson, A.; Niedzielski, T.; Priede, I.G.; de Bell, M.; Koopstra, J.; Lim, G.; de Wolf, E.; et al. KM3NeT: Technical Design Report for a Deep-Sea Research Infrastructure in the Mediterranean Sea Incorporating a Very Large Volume Neutrino Telescope. 2009. Available online: https://www.roma1.infn.it/people/capone/KM3NeT/KM3NeT-TDR.pdf (accessed on 24 June 2023).
- Nagornov, O.; Bay, R.; Chirkin, D.; He, Y.; Miocinovic, P.; Richards, A.; Woschnagg, K.; Koci, B.; Zagorodnov, V.; Pricet, P.B.; et al. Temperature profile for glacial ice at the South Pole: Implications for life in a nearby subglacial lake. Proc. Natl. Acad. Sci. USA 2002, 99, 7844–7847. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Real, D.; Calvo, D. Silicon Photomultipliers for Neutrino Telescopes. Universe 2023, 9, 326. https://doi.org/10.3390/universe9070326
Real D, Calvo D. Silicon Photomultipliers for Neutrino Telescopes. Universe. 2023; 9(7):326. https://doi.org/10.3390/universe9070326
Chicago/Turabian StyleReal, Diego, and David Calvo. 2023. "Silicon Photomultipliers for Neutrino Telescopes" Universe 9, no. 7: 326. https://doi.org/10.3390/universe9070326
APA StyleReal, D., & Calvo, D. (2023). Silicon Photomultipliers for Neutrino Telescopes. Universe, 9(7), 326. https://doi.org/10.3390/universe9070326