Tidal Effects and Clock Comparison Experiments
Abstract
:1. Introduction
2. Clock Comparisons in the General Relativity Reference Systems
2.1. Tidal Potentials and Clock Comparison
2.2. Clock Comparison in the Barycentric Coordinate Reference System
2.3. Clock Comparison in the Geocentric Coordinate Reference System
3. Experimental Estimation for Tidal Effects
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delva, P.; Puchades, N.; Schönemann, E.; Dilssner, F.; Courde, C.; Bertone, S.; Gonzalez, F.; Hees, A.; Poncin-Lafitte, C.L.; Meynadier, F.; et al. Gravitational redshift test using eccentric Galileo satellites. Phys. Rev. Lett. 2018, 121, 231101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, S.; Finke, F.; Lülf, M.; Kichakova, O.; Puetzfeld, D.; Knickmann, D.; List, M.; Rievers, B.; Giorgi, G.; Günther, C.; et al. Test of the gravitational redshift with Galileo satellites in an eccentric orbit. Phys. Rev. Lett. 2018, 121, 231102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takamoto, M.; Ushijima, I.; Ohmae, N.; Yahagi, T.; Kokado, K.; Shinkai, H.; Katori, H. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photonics 2020, 14, 411–415. [Google Scholar] [CrossRef]
- Poisson, E.; Will, C.M. Gravity: Newtonian, Post–Newtonian, Relativistic; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Soffel, M.; Klioner, S.A.; Petit, G.; Wolf, P.; Kopeikin, S.M.; Bretagnon, P.; Brumberg, V.A.; Capitaine, N.; Damour, T.; Fukushima, T.; et al. The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement. Astrophys. J. 2003, 126, 2687. [Google Scholar] [CrossRef]
- Qin, C.G.; Tan, Y.J.; Shao, C.G. Relativistic tidal effects on clock-comparison experiments. Class. Quantum Grav. 2019, 36, 055008. [Google Scholar] [CrossRef]
- Qin, C.G.; Tan, Y.J.; Shao, C.G. The Tidal Clock Effects of the Lunisolar Gravitational Field and the Earth’s Tidal Deformation. Astron. J. 2020, 160, 272. [Google Scholar] [CrossRef]
- Hinkley, N.; Sherman, J.A.; Phillips, N.B.; Schioppo, M.; Lemke, N.D.; Beloy, K.; Pizzocaro, M.; Oates, C.W.; Ludlow, A.D. An atomic clock with 10-18 instability. Science 2013, 341, 1215–1218. [Google Scholar] [CrossRef] [Green Version]
- Bloom, B.J.; Nicholson, T.L.; Williams, J.R.; Campbell, S.L.; Bishof, M.; Zhang, X.; Zhang, W.; Bromley, S.L.; Ye, J. An optical lattice clock with accuracy and stability at the 10-18 level. Nature 2014, 506, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, T.L.; Campbell, S.L.; Hutson, R.B.; Marti, G.E.; Bloom, B.J.; McNally, R.L.; Zhang, W.; Barrett, M.D.; Safronova, M.S.; Strouse, G.F.; et al. Systematic evaluation of an atomic clock at 2×10-18 total uncertainty. Nat. Commun. 2015, 6, 6896. [Google Scholar] [CrossRef] [Green Version]
- Delva, P.; Lodewyck, J.; Bilicki, S.; Bookjans, E.; Vallet, G.; Le Targat, R.; Pottie, P.-E.; Guerlin, C.; Meynadier, F.; Le Poncin-Lafitte, C.; et al. Test of Special Relativity Using a Fiber Network of Optical Clocks. Phys. Rev. Lett. 2017, 118, 221102. [Google Scholar] [CrossRef] [Green Version]
- McGrew, W.F.; Zhang, X.; Fasano, R.J.; Schäffer, S.A.; Beloy, K.; Nicolodi, D.; Brown, R.C.; Hinkley, N.; Milani, G.; Schioppo, M.; et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 2018, 564, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Beloy, K.; Bodine, M.I.; Bothwell, T.; Brewer, S.M.; Bromley, S.L.; Chen, J.-S.; Deschênes, J.-D.; Diddams, S.A.; Fasano, R.J.; Fortier, T.M.; et al. Frequency ratio measurements with 18-digit accuracy using a network of optical clocks. Nature 2021, 591, 564–569. [Google Scholar]
- Nelson, R.A. Relativistic time transfer in the vicinity of the Earth and in the solar system. Metrologia 2011, 48, S171–S180. [Google Scholar] [CrossRef]
- Jaduszliwer, B.; Camparo, J. Past, present and future of atomic clocks for GNSS. GPS Solut. 2021, 25, 1–13. [Google Scholar] [CrossRef]
- Grotti, J.; Koller, S.; Vogt, S.; Häfner, S.; Sterr, U.; Lisdat, C.; Denker, H.; Voigt, C.; Timmen, L.; Rolland, A.; et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 2018, 14, 437–441. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Soffel, M.; Klioner, S.A. Geodesy and Relativity. J. Geod. 2008, 82, 133–145. [Google Scholar] [CrossRef]
- Kouvaris, C.; Papantonopoulos, E.; Street, L.; Wijewardhana, L.C.R. Using atomic clocks to detect local dark matter halos. Phys. Rev. D 2021, 104, 103025. [Google Scholar] [CrossRef]
- Kobayashi, T.; Takamizawa, A.; Akamatsu, D.; Kawasaki, A.; Nishiyama, A.; Hosaka, K.; Hisai, Y.; Wada, M.; Inaba, H.; Tanabe, T.; et al. Search for ultralight dark matter from long-term frequency comparisons of optical and microwave atomic clocks. Phys. Rev. Lett. 2022, 129, 241301. [Google Scholar] [CrossRef]
- Antypas, D.; Tretiak, O.; Garcon, A.; Ozeri, R.; Perez, G.; Budker, D. Scalar dark matter in the radio-frequency band: Atomic-spectroscopy search results. Phys. Rev. Lett. 2019, 123, 141102. [Google Scholar] [CrossRef] [Green Version]
- Roberts, B.M.; Derevianko, A. Precision measurement noise asymmetry and its annual modulation as a dark matter signature. Universe 2021, 7, 50. [Google Scholar] [CrossRef]
- Sanner, C.; Huntemann, N.; Lange, R.; Tamm, C.; Peik, E.; Safronova, M.S.; Porsev, S.G. Optical clock comparison for Lorentz symmetry testing. Nature 2019, 567, 204–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hees, A.; Bailey, Q.G.; Bourgoin, A.; Pihan-Le Bars, H.; Guerlin, C.; Le Poncin-Lafitte, C. Tests of Lorentz symmetry in the gravitational sector. Universe 2016, 2, 30. [Google Scholar] [CrossRef] [Green Version]
- Wolf, P.; Chapelet, F.; Bize, S.; Clairon, A. Cold atom clock test of Lorentz invariance in the matter sector. Phys. Rev. Lett. 2006, 96, 060801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, C.G.; Tan, Y.J.; Shao, C.G. Test of Einstein Equivalence Principle by frequency comparisons of optical clocks. Phys. Lett. B 2021, 820, 136471. [Google Scholar] [CrossRef]
- Godun, R.M.; Nisbet-Jones, P.B.R.; Jones, J.M.; King, S.A.; Johnson, L.A.M.; Margolis, H.S.; Szymaniec, K.; Lea, S.N.; Bongs, K.; Gill, P. Frequency Ratio of Two Optical Clock Transitions in 171Yb+ and Constraints on the Time Variation of Fundamental Constants. Phys. Rev. Lett. 2014, 113, 210801. [Google Scholar] [CrossRef] [Green Version]
- Huntemann, N.; Lipphardt, B.; Tamm, C.; Gerginov, V.; Weyers, S.; Peik, E. Improved Limit on a Temporal Variation of mp/me from Comparisons of Yb+ and Cs Atomic Clocks. Phys. Rev. Lett. 2014, 113, 210802. [Google Scholar] [CrossRef] [Green Version]
- Lange, R.; Huntemann, N.; Rahm, J.M.; Sanner, C.; Shao, H.; Lipphardt, B.; Tamm, C.; Weyers, S.; Peik, E. Improved limits for violations of local position invariance from atomic clock comparisons. Phys. Rev. Lett. 2021, 126, 011102. [Google Scholar] [CrossRef]
- Kostelecký, A. The search for relativity violations. Sci. Am. 2004, 291, 92–101. [Google Scholar] [CrossRef]
- Bluhm, R.; Kostelecký, V.A.; Lane, C.D.; Russell, N. Probing Lorentz and CPT violation with space-based experiments. Phys. Rev. D 2003, 68, 125008. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Vargas, A.J. Lorentz anD CPT tests with clock-comparison experiments. Phys. Rev. D 2018, 98, 036003. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A.; Lane, C.D.; Russell, N. Clock-comparison tests of Lorentz and CPT symmetry in space. Phys. Rev. Lett. 2002, 88, 090801. [Google Scholar] [CrossRef] [Green Version]
- Pihan-Le Bars, H.; Guerlin, C.; Lasseri, R.-D.; Ebran, J.-P.; Bailey, Q.; Bize, S.; Khan, E.; Wolf, P. Lorentz-symmetry test at Planck-scale suppression with nucleons in a spin-polarized 133Cs cold atom clock. Phys. Rev. D 2017, 95, 075026. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, D.N.; Ahlers, H.; Battelier, B.; Bawamia, A.; Bertoldi, A.; Bondarescu, R.; Bongs, K.; Bouyer, P.; Braxmaier, C.; Cacciapuoti, L.; et al. STE-QUEST-test of the universality of free fall using cold atom interferometry. Class. Quantum Gravity 2014, 31, 115010. [Google Scholar] [CrossRef] [Green Version]
- Savalle, E.; Guerlin, C.; Delva, P.; Meynadier, F.; le Poncin-Lafitte, C.; Wolf, P. Gravitational redshift test with the future ACES mission. Class. Quantum Gravity 2019, 36, 245004. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Lü, D.-S.; Chen, W.-B.; Li, T.; Qu, Q.-Z.; Wang, B.; Li, L.; Ren, W.; Dong, Z.-R.; Zhao, J.-B.; et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms. Nat. Commun. 2018, 9, 2760. [Google Scholar] [CrossRef] [Green Version]
- Derevianko, A.; Gibble, K.; Hollberg, L.; Newbury, N.R.; Oates, C.; Safronova, M.S.; Sinclair, L.C.; Yu, N. Fundamental physics with a state-of-the-art optical clock in space. Quantum Sci. Technol. 2022, 7, 044002. [Google Scholar] [CrossRef]
- Droste, S.; Ozimek, F.; Udem, T.; Predehl, K.; Hänsch, T.W.; Schnatz, H.; Grosche, G.; Holzwarth, R. Optical-frequency transfer over a single-span 1840 km fiber link. Phys. Rev. Lett. 2013, 111, 110801. [Google Scholar] [CrossRef]
- Turyshev, S.G.; Toth, V.T.; Sazhin, M.A. General relativistic observables of the GRAIL mission. Phys. Rev. D 2013, 87, 024020. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Soffel, M.; Xu, C.M. General-relativistic celestial mechanics. I. Method and definition of reference systems. Phys. Rev. D 1991, 43, 3273. [Google Scholar] [CrossRef]
- Hoffmann, B. Noon-midnight red shift. Phys. Rev. 1961, 121, 337. [Google Scholar] [CrossRef]
- Geršl, J.; Delva, P.; Wolf, P. Relativistic corrections for time and frequency transfer in optical fibres. Metrologia 2005, 52, 552–564. [Google Scholar] [CrossRef] [Green Version]
- Cohen, L.G.; Fleming, J.W. Effect of temperature on trasmission in lightguides. Bell Syst. Tech. J. 1979, 58, 945–951. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, P.; Shen, Z.; Xu, R.; Sun, X.; Ashry, M.; Ruby, A.; Xu, W.; Wu, K.; Wu, Y.; et al. Testing gravitational redshift base on microwave frequency links onboard China Space Station. arXiv 2021, arXiv:2112.02759. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, C.-G.; Liu, T.; Dong, J.-Z.; Dai, X.-Y.; Tan, Y.-J.; Shao, C.-G. Tidal Effects and Clock Comparison Experiments. Universe 2023, 9, 133. https://doi.org/10.3390/universe9030133
Qin C-G, Liu T, Dong J-Z, Dai X-Y, Tan Y-J, Shao C-G. Tidal Effects and Clock Comparison Experiments. Universe. 2023; 9(3):133. https://doi.org/10.3390/universe9030133
Chicago/Turabian StyleQin, Cheng-Gang, Tong Liu, Jin-Zhuang Dong, Xiao-Yi Dai, Yu-Jie Tan, and Cheng-Gang Shao. 2023. "Tidal Effects and Clock Comparison Experiments" Universe 9, no. 3: 133. https://doi.org/10.3390/universe9030133
APA StyleQin, C. -G., Liu, T., Dong, J. -Z., Dai, X. -Y., Tan, Y. -J., & Shao, C. -G. (2023). Tidal Effects and Clock Comparison Experiments. Universe, 9(3), 133. https://doi.org/10.3390/universe9030133